Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2010
  • Online publication date: June 2012

5 - Presolar grains: a record of stellar nucleosynthesis and processes in interstellar space

Summary

Overview

Presolar grains give us a direct window into stellar nucleosynthesis and provide probes of processes in interstellar space and in the solar nebula. Known types of presolar grains originated in the winds or ejecta of stars that lived and died before the solar system formed. After presenting a short history of how presolar grains came to be recognized, we describe how to identify presolar grains, the techniques used to study them, and the various types of grains currently available for study. We then review what presolar grains can tell us about stellar nucleosynthesis, the environments around evolved stars and in the interstellar medium, and how they can be used as probes of conditions in the early solar system.

Grains that predate the solar system

In recent years, a new source of information about stellar nucleosynthesis and the history of the elements between their ejection from stars and their incorporation into the solar system has become available. This source is the tiny dust grains that condensed from gas ejected from stars at the end of their lives and that survived unaltered to be incorporated into solar system materials. These presolar grains (Fig. 5.1) originated before the solar system formed and were part of the raw materials for the Sun, the planets, and other solar-system objects. They survived the collapse of the Sun's parent molecular cloud and the formation of the accretion disk and were incorporated essentially unchanged into the parent bodies of the chondritic meteorites.

Related content

Powered by UNSILO
Suggestions for further reading
Bernatowicz, T. J. and Zinner, E. (1997) Astrophysical Implications of the Laboratory Study of Presolar Materials. AIP Conference Proceedings 402. American Institute of Physics, Woodbury, New York, 750 pp. An important volume describing the first decade of research on presolar grains.
Lewis, R. S., Tang, M., Wacker, J. F., Anders, E. and Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 326, 160–162. The paper describing the discovery of the first presolar grains.
Nittler, L. R. (2003) Presolar stardust in meteorites: recent advances and scientific frontiers. Earth and Planetary Science Letters, 209, 259–273. A good accessible review of presolar grains in meteorites.
Zinner, E. (2004) Presolar grains. In Treatise on Geochemistry, Volume 1: Meteorites, Comets, and Planets, ed. Davis, A. M.Oxford: Elsevier, pp. 17–39. A recent review of the state of knowledge about presolar grains. The on-line version is updated periodically.
References
Alexander, E. C., Jr., Lewis, R. S., Reynolds, J. H. and Michel, M. C. (1971) Plutonium-244: Confirmation as an extinct radioactivity. Science, 172, 837–840.
Amari, S., Anders, E., Virag, A. and Zinner, E. (1990) Interstellar graphite in meteorites. Nature, 345, 238–240.
Amari, S., Lewis, R. S. and Anders, E. (1994) Interstellar grains in meteorites. I. Isolation of SiC, graphite, and diamond; size distributions of graphite and SiC. Geochimica et Cosmochimica Acta, 58, 459–470.
Beer, H., Corvi, F. and Mutti, P. (1997) Neutron capture of the bottleneck isotopes 138Ba and 208Pb, s-process studies, and the r-process abundance distribution. Astrophysical Journal, 474, 843–861.
Bernatowicz, T. J., Cowsik, R., Gibbons, P. E.et al. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophysical Journal, 472, 760–782.
Bernatowicz, T. J., Croat, T. K. and Daulton, T. L. (2006) Origin and evolution of carbonaceous presolar grains in stellar environments. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson: University of Arizona Press, pp. 109–126.
Black, D. C. and Pepin, R. O. (1969) Trapped neon in meteorites II. Earth and Planetary Science Letters, 6, 395–405.
Bradley, J. P. (2004). Interplanetary dust particles. In Treatise on Geochemistry, Vol. 1. Meteorites, Comets, and Planets, ed. Davis, A. M.Oxford: Elsevier, pp. 689–711.
Cameron, A. G. W. (1962) The formation of the Sun and planets. Icarus, 1, 13–69.
Clayton, R. N., Grossman, L. and Mayeda, T. K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science, 182, 485–487.
Clayton, R. N., Onuma, N., Grossman, L. and Mayeda, T. K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth and Planetary Science Letters, 34, 209–224.
Clayton, R. N., Hinton, R. W. and Davis, A. M. (1988) Isotopic variations in the rock-forming elements in meteorites. Philosophical Transactions of the Royal Society of London, A325, 483–501.
Croat, T. K., Bernatowicz, T., Amari, S., Messenger, S. and Stadermann, F. J. (2003) Structural, chemical, and isotopic microanalytical investigations of graphite from supernova. Geochimica et Cosmochimica Acta, 67, 4705–4725.
Daulton, T. L., Bernatowicz, T. J., Lewis, R. S.et al. (2003) Polytype distribution in circumstellar silicon carbide: Microstructural characterization by transmission electron microscopy. Geochimica et Cosmochimica Acta, 67, 4743–4767.
Dauphas, N., Marty, B. and Reisberg, L. (2002) Molybdenum nucleosynthetic dichotomy revealed in primitive meteorites. Astrophysical Journal Letters, 569, L139–L142.
Galllino, R., Busso, M., Picchio, G. and Raiteri, C. M. (1990) On the astrophysical interpretation of isotope anomalies in meteoritic SiC grains. Nature, 348, 298–302.
Gallino, R., Raiteri, C. M. and Busso, M. (1993) Carbon stars and isotopic Ba anomalies in meteoritic SiC grains. Astrophysical Journal, 410, 400–411.
Huss, G. R. and Lewis, R. S. (1994) Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 28, 811–829.
Huss, G. R. and Lewis, R. S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochimica et Cosmochimica Acta, 59, 115–160.
Huss, G. R. and Smith, J. A. (2007) Titanium isotopes in isotopically characterized silicon carbide grains from the Orgueil CI chondrite. Meteoritics and Planetary Science, 42, 1055–1075.
Huss, G. R., Meshik, A. P., Smith, J. B. and Hohenberg, C. M. (2003) Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 4823–4848.
Huss, G. R., Rubin, A. E. and Grossman, J. N. (2006) Thermal metamorphism in chondrites. In Meteorites and the Early Solar System II, eds. Lauretta, D. S. and McSween, H. Y., Jr. Tucson: University of Arizona Press, pp. 567–586.
Iben, I., Jr. and Renzini, A. (1983) Asymptotic giant branch evolution and beyond. Annual Reviews of Astronomy and Astrophysics, 21, 271–342.
Lewis, R. S., Srinivasan, B. and Anders, E. (1975) Host phase of a strange xenon component in Allende. Science, 190, 1251–1262.
Lewis, R. S., Amari, S. and Anders, E. (1994) Interstellar grains in meteorites. II. SiC and its noble gases. Geochimica et Cosmochimica Acta, 58, 471–494.
Manuel, O. K., Hennecke, E. W. and Sabu, D. D. (1972) Xenon in carbonaceous chondrites. Nature, 240, 99–101.
Messenger, S., Keller, L. P., Stadermann, F. J., Walker, R. M. and Zinner, E. (2003) Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science, 300, 105–108.
Nagashima, K., Krot, A. N. and Yurimoto, H. (2004) Stardust silicates from primitive meteorites. Nature, 428, 921–924.
Nguyen, A. N. and Zinner, E. (2004) Discovery of ancient silicate stardust in a meteorite. Science, 303, 1496–1499.
Nicolussi, G. K., Pellin, M. J., Lewis, R. S.et al. (1998) Molybdenum isotopic compositions of individual presolar silicon carbide grains from the Murchison meteorite. Geochimica et Cosmochimica Acta, 62, 1093–1104.
Nittler, L. R. and Cowsik, R. (1997) Galactic age estimates from O-rich stardust in meteorites. Physical Review Letters, 78, 175–178.
Nittler, L. R., Alexander, C. M.Gao, O'D., X., Walker, R. M. and Zinner, E. (1997) Stellar sapphires: the properties and origins of presolar Al2O3 in meteorites. Astrophysical Journal, 483, 475–495.
Podosek, F. A., Brannon, J. C., Neal, C. R.et al. (1997) Thoroughly anomalous chromium in Orgueil. Meteoritics and Planetary Science, 32, 617–627.
Reynolds, J. H. and Turner, G. (1964) Rare gases in the chondrite Renazzo. Journal of Geophysical Research, 49, 3263–3281.
Smith, V. V. and Lambert, D. L. (1990) The chemical composition of red giants. III. Further CNO isotopic and s-process abundances in thermally pulsing asymptotic giant branch stars. Astrophysical Journal Supplement, 72, 387–416.
Srinivasan, B. and Anders, E. (1978) Noble gases in the Murchison meteorite: possible relics of s-process nucleosynthesis. Science, 201, 51–56.
Tang, M. and Anders, E. (1988) Isotopic anomalies of Ne, Xe, and C in meteorites. II. Interstellar diamond and SiC: carriers of exotic noble gases. Geochimica et Cosmochimica Acta, 52, 1235–1244.