Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T19:40:33.173Z Has data issue: false hasContentIssue false

7 - Collaborative relaying in downlink cellular systems

from Part III - Relay-based cooperative cellular wireless networks

Published online by Cambridge University Press:  03 May 2011

Chandrasekharan Raman
Affiliation:
Rutgers University, USA
Gerard J. Foschini
Affiliation:
Bell Laboratories, USA
Reinaldo A. Valenzuela
Affiliation:
Bell Laboratories, USA
Roy D. Yates
Affiliation:
Rutgers University, USA
Narayan B. Mandayam
Affiliation:
Rutgers University, USA
Ekram Hossain
Affiliation:
University of Manitoba, Canada
Dong In Kim
Affiliation:
Sungkyunkwan University, Korea
Vijay K. Bhargava
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

Introduction

The deployment of relays in cellular system has been standardized in the WiMAX, IEEE 802.16j standard and is a topic of discussion in the advanced specifications of Third Generation Partnership Project (3GPP) long-term evolution (LTE). Although commercial relay deployments in cellular systems are not prominent at present, future wireless cellular systems will involve operation with dedicated relays to improve coverage, increase cell-edge throughput, deliver high data rates, and assist group mobility. The proposed architecture is such that relays would be placed at certain locations (planned or unplanned) in the cell to help in forwarding the message from the base station to the user in the downlink, and from the user to the base station in the uplink. Relays will be more sophisticated than simple repeaters and could perform some digital base band processing to help the destination terminal get better reception. These relays will rely on air interfaces, and hence avoid the considerable backhaul costs involving data aggregation and infrastructure costs associated with backbone connectivity. However, there are a lot of open issues that require research to answer.

Research challenges

Some of the major research issues in relay-based cellular systems are as follows:

(1) Throughput gains due to relay deployments In cellular networks that are coverage limited, deploying relays can help in multihop transmission and provide power gains due to a reduction of distance attenuation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×