Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T11:25:48.924Z Has data issue: false hasContentIssue false

14 - Numerical simulations of Type Ia supernovae: deflagrations and detonations

Published online by Cambridge University Press:  11 August 2009

V. N. Gamezo
Affiliation:
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, D. C. 20375, USA
E. S. Oran
Affiliation:
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, D. C. 20375, USA
A. M. Khokhlov
Affiliation:
Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, D. C. 20375, USA
Peter Höflich
Affiliation:
University of Texas, Austin
Pawan Kumar
Affiliation:
University of Texas, Austin
J. Craig Wheeler
Affiliation:
University of Texas, Austin
Get access

Summary

Abstract

We study a thermonuclear explosion of a carbon-oxygen white dwarf (WD) using a three-dimensional hydrodynamic model with a simplified mechanism for nuclear reactions and energy release. The explosion begins as a deflagration with the flame front highly distorted by the Rayleigh-Taylor instability. Turbulent combustion and convective flows produce an inhomogeneous mixture of burned and unburned materials that extends from the center to about 0.8 of the radius of the expanding WD. At this stage, a detonation is ignited and propagates through the layers of unburned material with the velocity about 12,000 km/s, which is comparable to the expansion velocities induced in outer layers of the WD by the subsonic burning. During the period of detonation propagation, the density of the expanding unreacted material ahead of the shock can decrease by an order of magnitude compared to its value before the detonation started. Because the detonation burns material to different products at different densities, it can create a large-scale asymmetry in composition if it starts far from the WD center. In contrast to the 3-D deflagration model, the 3-D delayed-detonation model of SN Ia explosions does not leave carbon, oxygen, and intermediate-mass elements in central parts of a WD. This removes the key disagreement between simulations and observations, and confirms that the delayed detonation is currently the most promising mechanism for SN Ia explosions.

Introduction

Type Ia supernovae (SNe Ia) [1–10] result from the most powerful thermonuclear explosions in the Universe.

Type
Chapter
Information
Cosmic Explosions in Three Dimensions
Asymmetries in Supernovae and Gamma-Ray Bursts
, pp. 121 - 131
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wheeler, J. C., Harkness, R. P., Rep. Prog. Phys. 53, 1467 (1990)CrossRef
Filippenko, A. V., Annu. Rev. Astron. Astrophys. 35, 309 (1997)CrossRef
Wheeler, J. C., Am. J. Phys., 71, 11 (2003)CrossRef
Woosley, S. E., Weaver, T. A., Annu. Rev. Astron. Astrophys. 24, 205 (1986)CrossRef
Branch, D., Khokhlov, A. M., Phys. Rep. 256, 53 (1995)CrossRef
Wheeler, J. C., Harkness, R. P., Khokhlov, A. M., Höflich, P. A., Phys. Rep. 256, 211 (1995)CrossRef
Nomoto, K., Iwamoto, K., Kishimoto, N., Science 276, 1378 (1997)CrossRef
Branch, D., Annu. Rev. Astron. Astrophys. 36, 17 (1998)CrossRef
Hillebrandt, W., Niemeyer, J. C., Annu. Rev. Astron. Astrophys. 38, 191 (2000)CrossRef
Burrows, A., Nature 403, 727 (2000)CrossRef
Arnett, W. D., Astrophys. Space Sci. 5, 180 (1969)CrossRef
Hansen, C. J., Wheeler, J. C., Astrophys. Space Sci. 3, 464 (1969)CrossRef
Nomoto, K., Sugimoto, D., Neo, S., Astrophs. Space Sci. 39, L37 (1976)
Nomoto, K., Thielemann, F.-K., Yokoi, K., Astrophys. J. 286, 644 (1984)CrossRef
Khokhlov, A. M., Astron. Astrophys. 245, 114 (1991)
Arnett, D., Livne, E., Astrophys. J. 427, 315 (1994)CrossRef
Arnett, D., Livne, E., Astrophys. J. 427, 330 (1994)CrossRef
Yamaoka, H., Nomoto, K., Shigeyama, T., Thielemann, F.-K., Astrophys. J. 393, L55 (1992)CrossRef
Khokhlov, A. M., Müller, E., Höflich, P. A., Astron. Astrophys. 270, 223 (1993)
Höflich, P. A., Astrophys. J. 443, 89 (1995)CrossRef
Höflich, P. A., Wheeler, J. C., Astrophys. J. 444, 831 (1995)CrossRef
Höflich, P. A., Khokhlov, A. M., Astrophys. J. 457, 500 (1996)CrossRef
A. M. Khokhlov, http://www.arxiv.org/astro-ph/0008463 (2000)
Reinecke, M., Hillebrandt, W., Niemeyer, J. C., Astron. Astrophys. 386, 936 (2002)CrossRef
Reinecke, M., Hillebrandt, W., Niemeyer, J. C., Astron. Astrophys. 391, 1167 (2002)CrossRef
Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Chtchelkanova, A. Y., and Rosenberg, R. O., Science 2003, 299, 77 (2003)
Fowler, W. A., Caughlan, G. R., Zimmerman, B. A., Annu. Rev. Astron. Astrophys. 13, 69 (1975)CrossRef
Woosley, S. E., Fowler, W. A., Holmes, J. A., Zimmerman, B. A., Atomic Data and Nuclear Data Tables, 22, 371 (1978)CrossRef
F.-K. Thielemann, M. Arnould, J. W. Truran, in Advances in Nuclear Astrophysics, E. Vangioni-Flam, Ed. (Editions frontières, Gif-sur-Yvette, 1987), p. 525
Truran, J. W., Cameron, A. G., Gilbert, A., Canadian J. of Phys. 44, 563 (1966)CrossRef
Bodansky, D., Clayton, D. D., Fowler, W. A., Astrophys. J. Suppl. Ser. 16, 299 (1968)CrossRef
Woosley, S. E., Arnett, W. D., Clayton, D. D., Astrophys. J. Suppl. Ser. 26, 231 (1973)CrossRef
Khokhlov, A. M., Mon. Not. R. Astron. Soc. 239, 785 (1989)CrossRef
Gamezo, V. N., Wheeler, J. C., Khokhlov, A. M., Oran, E. S., Astrophys. J. 512, 827 (1999)CrossRef
Khokhlov, A. M., Astrophys. J. 449, 695 (1995)CrossRef
Khokhlov, A. M., J. Comput. Phys. 143, 519 (1998)CrossRef
Khokhlov, A. M., Oran, E. S., Combust. Flame 119, 400 (1999)CrossRef
Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Combust. Flame 126, 1810 (2001)CrossRef
Khokhlov, A. M.et al., Astrophys. J. 524, L107 (1999)CrossRef
D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Plenum, New York, 1969), chap. 6
Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York and London, 1985), chap. 4
F. A. Williams, Combustion Theory (Benjamin-Cummings, Menlo Park, ed. 2, 1985), chap. 5
Timmes, F. X., Woosley, S. E., Astrophys. J. 396, 649 (1992)CrossRef
Khokhlov, A. M., Oran, E. S., Wheeler, J. C., Astrophys. J. 478, 678 (1997)CrossRef
Niemeyer, J. C., Woosley, S. E., Astrophys. J. 475, 740 (1997)CrossRef
Khokhlov, A. M., Oran, E. S., Wheeler, J. C., Combust. Flame 105, 28 (1996)CrossRef
Livne, E., Astrophys. J. 406, L17 (1993)CrossRef
Branch, D.et al., Astron. J. 126, 1489 (2003)CrossRef
Jeffery, D. J.et al., Astrophys. J. 397, 304 (1992)CrossRef
Fisher, A., Branch, D., Nugent, P., Baron, E., Astrophys. J. 481, L89 (1997)CrossRef
Mazzali, P. A., Mon. Not. R. Astron. Soc. 321, 341 (2001)CrossRef
Kirshner, R. P.et al., Astrophys. J. 415, 589 (1993)CrossRef
Livne, E., Astrophys. J. 527, L97 (1999)CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×