Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T09:01:57.651Z Has data issue: false hasContentIssue false

16 - Crocodilians of the Crato Formation: evidence for enigmatic species

Published online by Cambridge University Press:  22 August 2009

David M. Martill
Affiliation:
University of Portsmouth
Günter Bechly
Affiliation:
Staatliches Museum für Naturkunde, Stuttgart
Robert F. Loveridge
Affiliation:
University of Portsmouth
Eberhard Dino Frey
Affiliation:
Geowissenschaftliche Abteilung, Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstrasse 13, D-76133 Karlruhe, Germany
Steven W. Salisbury
Affiliation:
School of Integrative Biology, The University of Queensland, Brisbane, Qld 4072, Australia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Crato Fossil Beds of Brazil
Window into an Ancient World
, pp. 463 - 474
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benton, M. J. and Clarke, J. M. 1988. Archosaur phylogeny and the relationships of the Crocodylia, pp. 295–338. In Benton, M. J. (ed.), The Phylogeny and Classification of Tetrapods, vol. 1: Amphibians, Reptiles, Birds. Systematics Association Special Volume 35A. Oxford: Clarendon Press.
Brito, S. P., Andrade, D. V. and Abe, A. S. 2002. Do caimans eat fruit?Herpetological Natural History 9: 95–96.Google Scholar
Brochu, C. A. 1997a. A review of “Leidyosuchus” (Crocodyliformes, Eusuchia) from the Cretaceous through Eocene of North America. Journal of Vertebrate Paleontology17: 679–697.CrossRefGoogle Scholar
Brochu, C. A. 1997b. Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis. Systematic Biology 46: 479–522.CrossRefGoogle Scholar
Brochu, C. A. 1999. Phylogenetics, taxonomy, and historical biogeography of Alligatoroidea. Journal of Vertebrate Paleontology, Memoir 6 19: 9–100.CrossRefGoogle Scholar
Buckley, G. A., Brochu, C. A. and Krause, D. W. 1997. Hyperdiversity and the paleobiogeographic origins of the Late Cretaceous crocodyliforms of Madagascar. Journal of Vertebrate Paleontology 17 (suppl. to no. 3): 35A.Google Scholar
Buckley, G. A., Brochu, C. A. and Krause, D. W., Brochu, C. A. and Krause, D. W. 2000. A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature405: 941–944.CrossRefGoogle Scholar
Buffetaut, E. 1981. Die biogeographische Geschichte der Krokodilier, mit Beschreibung einer neuen Art, Araripesuchus wegeneri. Geologische Rundschau 70: 611–624.CrossRefGoogle Scholar
Clark, J. M. 1986. Phylogenetic Relationships of the Crocodylomorph Archosaurs. PhD thesis, University of Chicago.Google Scholar
Clark, J. M. and Norell, M. A. 1992. The Early Cretaceous crocodylomorph Hylaeochampsa vectiana from the Wealden of the Isle of Wight. American Museum Noviatates 3032: 1–19.Google Scholar
Clark, J. M., Xu, X.Forster, C. A. and Wang, Y. 2004. A Middle Jurassic ‘sphenosuchian’ from China and the origin of the crocodylian skull. Nature 430: 1021–1024.CrossRefGoogle ScholarPubMed
Colin, J.-P. and Jacobs, L. 1990. L'âge des couches à Dinosaures du Malawi: apport de ostracodes. Comptes Rendus de l'Académie des Sciences, Paris 311: 1025–1029.Google Scholar
Frakes, L. A., Burger, D., Apthorpe, M.et al. 1987. Australian Cretaceous shorelines, stage by stage. Palaeogeography, Palaeoclimatology, Palaeoecology 59: 31–48.CrossRefGoogle Scholar
Frey, E. 1988. Das Tragsystem der Krokodile – eine biomechanische und phylogenetische Analyse. Stuttgarter Beitrage zur Naturkunde, Serie A (Biologie) 426: 1–60.Google Scholar
Gasparini, Z. B. d. 1971. Los Notosuchia del Cretacico de America del sur como un nuevo infraden de los Mesosuchia (Crocodilia). Ameghiniana 8: 83–103.Google Scholar
Hay, O. P. 1930. Second Bibliography and Catalogue of the Fossil Vertebrata of North America, 2. Washington DC: Carnegie Institute.Google Scholar
Langston, W. J. 1974. Nonmammalian Comanchean tetrapods. Geoscience and Man 8: 77–102.Google Scholar
Lawver, L. A., Gahagan, L. M. and Coffin, M. F. 1992. The development of paleoseaways around Antarctica pp. 7–30. InKennett, J. P. and Detlef, A. W. (eds), The Antarctic Paleoenvironment: a Perspective on Global Change. Washington DC: Antarctic Research Series, American Geophysical Union.CrossRefGoogle Scholar
Livermore, R. A. and Hunter, R. J. 1996. Mesozoic seafloor spreading in the southern Weddell Sea, pp. 227–241. InStorey, B. C., King, E. C. and Livermore, R. A. (eds), Weddell Sea Tectonics and Gondwana Break-up. Geological Society Special Publication no. 108. London: Geological Society.Google Scholar
Maisey, J. G. 1991. Santana Fossils: an Illustrated Atlas. Neptune City, NJ: T. F. H. Publcations.Google Scholar
Michard, J. G., De-Broin, F.Brunet, M. and Hell, J. 1990. Le plus ancien crocodilien néosuchien spécialisé à caractères << eusuchiens >> du continent africain (Crétacé inférieur, Cameroun). Comptes Rendus de l'Académy des Sciences, Paris311: 365–371.Google Scholar
Molnar, R. E. 1980. Procoelous crocodile from the Lower Cretaceous of Lightning Ridge, N.S.W. Memoirs of the Queensland Museum20: 65–75.Google Scholar
Molnar, R. E. and Willis, P. M. A. 1996. A neosuchian crocodile from the Queensland Cretaceous. Journal of Vertebrate Paleontology 16 (suppl. 3): 54A.Google Scholar
Norell, M. A. and Clark, J. M. 1990. A reanalysis of Bernissartia fagesii, with comments on its phylogenetic position and its bearing on the origin and diagnosis of the Eusuchia. Bulletin de L'Institut Royal des Sciences naturelles de Belgique 60: 115–128.Google Scholar
Ortega, F. and Buscalioni, A. D. 1995. Las Hoyas crocodiles, an evidence of the transition model of the eusuchian dorsal armour configuration. IIthInternational Symposium on Lithographic Limestones, Lleida-Cuenca, Spain, Ediciones de la Universidad Autónoma de Madrid: 53–56.
Ortega, F. and Buscalioni, A. D., Gasparina, Z.Buscalioni, A. and Calvo, J. O. 2000. A new species of Araripesuchus (Crocodylomorpha, Mesoeucrocodylia) from the Lower Cretaceous of Patagonia (Argentina). Journal of Vertebrate Paleontology 20: 57–76.CrossRefGoogle Scholar
Pol, D. and Apesteguía, S. 2005. New Araripesuchus remains from the early Late Cretaceous (Cenomanian–Turonian) of Patagonia. American Museum Noviatates 3490: 1–38.CrossRefGoogle Scholar
Price, L. I. 1959. Sôbre um crocodilídeo notosúquio do Cretácico Brasilèiro. Boletim do Departamento Nacional da Produçao Mineral, Divisao de Geologia e Mineralogia, Rio de Janeiro 188: 5–55.Google Scholar
Rogers, J. V. I. 2003. Pachycheilosuchus trinquei, a new procoelous crocodyliform from the Lower Cretaceous (Albian) Glen Rose Formation of Texas. Journal of Vertebrate Paleontology 23: 128–145.CrossRefGoogle Scholar
Salisbury, S. W. 2001. A Biomechanical Transformation Model for the Evolution of the Eusuchian-type Bracing System. PhD thesis, University of New South Wales.Google Scholar
Salisbury, S. W. and Frey, E. 2001. A biomechanical transformation model for the evolution of semi-spheroidal articulations between adjoining vertebral bodies in crocodilians. pp. 85–134. InGrigg, Seebacher, G. C. F. and Franklin, C. E. (eds.). Crocodilian biology and evolution. Surrey Beatty & Sons, Chipping Norton.Google Scholar
Salisbury, S. W. and Frey, E. 2004a. Anatomical correlates associated with the bracing system of extant crocodilians: addressing the locomotor inadequacies of the Indian gharial. Proceedings of the 17th Working Meeting of the IUCN-SSC Crocodile Specialist Group, Darwin, Northern Territory, Australia: 394.Google Scholar
Salisbury, S. W. and Frey, E. 2004b. The epaxial musculature of fossil crocodilians. Journal of Vertebrate Paleontology 24 (suppl. to number 3): 107A.Google Scholar
Salisbury, S. W., Frey, E.Martill, D. M. and Buchy, M.-C. 2003a. A new mesosuchian crocodilian from the Lower Cretaceous Crato Formation of north-eastern Brazil. Palaeontographica, Abteilung A (Paläozoologie – Stratigraphie) 270: 3–47.Google Scholar
Salisbury, S. W., Frey, E.Martill, D. M. and Buchy, M.-C. 2003b. A new crocodilian from the Lower Cretaceous Crato Formation of north-eastern Brazil. Journal of Vertebrate Paleontology 23 (suppl. to number 3): 92A.Google Scholar
Salisbury, S. W., Molnar, R. E.Frey, E. and Willis, P. M. A. 2006. The origin of modern crocodyliforms: new evidence from the Cretaceous of Australia. Proceedings of the Royal Society of London, Series B273: 2439–2448.CrossRefGoogle Scholar
Sereno, P. C., Wilson, J. A. and Conrad, J. L. 2004. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proceedings of the Royal Society of London, Series B 271: 1325–1330.CrossRefGoogle ScholarPubMed
Shen, Y. 1995. A paleoisthmus between southern South America and Antarctic Peninsula during Late Cretaceous and Early Tertiary. 7th International Symposium on Antarctic Earth Sciences: 345.Google Scholar
Turner, A. H. 2004. Crocodyliform biogeography during the Cretaceous: evidence of Gondwanan vicariance from biogeographical analysis. Proceedings of the Royal Society of London, Series B 271: 2003–2009.CrossRefGoogle ScholarPubMed
Veevers, J. J. 1991. Phanerozoic Australia in the changing configuration of Proto-Pangea through Gondwandaland and Pangea to the present dispersed continents. Australian Systematic Botany 4: 1–11.Google Scholar
Whetstone, K. N. and Whybrow, P. J. 1983. A “cursorial” crocodilian from the Triassic of Lesotho (Basutoland), southern Africa. Occasional Papers of the Museum of Natural History, University of Kansas 106: 1–37.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×