Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T15:03:44.329Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2015

C. S. Jog
Affiliation:
Indian Institute of Science, Bangalore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Continuum Mechanics
Foundations and Applications of Mechanics
, pp. 825 - 846
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abbassi, M. M., Torsion of circular shafts of variable diameter, ASME J. Appl. Mech., 22, 530–532, 1955.Google Scholar
[2] Abeyaratne, R. and C. O., Horgan, The pressurized hollow sphere problem in finite elastostatics for a class of compressible materials, Int. J. Solids Struct., 20(8), 715–723, 1984.CrossRefGoogle Scholar
[3] Acharya, A., On compatibility conditions for the left Cauchy–Green deformation field in three dimensions, J. Elasticity, 56(2), 95–105, 1999.CrossRefGoogle Scholar
[4] Ahmad, F. and M. A., Rashid, Linear invariants of a Cartesian tensor, Quart. J. Mech. Appl. Math., 62(1), 31–38, 2009.Google Scholar
[5] Anand, L., On H. Hencky's approximate strain energy function for moderate deformations, ASME J. Appl. Mech., 46(1), 78–82, 1979.CrossRefGoogle Scholar
[6] Anand, L., Moderate deformations in extension-torsion of incompressible isotropic elastic materials, J. Mech. Phys. Solids, 34(3), 293–304, 1986.CrossRefGoogle Scholar
[7] Anderson, G. L. and C. R., Thomas, A forced vibration problem involving time derivatives in the boundary conditions, J. Sound Vibrat., 14(2), 193–214, 1971.CrossRefGoogle Scholar
[8] Andrews, D. L. and W. A., Ghoul, Irreducible fourth-rank Cartesian tensors, Phys. Rev. A, 25(5), 2647–2657, 1982.CrossRefGoogle Scholar
[9] Andrianov, I. V. and J., Awrejcewicz, Compatibility equations in the theory of elasticity, J. Vibrat. Acoustics 125(2), 244–245, 2003.CrossRefGoogle Scholar
[10] Angel, Y. C., On the static and dynamic equilibrium of concentrated loads in linear acoustics and linear elasticity, J. Elast., 24(1–3), 21–42, 1990.CrossRefGoogle Scholar
[11] Antman, S. S. and J. E., Osborn, The principle of virtual work and the integral laws of motion, Arch. Rational Mech. Anal., 69(3), 231–, 1979.CrossRefGoogle Scholar
[12] Armero, F., Elastoplastic and viscoplastic deformations in solids and structures, Encyclopedia of Computational Mechanics, Vol. II: Solids and Structures, Eds. E., Stein, Rene, Borst and T. J. R., Hughes, 227–266, 2004.Google Scholar
[13] Ball, J. M. and D. G., Schaeffer, Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions, Math. Proc. Camb. Phil. Soc., 94(02), 315–339, 1983.CrossRefGoogle Scholar
[14] Bakker, M. C. M., M. D, Verweij, B. J., Kooij, H. A., Dieterman, The traveling point load revisited, Wave Motion, 29(2), 119–135, 1999.CrossRefGoogle Scholar
[15] Batista, M., Stresses in a confocal elliptic ring subject to uniform pressure, J. Strain Anal., 34(3), 217–221, 1999.CrossRefGoogle Scholar
[16] Bauer, H. F., Table of the roots of the associated Legendre function with respect to the degree, Math. Comput., 46(174), 601–602/S29–S41, 1986.CrossRefGoogle Scholar
[17] Beatty, M. F., Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues–with examples, Appl. Mech. Rev., 40(12), 1699–1734, 1987.CrossRefGoogle Scholar
[18] Belik, P. and R., Fosdick, The state of pure shear, J. Elast., 52, 91–98, 1998.CrossRefGoogle Scholar
[19] Bertram, A. and B., Svendsen, On material objectivity and reduced constitutive equations, Arch. Mech., 53(6), 653–675, 2001.Google Scholar
[20] Betten, J., Mathematical modelling of materials behavior under creep conditions, Appl. Mech. Reviews., 54(2), 107–132, 2001.CrossRefGoogle Scholar
[21] Bischoff, J. E., E. M., Arruda and K., Grosh, A new constitutive model for the compressibility of elastomers at finite deformations, Rubber Chem. Tech., 74(4), 541–559, 2001.CrossRefGoogle Scholar
[22] Blackmore, D. and L., Ting, Surface integral of its mean curvature vector, SIAM Rev., 27(4), 569–572, 1985.CrossRefGoogle Scholar
[23] Blume, J., Compatibility conditions for a left Cauchy–Green strain field, J. Elast., 21(3), 271–308, 1989.CrossRefGoogle Scholar
[24] de Boor, C., A naive proof of the representation theorem for isotropic, linear asymmetric stress–strain relations, J. Elast., 15(2), 225–227, 1985.CrossRefGoogle Scholar
[25] Borodachev, N. M., Three-dimensional elasticity-theory problem in terms of the stress, Int. Appl. Mech., 31(12), 991–996, 1995.CrossRefGoogle Scholar
[26] Bosch, A. J., The factorization of a square matrix into two symmetric matrices. Am. Math. Monthly, 93(6), 462–464, 1986.CrossRefGoogle Scholar
[27] Bounlanger, P. and M., Hayes, On pure shear, J. Elast., 77(1), 83–89, 2004.Google Scholar
[28] Bradley, F. E., Development of an Airy stress function of general applicability in one, two, or three dimensions, J. Appl. Phys., 67(1), 225–226, 1990.CrossRefGoogle Scholar
[29] Bramble, J. H., The thick elastic spherical shell under concentrated torques, Proc. London Math. Soc., s3–9(4), 492–502, 1959.Google Scholar
[30] Brown, D. K., A computer program to calculate the elastic stress and displacement fields around an elliptical hole under any applied plane state of stress, Comput. Struct., 7(4), 571–580, 1977.CrossRefGoogle Scholar
[31] Bruhns, O. T., H, Xiao and A., Meyers, Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky's logarithmic strain tensor, Proc. R. Soc. London Ser. A, 457(2013), 2207–2226, 2001.CrossRefGoogle Scholar
[32] Bruhns, O. T., H, Xiao and A., Meyers, Finite bending of a rectangular block of an elastic Hencky material, J. Elast., 66(3), 237–256, 2002.CrossRefGoogle Scholar
[33] Bustamante, R., Some topics on a new class of elastic bodies, Proc. R. Soc. Ser. A, 465(2105), 1377–1392, 2009.CrossRefGoogle Scholar
[34] Cardoso, J. R., An explicit formula for the matrix logarithm, S. Afr. Optom., 64(3), 80–83, 2005.Google Scholar
[35] Carlson, D. E., Unpublished notes on continuum mechanics. Available at http://imechanica.org/node/15845 (courtesy of Professor Amit Acharya).
[36] Carlson, D. E., Linear thermoelasticity, Handbuch der Physik, Vol. VIa/2., Berlin Heidelberg: Springer-Verlag, 297–345, 1972.Google Scholar
[37] Carlson, D. E. and A., Hoger, The derivative of a tensor-valued function of a tensor, Quart. Appl. Math., 44(3), 409–423, 1986.CrossRefGoogle Scholar
[38] Carlson, D. E. and A., Hoger, On the derivatives of the principal invariants of a second-order tensor, J. Elast., 16(2), 221–224, 1986.CrossRefGoogle Scholar
[39] Carlson, D. E., E., Fried and D. A., Tortorelli, Geometrically-based consequences of internal constraints, J. Elast., 70(1–3), 101–109, 2003.CrossRefGoogle Scholar
[40] Carroll, M. M., Finite strain solutions in compressible isotropic elasticity, J. Elast., 20(1), 65–92, 1988.CrossRefGoogle Scholar
[41] Carroll, M. M. and C. O., Horgan, Finite strain solutions for a compressible elastic solid, Q. Appl. Math., 48(4), 767–780, 1990.CrossRefGoogle Scholar
[42] Chadwick, P., Thermo-mechanics of rubberlike materials, Phil. Trans. R. Soc. London Ser. A., 276(1260), 371–403, 1974.CrossRefGoogle Scholar
[43] Chadwick, P., Continuum Mechanics, New York: Dover Publications, 1976.Google Scholar
[44] Chattarji, P. P., Torsion of epitrochoidal sections, Z. Angew Math. Mech., 89(3/4), 135–138, 1959.Google Scholar
[45] Chattarji, P. P., A note on the torsion of circular shafts of variable diameter, ASME J. Appl. Mech., 29, 477–478, 1957.Google Scholar
[46] Chen, Y. C., Stability of homogeneous deformations of an incompressible elastic body under dead-load surface tractions, J. Elast., 17(3), 223–248, 1987.CrossRefGoogle Scholar
[47] Chen, Y. and L., Wheeler, Derivatives of the stretch and rotation tensors, J. Elast., 32(3), 1757ndash;182, 1993.CrossRefGoogle Scholar
[48] Chen, S. J. and D. G., Howitt, On the Galerkin vector and the Eshelby solution in linear elasticity, J. Elast., 44(1), 1–8, 1996.CrossRefGoogle Scholar
[49] Chen, T., A homogeneous elliptical shaft may not warp under torsion, Acta Mech., 169(1–4), 221–224, 2004.CrossRefGoogle Scholar
[50] Chen, T. and C. J., Wei, Saint-Venant torsion of anisotropic shafts: Theoretical frameworks, extremal bounds and affine transformations, Quart. J. Mech. Appl. Math., 58(2), 269–287, 2005.CrossRefGoogle Scholar
[51] Cheng, S. and T., Angsirikul, Three-dimensional elasticity solution and edge effects in a spherical dome, ASME J. Appl. Mech., 44(4), 599–603, 1977.CrossRefGoogle Scholar
[52] Cheng, H-W. and S., Yau, More explicit formulas for the matrix exponential, Lin. Alg. Appl., 262, 131–163, 1997.CrossRefGoogle Scholar
[53] Cheng, S. H., N. J., Higham, C. S., Kenney and A. L., Laub, Approximating the logarithm of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22(4), 1112–1125, 2001.CrossRefGoogle Scholar
[54] Chiang, C-R., Torsion of a round shaft of variable diameter, J. Eng. Math., 77(1), 119–130, 2012.CrossRefGoogle Scholar
[55] Chree, C., On long rotating circular cylinders, Proc. Cambridge Philos. Soc., 7, 283–305, 1892.Google Scholar
[56] Christov, C. I., On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction, Mech. Res. Commun., 36(4), 481–486, 2009.CrossRefGoogle Scholar
[57] Chung, D. T., C. O., Horgan and R., Abeyaratne, The finite deformation of internally pressurized hollow cylinders and spheres for a class of compressible materials, Int. J. Solids Struct., 22(12), 1557–1570, 1986.CrossRefGoogle Scholar
[58] Ciarlet, P. G., Three-Dimensional Elasticity, Elsevier Science Publishers, North Holland, 1988.Google Scholar
[59] Ciarlet, P. G., An introduction to differential geometry with applications to elasticity, J. Elast., 78–79(1–3), 1–215, 2005.Google Scholar
[60] Ciarlet, P. G., On rigid and infinitesimal rigid displacements in three-dimensional elasticity, Math. Models Meth. Appl. Sci., 13(11), 1589–1598, 2003.CrossRefGoogle Scholar
[61] Coleman, B. D. and W., Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rational Mech. Anal., 13(1), 245–261, 1963.CrossRefGoogle Scholar
[62] Coleman, B. D. and V. J., Mizel, Existence of caloric equations of state in thermodynamics, J. Chem. Phys., 40(4), 1116–1125, 1964.CrossRefGoogle Scholar
[63] Conway, J. B., A Course in Functional Analysis, Springer, New York, 1990.Google Scholar
[64] Dai, H. H., Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin rod, Acta Mech., 127(1–4), 193–207, 1998.CrossRefGoogle Scholar
[65] Dempsey, J. P., The wedge subjected to tractions: a paradox resolved, J. Elast., 11(1), 1–10, 1981.CrossRefGoogle Scholar
[66] Donnell, L. H., Stress concentrations due to elliptical discontinuities in plates under edge force, Theodore von Karman Anniversary Volume, California Institute of Technology, Pasadena, 293–309, 1941.Google Scholar
[67] Dui, G., M., Jin and M., Huang, On the derivation for the gradients of the principal invariants, J. Elast., 75(2), 193–196, 2004.Google Scholar
[68] Dui, G. and Y., Chen, A note on Rivlin's identities and their extension, J. Elast., 76(2), 107–112, 2004.CrossRefGoogle Scholar
[69] Edstrom, C. R., The vibrating beam with nonhomogeneous boundary conditions, ASME J. Appl. Mech., 48(3), 669–670, 1981.CrossRefGoogle Scholar
[70] Edwards, R. H., Stress concentrations around spheroidal inclusions and cavities, ASME J. Appl. Mech., 18(1), 19–30, 1951.Google Scholar
[71] Ehlers, W. and G., Eipper, The simple tension problem at large volumetric strains computed from finite hyperelastic material laws, Acta Mech., 130(1–2), 17–27, 1998.CrossRefGoogle Scholar
[72] Ericksen, J. L., Deformations possible in every compressible, isotropic, perfectly elastic material, J. Math. Phys., 34(2), 126–128, 1955.CrossRefGoogle Scholar
[73] Ericksen, J. L., Equilibrium theory of liquid crystals, Advances in Liquid crystals, Vol. 2, Ed. G. H., Brown, pp. 233–298, Academic Press, New York, 1976.Google Scholar
[74] Eshelby, J. B., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London Ser. A, 241(1226), 376–396, 1957.CrossRefGoogle Scholar
[75] Eskin, G. and J., Ralston, On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems, 18(3), 907–921, 2002.CrossRefGoogle Scholar
[76] Filon, L. N. G., On the elastic equilibrium of circular cylinders under certain practical systems of load, Phil. Trans. R. Soc. of London Ser. A., 198, 147–233, 1902.CrossRefGoogle Scholar
[77] Filon, L. N. G., On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special reference to points of concentrated or discontinuous loading, Phil. Trans. R. Soc. London Ser. A., 201, 63–155, 1903.CrossRefGoogle Scholar
[78] Fish, M. J., A particular boundary value problem, J. Math. Phys., 14, 262–273, 1935.CrossRefGoogle Scholar
[79] Fisher, H. D., Discussion on [?], ASME J. Appl. Mech., 49(2), 459–460, 1982.Google Scholar
[80] Folias, E. S. and J. J., Wang, On the three-dimensional stress field around a circular hole in a plate of arbitrary thickness, Comput. Mech., 6(5–6), 379–391, 1990.CrossRefGoogle Scholar
[81] Fosdick, R. and G., Royer-Carfagni, The constraint of local injectivity in linear elasticity theory, Proc. R. Soc. London Ser. A, 457(2013), 2167–2187, 2001.CrossRefGoogle Scholar
[82] Fosdick, R., F., Freddi and G., Royer-Carfagni, Bifurcation instability in linear elasticity with the constraint of local injectivity, J. Elast., 90(1), 99–126, 2008.Google Scholar
[83] Freddi, F. and G., Royer-Carfagni, From non-linear elasticity to linearized theory: Examples defying intuition, J. Elast., 96(1), 1–26, 2009.CrossRefGoogle Scholar
[84] Freiberger, W., The uniform torsion of an incomplete tore, Austral. J. Sci. Res. Ser. A, 2(3), 354–375, 1949.Google Scholar
[85] Fulmer, E. P., Computation of the matrix exponential, Am. Math. Monthly, 82(2), 156–159, 1975.CrossRefGoogle Scholar
[86] Gallier, J. and D., Xu, Computing of exponentials of skew-symmetric matrices and logarithms of orthogonal matrices, Int. J. Robotics Auto., 17(4), 1–11, 2002.Google Scholar
[87] Gao, X. L., A general solution of an infinite elastic plate with an elliptic hole under biaxial loading, Int. J. Pres. Ves. Piping, 67(1), 95–104, 1996.CrossRefGoogle Scholar
[88] Galmudi, D. and J., Dvorkin, Stresses in anisotropic cylinders, Mech. Res. Comm., 22(2), 109–113, 1995.Google Scholar
[89] Georgiadis, H. G., D., Vamvatsikos, I., Vardoulakis, Numerical implementation of the integral-transform solution to Lamb's point-load problem, Comput. Mech., 24(2), 90–99, 1999.CrossRefGoogle Scholar
[90] Gerhardt, T. O., and S., Cheng, Truncated hollow spheres, ASCE J. Eng. Mech., 109(3), 885–895, 1983.CrossRefGoogle Scholar
[91] Geymonat, G. and F., Krasucki, Beltrami's solutions of general equilibrium equations in continuum mechanics, C. R. Acad. Sci. Paris, Ser I, 342(5), 359–363, 2006.CrossRefGoogle Scholar
[92] Ghosh, A. K., Axisymmetric vibration of a long cylinder, J. Sound Vibrat., 186(5), 711–721, 1995.CrossRefGoogle Scholar
[93] Goldberg, M. A. and M., Sadowsky, Stresses in an ellipsoidal rotor in a centrifugal force field, J. Appl. Mech., 26(4), 549–552, 1959.Google Scholar
[94] Goldberg, M. A., V. L., Salerno and M. A., Sadowsky, Stress distribution in a rotating spherical shell of arbitrary thickness, J. Appl. Mech., 28(1), 127–131, 1961.Google Scholar
[95] Golovchan, V. T., Torsion of a cylinder of finite length having a cylindrical cavity, Prikladnaya Mekhanika, 8(3), 37–41, 1972.Google Scholar
[96] Gong, S. X. and S. A., Meguid, On the elastic fields of an elliptical inhomogeneity under plane deformation, Proc. R. Soc. London Ser. A, 443(1919), 457–471, 1993.CrossRefGoogle Scholar
[97] Goodier, J. N., Concentration of stress around spherical and cylindrical inclusions and flaws, Trans. ASME, Applied Mech., 55(7), 39–44, 1933.Google Scholar
[98] Goss, R. N., Center of flexure of a triangular beam, Proc. Am. Math. Soc., 1(6), 744–750, 1950.CrossRefGoogle Scholar
[99] Grant, D. A., Beam vibrations with time-dependent boundary conditions, J. Sound Vibrat., 89(4), 519–522, 1983.CrossRefGoogle Scholar
[100] Green, A. E., Three-dimensional stress systems in isotropic plates. I, Phil. Trans. R. Soc. London Ser. A, 240(825), 561–597, 1948.CrossRefGoogle Scholar
[101] Gregory, R., D. and I., Gladwell, The cantilever beam under tension, bending or flexure at infinity, J. Elast., 12(4), 317–343, 1982.CrossRefGoogle Scholar
[102] Guo, Z. H., The representation theorem for isotropic, linear asymmetric stress–strain relations, J. Elast., 13(2), 121–124, 1983.CrossRefGoogle Scholar
[103] Guo, Z. H., An alternative proof of the representation theorem for isotropic, linear asymmetric stress–strain relations, Quart. Appl. Math., 41(1), 119–123, 1983.CrossRefGoogle Scholar
[104] Guo, Z. H., Rates of stretch tensors, J. Elast., 14(3), 263–267, 1984.Google Scholar
[105] Guo, Z. H. and P., Podio–Guidugli, A concise proof of the representation theorem for linear isotropic, tensor-valued mappings of a skew argument, J. Elast., 21(3), 317–320, 1989.Google Scholar
[106] Guo, Z. H., Derivatives of the principal invariants of a 2-nd order tensor, J. Elast., 22(2), 185–191, 1989.Google Scholar
[107] Gupta, A., D. J., Steigmann and J. S., Stolken, On the evolution of plasticity and incompatibility, Math. Mech. Solids, 12(6), 583–610, 2007.CrossRefGoogle Scholar
[108] Gurtin, M. E., An Introduction to Continuum Mechanics, San Diego:Academic Press, 1981.Google Scholar
[109] Gurtin, M. E., The Linear Theory of Elasticity, Handbuch der Physik VIa/2, Berlin Heidelberg:Springer-Verlag, 1972.Google Scholar
[110] Gurtin, M. E., A short proof of the representation theorem for isotropic, linear stress–strain relations, J. Elast., 4(3), 243–245, 1974.CrossRefGoogle Scholar
[111] Gurtin, M. E., A generalization of Beltrami stress functions in continuum mechanics, Arch. Rational Mech. Anal., 13(1), 321–329, 1963.CrossRefGoogle Scholar
[112] Gurtin, M. E. and L., Anand, The decomposition F = FeFp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous, Int. J. Plast., 21(9), 1686–1719, 2005.CrossRefGoogle Scholar
[113] Hadjesfandiari, A. R. and G. F., Dargush, Analysis of bi-material interface cracks with complex weighting functions and non-standar quadrature, Int. J. Solids Struct., 48(10), 1499–1512, 2011.CrossRefGoogle Scholar
[114] Hardiman, N. J., Elliptic elastic inclusion in an infinite elastic plate, Quart. J. Mech Appl. Math., 7(2), 226–230, 1954.CrossRefGoogle Scholar
[115] Hartmann, S. and P., Neff, Polyconvexity of generalized polynomial-type hyperelastic strain energy function for near-incompressibility, Int. J. Solids Struct., 40(11), 2767–2791, 2003.CrossRefGoogle Scholar
[116] Hay, G. E., The method of images applied to the problem of torsion, Proc. London Math. Soc., s2–45(1), 382–397, 1939.Google Scholar
[117] Hayes, M. and T. J., Laffey, Pure shear–A footnote, J. Elast., 92(1), 109–113, 2008.CrossRefGoogle Scholar
[118] Higgins, T. J., A comprehensive review of Saint-Venant's torsion problem, Am J. Phys., 10(5), 248–259, 1942.CrossRefGoogle Scholar
[119] Higgins, T. J., Stress analysis of shafting exemplified by Saint Venant's torsion problem, Experimental Stress Analysis, 3(1), 94–101, 1945.Google Scholar
[120] Hill, R., On uniqueness and stability in the theory of finite elastic strain, J. Mech. Phys. Solids, 5(4), 229–241, 1957.CrossRefGoogle Scholar
[121] Hill, R., Constitutive inequalities for isotropic elastic solids under finite strain, Proc. R. Soc. London Ser. A, 314(1519), 457–472, 1970.CrossRefGoogle Scholar
[122] Hill, J. M. and J. N., Dewynne, Heat Conduction, Boston: Blackwell Scientific Publications, 1987.Google Scholar
[123] Hillman, A. P. and H. E., Salzer, Roots of sin z = z. Phil. Mag., 34 (235), 575–575, 1943.CrossRefGoogle Scholar
[124] Hiramatsu, Y. and Y., Oka, Determination of the tensile strength of rock by a compression test of an irregular test piece, Int. J. Rock Mech. Min. Sci., 3(2), 89–99, 1966.CrossRefGoogle Scholar
[125] Hoffman, K. M. and R., Kunze, Linear Algebra, New Jersey: Prentice Hall, 1971.Google Scholar
[126] Hoger, A. and D. E., Carlson, Determination of the stretch and rotation in the polar decomposition of the deformation gradient, Quart. Appl. Math., 42(1), 113–117, 1984.CrossRefGoogle Scholar
[127] Hoger, A. and D. E., Carlson, On the derivative of the square root of a tensor and Guo's rate theorems, J. Elast., 14(3), 329–336, 1984.CrossRefGoogle Scholar
[128] Hoger, A., The stress conjugate to logarithmic strain, Int. J. Solids Struct., 23(12), 1645–1656, 1987.CrossRefGoogle Scholar
[129] Holl, D. L. and D. H., Rock, The flexure and torsion of a beam whose cross-section is a limacon, Z. Angew Math. Mech., 19(3), 141–145, 1939.CrossRefGoogle Scholar
[130] Holzapfel, G. A. and J. C., Simo, Entropy elasticity of isotropic rubber–like solids at finite strains, Comput. Methods Appl. Mech. Eng., 132(1), 17–44, 1996.CrossRefGoogle Scholar
[131] Horgan, C. O. and S. C., Baxter, Effects of curvilinear anisotropy on radially symmetric stresses in anisotropic linearly elastic solids, J. Elast., 42(1), 31–48, 1996.CrossRefGoogle Scholar
[132] Horgan, C. O., Equilibrium solutions for compressible nonlinearly elastic materials. In: Y. B., Fu and R. W., Ogden, Eds., Nonlinear elasticity: Theory and applications, Cambridge: Cambridge University Press, 2001.Google Scholar
[133] Horgan, C. O., On the torsion of functionally graded anisotropic linearly elastic bars, IMA J. Appl. Math., 72(5), 556–562, 2007.CrossRefGoogle Scholar
[134] Horgan, C. O. and J. G., Murphy, A generalization of Hencky's strain-energy density to model the large deformations of slightly compressible solid rubbers, Mech. Mater., 41(8), 943–950, 2009.CrossRefGoogle Scholar
[135] Horibe, T., E., Tsuchida, Y., Arai and N., Kusano, Stresses in an elastic strip having a circular inclusion under tension, J. Solid Mech. Mater. Eng., 2(7), 900–911, 2008.CrossRefGoogle Scholar
[136] Horn, R. A. and C. R., Johnson, Topics in Matrix Analysis, Cambridge: Cambridge University Press, 1991.CrossRefGoogle Scholar
[137] Huber, A., The elastic sphere under concentrated torques, Quart. Appl. Math., 13(1), 98–102, 1955.CrossRefGoogle Scholar
[138] Hunter, S. C., Mechanics of Continuous Media, Chichester: Ellis Horwood Limited, 1983.Google Scholar
[139] Inglis, C. E., Stresses in a plate due to the presence of cracks and sharp corners, Trans. Institution of Naval Architects, 60, 219–230, 1913.Google Scholar
[140] Iyengar, K. T. and M. K., Prabhakara, A three-dimensional elasticity solution for rectangular prism under end loads, Z. Angew Math. Mech., 49(6), 321–332, 1969.Google Scholar
[141] Itskov, M., On the theory of fourth-order tensors and their applications in computational mechanics, Comp. Meth. Appl. Mech. Eng., 189(2), 419–438, 2000.CrossRefGoogle Scholar
[142] Itskov, M., The derivative with respect to a tensor: Some theoretical aspects and applications, Z. Angew Math. Mech., 82(8), 535–544, 2002.3.0.CO;2-U>CrossRefGoogle Scholar
[143] Itskov, M. and N., Aksel, A closed-form representation for the derivative of non-symmetric tensor power series, Int. J. Solids Struct., 39, 5963–5978, 2002.CrossRefGoogle Scholar
[144] Itskov, M., Application of the Dunford-Taylor integral to isotropic tensor functions and their derivatives, Proc. R. Soc. London Ser. A, 459(2034), 1449–1457, 2003.CrossRefGoogle Scholar
[145] Jain, R., K., Ramachandra and K. R. Y., Simha, Rotating anisotropic disc of uniform strength, Int. J. Mech. Sci., 41(6), 639–648, 1999.CrossRefGoogle Scholar
[146] Jain, R., K., Ramachandra and K. R. Y., Simha, Singularity in rotating orthotropic discs and shells, Int. J. Solids Struct., 37(14), 2035–2058, 2000.CrossRefGoogle Scholar
[147] Jaric, J. P., On the gradients of the principal invariants of a second-order tensor, J. Elast., 44(3), 285–287, 1996.CrossRefGoogle Scholar
[148] Jaric, J. P., On the representation of symmetric isotropic 4-tensors, J. Elast., 51(1), 73–79, 1998.CrossRefGoogle Scholar
[149] Jeffrey, G. B., Plane stress and plane strain in bipolar co-ordinates, Phil. Trans. R. Soc. London Ser. A., 221, 265–293, 1921.Google Scholar
[150] Jerphagnon, J., Invariants of the third-rank Cartesian tensor: Optical nonlinear susceptibilities, Phys. Rev. B, 2(4), 1091–1098, 1970.CrossRefGoogle Scholar
[151] Jerphagnon, J., D., Chemla and R., Bonneville, The description of the physical properties of condensed matter using irreducible tensors, Adv. Phys., 27(4), 609–650, 1978.CrossRefGoogle Scholar
[152] Jiang, X. and R. W., Ogden, On azimuthal shear of a circular cylindrical tube of compressible elastic material, Q. J. Mech. Appl. Math., 51(1), 143–158, 1998.CrossRefGoogle Scholar
[153] Jog, C. S., On the explicit determination of the polar decomposition in n-dimensional vector spaces, J. Elast., 66(2), 159–169, 2002.CrossRefGoogle Scholar
[154] Jog, C. S., The accurate inversion of Vandermonde matrices, Comput. Math. Appl., 47(6–7), 921–929, 2004.CrossRefGoogle Scholar
[155] Jog, C. S., Derivatives of the stretch, rotation and exponential tensors in n-dimensional vector spaces, J., Elast., 82(2), 175–192, 2006.Google Scholar
[156] Jog, C. S. and P. P., Kelkar, Nonlinear analysis of structures using high performance hybrid elements, Int. J. Num. Meth. Eng., 68(4), 473–501, 2006.CrossRefGoogle Scholar
[157] Jog, C. S., A concise proof of the representation theorem for fourth-order isotropic tensors, J. Elast., 85(2), 119–124, 2006.CrossRefGoogle Scholar
[158] Jog, C. S., The explicit determination of the logarithm of a tensor and its derivatives, J. Elast., 93(2), 141–148, 2008.CrossRefGoogle Scholar
[159] Jog, C. S. and R., Bayadi, Stress and strain-driven algorithmic formulations for finite strain viscoplasticity for hybrid and standard finite elements, Int. J. Num. Meth. Eng., 79(7), 773–816, 2009.CrossRefGoogle Scholar
[160] Jog, C. S. and Phani, Motammari, An energy-momentum conserving algorithm for nonlinear transient analysis within the framework of hybrid elements, J. Mech. Materials Struct., 4(1), 157–186, 2009.CrossRefGoogle Scholar
[161] Jog, C. S., Improved hybrid elements for structural analysis, J. Mech. Materials Struct., 5(3), 507–528, 2010.CrossRefGoogle Scholar
[162] Jog, C. S. and R. K., Pal, A monolithic strategy for fluid-structure interaction problems, Int. J. Num. Meth. Eng., 85(4), 429–460, 2011.CrossRefGoogle Scholar
[163] Jog, C. S., The equations of equilibrium in orthogonal curvilinear reference coordinates, J. Elast., 104(1), 385–395, 2011.CrossRefGoogle Scholar
[164] Jog, C. S. and K. D., Patil, Conditions for the onset of elastic and material instabilities in hyperelastic materials, Arch. Mech., 83(5), 661–684, 2013.Google Scholar
[165] Jog, C. S. and H. P., Cherukuri, A reexamination of some puzzling results in linearized elasticity, Sadhana, 39(1), 137–147, 2014.CrossRefGoogle Scholar
[166] Jog, C. S. and I. S., Mokashi, A finite element method for the Saint-Venant torsion and bending problems for prismatic beams, Comput. Struct., 135, 62–72, 2014.CrossRefGoogle Scholar
[167] Jog, C. S. and A., Nandy, Conservation properties of the trapezoidal rule in linear time domain analysis of acoustics and structures, ASME J. Vibration Acoustics, 137(2), 021010, 2015.CrossRefGoogle Scholar
[168] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge: Cambridge University Press, 1990.Google Scholar
[169] Jones, D. L. and C. P., Burke, Zonal harmonic series expansions of Legendre functions and associated Legendre functions, J. Phys. A, 23(14), 3159–3168, 1990.CrossRefGoogle Scholar
[170] Kalman, D., A Matrix Proof of Newton's Identities, Math. Mag., 73(4), 313–315, 2000.CrossRefGoogle Scholar
[171] Kantorovich, L. V. and V. I., Krylov, Approximate Methods of Higher Analysis, Groningen:P. Noordhoff Limited, 1958.Google Scholar
[172] Kawashima, K., E., Tsuchida and I., Nakahara, Stresses in an elastic circular cylinder having a spherical inclusion under tension, Theo. Appl. Mech., 27, 79–89, 1979.Google Scholar
[173] Kearsly, E. A., Asymmetric stretching of a symmetrically loaded elastic sheet. J. Elast., 22(2), 111–119, 1986.Google Scholar
[174] Knowles, J. K. and E., Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material, J. Elast., 5(3–4), 341–361, 1975.CrossRefGoogle Scholar
[175] Knowles, J. K., On the representation of the elasticity tensor for isotropic materials, J. Elast., 39(2), 175–180, 1995.CrossRefGoogle Scholar
[176] Knowles, J. K., Linear Vector Spaces and Cartesian Tensors, New York: Oxford University Press, 1998.Google Scholar
[177] Kolossoff, M. C., Sur la torsion des primes ayant pour base un triangle rectangle, Comptes Rendus, 178, 2057–2060, 1924.Google Scholar
[178] Kondo, M., Eine methode zur losung der drehungsspannungen der walztrager von den rechtwinkligen und gleichschenkligen dreieck-formigen querschnitten, J. Jap. Soc. Mech. Eng., 36(194), 408–416, 1933.Google Scholar
[179] Korsgaard, J., On the representation of symmetric tensor-valued isotropic functions, Int. J. Eng. Sci., 28(12), 1331–1346, 1990.Google Scholar
[180] Krawietz, A., A comprehensive constitutive inequality in finite elastic strain, Arch. Rational Mech. Anal., 58(2), 127–149, 1975.CrossRefGoogle Scholar
[181] Kutsenko, G. V. and A. F., Ulitko, Elastic equilibrium of an ellipsoid under the influence of concentrated forces, Int. Appl. Mech., 9(4), 359–364, 1973.Google Scholar
[182] Kutsenko, G. V. and A. F., Ulitko, An exact solution of the axisymmetric problem of the theory of elasticity for a hollow ellipsoid of revolution, Int. Appl. Mech., 11(10), 1029–1032, 1975.Google Scholar
[183] Langhaar, H. L., Torsion of curved beams of rectangular cross-section, ASME J. Appl. Mech., 19(1), 49–53, 1952.Google Scholar
[184] Lekhnitskii, S. G., Anisotropic plates, New York: Gordon Breach, 1968.Google Scholar
[185] Leslie, F. M., Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28(4), 265–283, 1968.CrossRefGoogle Scholar
[186] Leslie, F. M., Some thermal effects in cholesteric liquid crystals, Proc. R. Soc. London Ser. A., 307(1490), 359–372, 1968.CrossRefGoogle Scholar
[187] Leslie, F.M., Theory of flow phenomena in liquid crystals, Advances in Liquid crystals, Vol. 4, Ed. G. H., Brown, pp. 1–81, New York: Academic Press, 1979.Google Scholar
[188] Levine, H.S. and J.M., Klosner, Axisymmetric elasticity solutions of spherical shell segments, ASME J. Appl. Mech., 38(1), 197–208, 1971.CrossRefGoogle Scholar
[189] Levinson, M., The simply supported rectangular plate: An exact, three-dimensional, linear elasticity solution, J. Elast., 15(3), 283–291, 1985.CrossRefGoogle Scholar
[190] Ling, C.B., On the stresses in a notched plate under tension, J. Math. Phys., 26, 284–289, 1947.CrossRefGoogle Scholar
[191] Ling, C.B., K.L., Yang, On symmetrical strain in solids of revolution in spherical coordinates, Trans. J. Appl. Mech., 18(4), 367–370, 1951.Google Scholar
[192] Ling, C.B., Torsion of a circular cylinder having a spherical cavity, Quart. Appl. Math., 10, 149–156, 1952.CrossRefGoogle Scholar
[193] Ling, C.B., Stresses in a circular cylinder having a spherical cavity under tension, Quart. Appl. Math., 13(4), 381–391, 1956.CrossRefGoogle Scholar
[194] Lion, A., On the large deformation behaviour of reinforced rubber at different temperatures. J. Mech. Phys. Solids, 45(11/12), 1805–1834, 1997.CrossRefGoogle Scholar
[195] Little, R.W., Elasticity., New Jersey: Prentice-Hall Inc., 1973.
[196] Little, R.W. and S., B.Childs, Elastostatic boundary region in solid cylinders. Quart. Appl. Math., 25(3), 261–274, 1967.CrossRefGoogle Scholar
[197] Liu, I-Shih, Continuum Mechanics, Berlin: Springer-Verlag, 2002.CrossRefGoogle Scholar
[198] Liu, I-Shih, On the transformation property of the deformation gradient under a change of frame, J. Elast., 71(1–3), 73–80, 2003.CrossRefGoogle Scholar
[199] Liu, I-Shih, On Euclidean objectivity and the principle of material frame-indifference, Continuum Mech. Thermodyn., 16(1–2), 177–183, 2004.CrossRefGoogle Scholar
[200] Liu, I-Shih, Further remarks on Euclidean objectivity and the principle of material frame-indifference, Continuum Mech. Thermodyn., 17(2), 125–133, 2005.CrossRefGoogle Scholar
[201] Lamb, H., On the propagation of tremors over the surface of an elastic solid, Phil. Trans. R. Soc. London Ser. A., 203, –42, 1904.CrossRefGoogle Scholar
[202] Love, A.E.H., The propagation of wave-motion in an isotropic elastic medium, Proc. London Math. Soc., 2(1), 291–344, 1904.Google Scholar
[203] Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, New York: Dover, 4'th ed., 1927.Google Scholar
[204] Lubarda, V.A., Constitutive theories based on the multiplicative decomposition of deformation gradient: Thermoelasticity, elastoplasticity, and biomechanicsAppl. Mech. Rev., 57(2), 95–108, 2004.CrossRefGoogle Scholar
[205] Macdonald, H.M., On the torsional strength of a hollow shaft, Proc. Cambridge Phil. Soc., 8, 62–68, 1893.Google Scholar
[206] MacSithigh, G.P., Energy-minimal finite deformations of a symmetrically loaded elastic sheet, Q. J. Mech. Appl. Math, 39(1), 111–124, 1986.CrossRefGoogle Scholar
[207] Malvern, L.E., Introduction to the Mechanics of a Continuous Medium, New Jersey: Prentice Hall Inc., 1969.Google Scholar
[208] Malyi, V.I., One representation of the conditions of the compatibility of deformations, PMM U.S.S.R., 50(5), 679–681, 1986.Google Scholar
[209] Marsden, J.E. and T.J.R., Hughes, Mathematical Foundations of Elast., New York: Dover, 1994.Google Scholar
[210] Martins, L.C. and P., Podio-Guidugli, A new proof of the representation theorem for isotropic, linear constitutive relations, J. Elast., 8(3), 319–322, 1978.CrossRefGoogle Scholar
[211] Mathias, R., Evaluating the Frechet derivative of the matrix exponential, Num. Math., 63(1), 213–226, 1992.CrossRefGoogle Scholar
[212] Maunsell, F.G., Stresses in a notched plate under tension, Phil. Mag., 21(142), 765–773, 1936.Google Scholar
[213] Mehrabadi, M. M. and S.C., Cowin, Eigentensors of linear anisotropic elastic materials, Quart. J. Mech. Appl. Math., 43(1), 15–41, 1990.CrossRefGoogle Scholar
[214] Meleshko, V.V. and A.M., Gomilko, Infinite systems for a biharmonic problem in a rectangle, Proc. R. Soc. London Ser. A, 453(1965), 2139–2160, 1997.Google Scholar
[215] Meleshko, V.V., Equilibrium of an elastic finite cylinder: Filon's problem revisited, J. Engg. Math., 46(3–4), 355–376, 2003.Google Scholar
[216] Meleshko, V.V., Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev., 56(1), 33–85, 2003.CrossRefGoogle Scholar
[217] Meleshko, V.V., Thermal stresses in an elastic rectangle, J. Elast., 105(1–2), 61–92, 2011.CrossRefGoogle Scholar
[218] Merodio, J. and R.W., Ogden, A note on strong ellipticity for transversely isotropic linearly elastic solids, Quart. J. Mech. Appl. Math., 56(4), 589–591, 2003.CrossRefGoogle Scholar
[219] Meschke, G. and W.N., Liu, A re-formulation of the exponential algorithm for finite strain plasticity in terms of Cauchy stresses, Comput. Methods Appl. Mech. Eng., 173(1), 167–187, 1999.CrossRefGoogle Scholar
[220] Meyers, A., P., Schiebe and O.T., Bruhns, Some comments on objective rates of symmetric Eulerian tensors with application to Eulerian strain rates, Acta Mech., 139(1–4), 91–103, 2000.CrossRefGoogle Scholar
[221] Michell, J.H., On the direct determination of stress in an elastic solid, with application to the theory of plates, Proc. London Math. Soc., 1(1), 100–124, 1899.Google Scholar
[222] Michell, J.H., Elementary distributions of plane stress, Proc. London Math. Soc., 32, 35–61, 1900.Google Scholar
[223] Min-zhong, W. and W., Lu-nan, Derivation of some special stress function from Beltrami-Schaefer stress function, Appl. Math. Mech., 10(7), 665–673, 1989.CrossRefGoogle Scholar
[224] Mindlin, R.D. and L.E., Goodman, Beam vibrations with time-dependent boundary conditions, ASME J. Appl. Mech., 17(4), 377–380, 1950.Google Scholar
[225] Moler, C. and C.V., Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev., 45(1), 3–49, 2003.CrossRefGoogle Scholar
[226] Morinaga, K. and T., Nono, On the non-commutative solutions of the exponential equation exey = ex+y, J. Sci. Hiroshima Univ. (A), 17, 345–358, 1954.Google Scholar
[227] Morinaga, K. and T., Nono, On the non-commutative solutions of the exponential equation exey = ex+y, II, J. Sci. Hiroshima Univ. (A), 18, 137–178, 1954.Google Scholar
[228] Muller, I., On the frame dependence of stress and heat flux, Arch. Rational Mech. Anal., 45(4), 241–250, 1972.CrossRefGoogle Scholar
[229] Muller, I., Two instructive instabilities in non-linear elasticity: Biaxially loaded membrane, and rubber balloons, Meccanica, 31(4), 387–395, 1996.CrossRefGoogle Scholar
[230] Murdoch, A.I., On objectivity and material symmetry for simple elastic solids, J. Elast., 60(3), 233–242, 2000.CrossRefGoogle Scholar
[231] Murdoch, A.I., Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under superposed rigid body motions’ in favor of purely objective considerations, Continuum Mech. Thermodyn., 15(3), 309–320, 2003.CrossRefGoogle Scholar
[232] Murdoch, A.I., On criticism of the nature of objectivity in classical continuum physics, Continuum Mech. Thermodyn., 17(2), 135–148, 2005.CrossRefGoogle Scholar
[233] Nadeau, J.C. and M., Ferrari, Invariant tensor-to-matrix mappings for evaluation of tensor expressions, J. Elast., 52(1), 43–61, 1998.CrossRefGoogle Scholar
[234] Nakamura, G. and G., Uhlmann, Global uniqueness for an inverse boundary value problem arising in elasticity, Inven. Math., 118(1), 457–474, 1994.CrossRefGoogle Scholar
[235] Nakamura, G. and G., Uhlmann, Correction to–Global uniqueness for an inverse boundary value problem arising in elasticity, Inven. Math., 152(1), 205–207, 2003.CrossRefGoogle Scholar
[236] Noda, N. and Y., Moriyama, Stress concentration of an ellipsoidal inclusion of revolution in a semi-infinite body under biaxial tension, Arch. Appl. Mech., 74(1–2), 29–44, 2004.CrossRefGoogle Scholar
[237] Noll, W., The Foundations of Mechanics and Thermodynamics, Berlin: Springer–Verlag, 1974.CrossRefGoogle Scholar
[238] Norris, A.N., Quadratic invariants of elastic moduli, Quart. J. Mech. Appl. Math., 60(3), 367–389, 2007.CrossRefGoogle Scholar
[239] Ogden, R.W., Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids, Proc. R. Soc. London Ser. A, 326(1567), 565–584, 1972.Google Scholar
[240] Ogden, R.W., Nonlinear elastic deformations, New York: Dover, 1997.Google Scholar
[241] Ortiz, M.,R.A., Radovitzky and E.A., Repetto, The computation of the exponential and logarithmic mappings and their first and second linearizations, Int. J. Num. Meth. Eng., 52(12), 1431–1441, 2001.CrossRefGoogle Scholar
[242] Ostrosablin, N.I., Compatibility conditions of small deformations and stress functions, J. Appl. Mech. Tech. Phys., 38(5), 774–783, 1997.CrossRefGoogle Scholar
[243] Ostrosablin, N.I., Comments of the publication “Compatibility conditions of small deformations and stress functions”, J. Appl. Mech. Tech. Phys., 40(3), page 549, 1999.CrossRefGoogle Scholar
[244] Padovani, C., On the derivative of some tensor-valued functions, J. Elast., 58(3), 257–268, 2000.CrossRefGoogle Scholar
[245] Payne, L. E., Torsion of composite sections, Iowa State College J. Sci., 23, 381–395, 1949.Google Scholar
[246] Pearcy, C., A complete set of unitary invariants for 3×3 complex matrices, Trans. Am. Math. Soc., 104(3), 425–429, 1962.Google Scholar
[247] Peng, S. H. and W. V., Chang, A compressible approach in finite element analysis of rubber-elastic material, Comput. Struct., 62(3), 573–593, 1997.CrossRefGoogle Scholar
[248] Penn, R.W., Volume changes accompanying the extension of rubber, Trans. Soc. Rheol., 14(4), 509–517, 1970.Google Scholar
[249] Pennisi, S. and M., Trovato, On the irreducibility of Professor G. F. Smithapos;s representations for isotropic functions, Int. J. Eng. Sci., 25(8), 1059–1065, 1987.CrossRefGoogle Scholar
[250] Pericak-Spector, K. A. and S. J., Spector, On the representation theorem for linear, isotropic tensor functions, J. Elast., 39(2), 181–185, 1995.CrossRefGoogle Scholar
[251] Pericak-Spector, K. A., J., Sivaloganathan and S. J., Spector, The representation theorem for linear, isotropic tensor functions in even dimensions, J. Elast., 57(2), 157–164, 1999.CrossRefGoogle Scholar
[252] Peyraut, F., Z. Q., Feng, Q. C., He, N., Labed, Robust numerical analysis of homogeneous and non-homogeneous deformations, Appl. Num. Math., 59(7), 1499–1514, 2009.CrossRefGoogle Scholar
[253] Piero, G. D., Some properties of the set of fourth-order tensors, with application to elasticity, J. Elast., 9(3), 245–261, 1979.Google Scholar
[254] Podio–Guidugli, P., The Piola–Kirchhoff stress may depend linearly on the deformation gradient, J. Elast., 17(2), 183–187, 1987.CrossRefGoogle Scholar
[255] Polya, G., Torsional rigidity, principal frequency, electrostatic capacity and symmetrization, Quart. Appl. Math., 6(3), 267–277, 1948.CrossRefGoogle Scholar
[256] Polya, G. and A., Weinstein, On the torsional rigidity of multiply connected crosssections, Ann. Math., 52(1), 154'163, 1950.CrossRefGoogle Scholar
[257] Poschl, T., Bisherige losungen des torsionsproblems fur drehkorper, Z. Angew Math. Mech., 2/(2), 137–147, 1922.CrossRefGoogle Scholar
[258] Power, L. D. and S. B., Childs, Axisymmetric stresses and displacements in a finite circular bar, Int. J. Eng. Sci., 9(2), 241–255, 1971.CrossRefGoogle Scholar
[259] Putzer, E. J., Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients, Am. Math. Monthly, 73(1), 2–7, 1966CrossRefGoogle Scholar
[260] Qi, L., Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325(2), 1363–1377, 2007.CrossRefGoogle Scholar
[261] Ramachandra Rao, B. S., C. S., Kale and R. P., Shimpi, The sector problem in plane elastostatics, Int. J. Eng. Sci., 11(5), 531–542, 1973.Google Scholar
[262] Ramachandra Rao, B. S., A. K., Kandya and S., Gopalacharyulu, Axial eigenfunctions for the axisymmetric problem of an elastic circular cylinder, Int. J. Eng. Sci., 14(1), 99–112, 1976.Google Scholar
[263] Rayleigh, L., On waves propagated along the plane surface of an elastic solid, Proc. London Math. Soc., 17, 4–11, 1885.Google Scholar
[264] Reese, S. and P., Wriggers, Material instabilities of an incompressible elastic cube under triaxial tension, Int. J. Solids Struct., 34(26), 3433–3454, 1997.CrossRefGoogle Scholar
[265] Reese, S., On material and geometrical instabilities in finite elasticity and elastoplasticity, Arch. Mech. 52(6), 969–999, 2000.Google Scholar
[266] Reese, S. and S., Govindjee, A theory of finite viscoelasticity and numerical aspects, Int. J. Solids Struct., 35(26–27), 3455–3482, 1998.CrossRefGoogle Scholar
[267] Reissner, E., Note on the problem of St. Venant flexure, Z. Angew Math. Phys., 15(2), 198–200, 1964.CrossRefGoogle Scholar
[268] Rivlin, R. S., Universal relations for elastic materials, Rendiconti di Matematica, Seri VII, Roma, 20, 35–55, 2000.Google Scholar
[269] Rivlin, R. S. and M. F., Beatty, Dead loading of a unit cube of compressible isotropic elastic material, Z. Angew Math. Phys., 54(6), 954–963, 2003.CrossRefGoogle Scholar
[270] Robbins, C. I. and R. C. T., Smith, A table of roots of sin z = −z. Phil. Mag., 39 (299), 1004–1005, 1948.Google Scholar
[271] Robert, M. and L. M., Keer, An elastic circular cylinder with displacement prescribed at the ends–axially symmetric case, Quart. J. Mech. Appl. Math., 40(3), 339–363, 1987.Google Scholar
[272] Rosati, L., Derivatives and rates of the stretch and rotation tensors, J. Elast., 56(3),213–230, 1999.CrossRefGoogle Scholar
[273] Rosati, L., A novel approach to the solution of the tensor equation AX + XA = H, Int. J. Solids Struct., 37(25), 3457–3477, 2000.CrossRefGoogle Scholar
[274] Rostamian, R., The completeness of Maxwellaapos;s stress function representation, J. Elast., 9(4), 349–356, 1979.CrossRefGoogle Scholar
[275] Saccomandi, G. and R. C., Batra, Additional universal relations for transversely isotropic elastic materials, Math. Mech. Solids, 9(2), 167–174, 2004.CrossRefGoogle Scholar
[276] Sadosky, M. A. and E., Sternberg, Stress concentrations around a triaxial ellipsoidal cavity, ASME J. Appl. Mech., 16(2), 149–157, 1949.Google Scholar
[277] Sadowsky, M. A. and E., Sternberg, Pure bending of an incomplete torus, ASME J. Appl. Mech., 20(2), 215–226, 1953.Google Scholar
[278] Saito, H., The axially symmetrical deformation of a short circular cylinder, Trans. Jap. Soc. Mech. Engr., 18(68), 21–28, 1952.Google Scholar
[279] Saito, H., On the stress distribution in a rotating circular disk of constant thickness, Trans. Jap. Soc. Mech. Engr., 18(75), 40–43, 1952.Google Scholar
[280] Saravanan, U. and K. R., Rajagopal, Inflation, extension, torsion and shearing of an inhomogeneous compressible elastic right circular annular cylinder, Math. Mech. Solids, 10(6), 603–650, 2005.CrossRefGoogle Scholar
[281] Saravanan, U. and K. R., Rajagopal, On some finite deformations of inhomogeneous elastic solids, Math. Proc. R. Irish Academy, 107A(1), 43–72, 2007.Google Scholar
[282] Scheidler, M., The tensor equation AX + XA = Ψ(A, H), with applications to kinematics of continua, J. Elast., 36(2), 117–153, 1994.CrossRefGoogle Scholar
[283] Seegar, M. and K., Pearson, De Saint-Venant solution for the flexure of cantilevers of cross-Section in the form of complete and curtate circular sectors, and on the influence of the manner of fixing the built-in end of the cantilever on its deflection, Proc. R. Soc.London Ser. A, 96(676), 211–232, 1919.CrossRefGoogle Scholar
[284] Seth, B. R., On flexure in prisms with cross-sections of uniaxial symmetry, Proc. London Math. Soc., s2–37(1), 502–511, 1934.Google Scholar
[285] Seth, B. R., On flexure of beams of triangular cross-section, Proc. London Math. Soc., s2–41(5), 323–331, 1936.Google Scholar
[286] Seth, B. R., On the flexure of a hollow shaft-I, Proc. Math. Sci., 4(5), 531–541, 1936.Google Scholar
[287] Shames, I. H. and C., Dym, Energy and Finite Element Methods in Structural Mechanics, New York: Hemisphere Publishing Co., 1985.Google Scholar
[288] Sheehan, J. P. and L., Debnath, Transient vibrations of an isotropic elastic sphere, Pure and Applied Geophysics, 99(1), 37–48, 1972.CrossRefGoogle Scholar
[289] Shepherd, W. M., Torsion of a cracked shaft, Engineering, 128(3313), 39–39, 1929.Google Scholar
[290] Shepherd, W. M., The torsion and flexure of shafting with keyways or cracks, Proc. R. Soc. London Ser. A, 138(836), 607–634, 1932.CrossRefGoogle Scholar
[291] Shepherd, W. M., The flexure of a prism with cross-section bounded by a cardioid, Proc. R. Soc. London Ser. A, 154(882), 500–509, 1936.CrossRefGoogle Scholar
[292] Shield, R. T., Deformations possible in every compressible, isotropic, perfectly elastic material, J. Elast., 1(1), 91–92, 1971.CrossRefGoogle Scholar
[293] Shnaid, I., Thermodynamically consistent description of heat conduction with finite speed of heat propagation, Int. J. Heat Mass Transfer, 46(20), 3583–3863, 2003.CrossRefGoogle Scholar
[294] Sibirskii, K. S., A minimal polynomial basis of unitary invariants of a square matrix of the third order, Matematicheskie Zametki, 3(3), 291–296, 1968.Google Scholar
[295] Silhavy, M., The Mechanics and Thermodynamics of Continuous Media, Berlin: Springer- Verlag, 1997.CrossRefGoogle Scholar
[296] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Eng., 99(1), 61–112, 1992.CrossRefGoogle Scholar
[297] Singh, R. P. and C. S., Jog, A hybrid finite element formulation for flexible multibody dynamics, J. Multi-body Dynamics, Proc. Institution Mech. Eng. Part K, DOI:10.1177/1464419315569622.
[298] Smith, O. K., Eigenvalues of a symmetric 3 × 3 matrix, Comm. ACM, 4(4), 168–168, 1961.CrossRefGoogle Scholar
[299] Snell, C., The twisted sphere, Mathematika, 4(02), 162–165, 1957.CrossRefGoogle Scholar
[300] Sokolnikoff, I. S., Mathematical Theory of Elasticity, Florida: Robert E. Krieger Publishing Company, 1987.Google Scholar
[301] Sokolnikoff, I.S. and E.S., Sokolnikoff, Torsion of regions bounded by circular arcs, Bull. Am. Math. Soc., 44(3), 384–387, 1938.CrossRefGoogle Scholar
[302] Southwell, R.V., Castigliano's principle of minimum strain-energy and the conditions of compatibility for strain, S. Timoshenko, 60th Anniversary Volume, 1938, 211–217.Google Scholar
[303] Sparrow, E.M., Laminar flow in isosceles triangular ducts, A.I.Ch.E. J., 8(5), 599–604, 1962.CrossRefGoogle Scholar
[304] Srinivasan, T.P., Decomposition of tensors representing physical properties of crystals, J. Phys.: Condens. Matter, 10(16), 3849–3496, 1998.Google Scholar
[305] Stephenson, R.A., On the uniqueness of the square-root of a symmetric, positive definite tensor, J. Elast., 10(2), 213–214, 1980.Google Scholar
[306] Sternberg, E. and F., Rosenthal, The elastic sphere under concentrated loads, ASME J. Appl. Mech., 19, 413–421, 1952.Google Scholar
[307] Sternberg, E., Three-dimensional stress concentrations in the theory of elasticity, Appl. Mech. Rev., 11(1), 1–4, 1958.Google Scholar
[308] Sternberg, E., On the integration of the equations of motion in the classical theory of elasticity, Arch. Rational Mech. Anal., 6(1), 34–50, 1960.CrossRefGoogle Scholar
[309] Stevenson, A.C., Flexure with shear and associated torsion in prisms of uni-axial and asymmetric cross-sections, Phil. Trans. R. Soc. London Ser. A., 237(776), 161–229, 1938.CrossRefGoogle Scholar
[310] Stevenson, A.C., The torsion and flexure solutions for the elliptic limacon cross-section, Proc. London Math. Soc., s2ndash;45(1), 126–143, 1939.Google Scholar
[311] Stevenson, A.C., Complex potentials in two-dimensional elasticity, Proc. R. Soc. London Ser. A., 184(997), 129–179, 1945.Google Scholar
[312] Stevenson, A.C., The centre of flexure of a hollow shaft, Proc. London Math. Soc., s2ndash;50(1), 536–549, 1949.Google Scholar
[313] Stewart, I.W., The Static and Dynamic Continuum Theory of Liquid Crystals, London: Taylor and Franscis, 2004.Google Scholar
[314] Straughan, B., Heat waves, New York: Springer, 2011.CrossRefGoogle Scholar
[315] Sussman, T. and K.J., Bathe, A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. Struct., 26 (1/2), 357–409, 1987.CrossRefGoogle Scholar
[316] Svendsen, B. and A., Bertram, On frame-indifference and form-invariance in constitutive theory, Acta Mech., 132(1–4), 195–207, 1999.CrossRefGoogle Scholar
[317] Swan, G.W., The semi-infinite cylinder with prescribed end-displacements, SIAM J. Appl. Math., 16(4), 860–881, 1968.CrossRefGoogle Scholar
[318] Sylvester, J. and G., Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125(1), 153–169, 1987.CrossRefGoogle Scholar
[319] Tang, S., Elastic stresses in rotating anisotropic disks, Int. J. Mech. Sci., 11(6), 5097ndash;517, 1969.CrossRefGoogle Scholar
[320] Tarantino, A.M., Homogeneous equilibrium configurations of a hyperelastic compressible cube under equitriaxial dead-load tractions, J. Elast., 92(3), 227–254, 2008.CrossRefGoogle Scholar
[321] Tarn, J-Q., Stress singularity in an elastic cylinder of cylindrically anisotropic materials, J. Elast., 69(1–3), 1–13, 2002.CrossRefGoogle Scholar
[322] Tarn, J-Q., Tseng, W-D. and Chang, H-H., A circular elastic cylinder under its own weight, Int. J. Solids Struct., 46(14), 2886–2896, 2009.CrossRefGoogle Scholar
[323] Thompson, T.R. and R.W., Little, End effects in a truncated semi-infinite cone, Quart. J. Mech. Appl. Math., 23(2), 185–195, 1970.CrossRefGoogle Scholar
[324] Timoshenko, S.P. and J.N., Goodier, Theory of Elasticity, New York: McGraw-Hill Book Company, 1970.Google Scholar
[325] Ting, T.C.T., The wedge subjected to tractions: a paradox re-examined, J. Elast., 14(3), 235–247, 1984.CrossRefGoogle Scholar
[326] Ting, T.C.T., Determination of C1/2, C−1/2 and more general isotropic tensor functions of C, J. Elast., 15(3), 319–323, 1985.CrossRefGoogle Scholar
[327] Ting, T.C.T., New expressions for the solution of the matrix equation ATX + XA = H, J. Elast., 45(1), 61–72, 1996.CrossRefGoogle Scholar
[328] Ting, T.C.T., The remarkable nature of radially symmetric deformation of spherically uniform linear anisotropic elastic solids, J. Elast., 53(1), 47–64, 1999.Google Scholar
[329] Ting, T.C.T., New solutions to pressuring, shearing, torsion and extension of a cylindrically anisotropic elastic circular tube or bar, Proc. R. Soc. London Ser. A, 455(1989), 3527–3542, 1999.Google Scholar
[330] Tokovyy, Y.V., K.M., Hung and C.C., Ma, Determination of stresses and displacements in a thin annular disk subjected to diametral compression, J. Math. Sci., 165(3), 342–354, 2010.CrossRefGoogle Scholar
[331] Tolf, G., Saint-Venant Bending of an Orthotropic Beam, Composite Struct., 4(1), 1–14, 1985.CrossRefGoogle Scholar
[332] Tortorelli, D.A., A generalized formulation of elastodynamics: Small on rigid, J. Elast., 105(1–2), 349–363, 2011.CrossRefGoogle Scholar
[333] Tranter, C. J., The application of the Laplace transformation to a problem on elastic vibrations, Phil. Mag., 33(223), 614–622, 1942.CrossRefGoogle Scholar
[334] Truesdell, C.A First Course in Rational Continuum Mechanics, London: Academic Press, 1977.Google Scholar
[335] Truesdell, C.Rational Thermodynamics, New York: Springer-Verlag, 1984.CrossRefGoogle Scholar
[336] Truesdell, C.An Idiot's Fugitive Essays on Science, New York: Springer-Verlag, 1984.CrossRefGoogle Scholar
[337] Truesdell, C. and W., NollThe Non-linear Field Theories of Mechanics, Handbuch der Physik 3, Berlin: Springer-Verlag, 1965.CrossRefGoogle Scholar
[338] Tsamasphyros, G. and P. S., Theocaris, On the solution of the sector problem, J. Elast., 9(3), 271–281, 1979.CrossRefGoogle Scholar
[339] Tsuchida, E. and I., Nakahara, Three-dimensional stress concentration around a spherical cavity in a semi-infinite elastic body, Bull. Jap. Soc. Mech. Eng., 13(58), 499–508, 1970.CrossRefGoogle Scholar
[340] Tsuchida, E. and T., Uchiyama, Stresses in an elastic circular cylinder with a prolate spheroidal cavity under tension, Bull. Jap. Soc. Mech. Eng., 22(166), 476–482, 1979.CrossRefGoogle Scholar
[341] Tsuchida, E. andT., Uchiyama, Stresses in an elastic circular cylinder with an oblate spheroidal cavity or an internal penny-shaped crack under tension, Bull. Jap. Soc. Mech. Eng., 23(175), 1–8, 1980.CrossRefGoogle Scholar
[342] Uchiyama, T. and E., Tsuchida, Stresses in an elastic circular cylinder with a prolate spheroidal cavity under torsion, J. Elast., 20(1), 41–52, 1988.CrossRefGoogle Scholar
[343] Ulitko, A. F., Stress state of a hollow sphere loaded by concentrated forces, Prikladnaya Mekhanika, 4(5), 38–45, 1968.Google Scholar
[344] Vallee, C., Q., He and C., Lerintiu, Convex analysis of the eigenvalues of a 3D secondorder symmetric tensor, J. Elast., 83(2), 191–204, 2006.CrossRefGoogle Scholar
[345] Vujosevic, L. and V. A., Lubarda, Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient, Theo. Appl. Mech., 28–29, 379–399, 2002.Google Scholar
[346] Wang, W. and M. Z., Wang, Constructivity and completeness of the general solutions in elastodynamics, Acta Mech., 91(3–4), 209–214, 1992.CrossRefGoogle Scholar
[347] Wang, X. and Y., Gong, A theoretical solution for axially symmetric problems in elastodynamics, Acta Mech. Sinica, 7(3), 275–282, 1991.Google Scholar
[348] Washizu, K., A note on the conditions of compatibility, J. Math. Phys., 36(4), 306–312, 1958.Google Scholar
[349] Watson, G. N., A Treatise on the Theory of Bessel Functions, London: Cambridge University Press, Second Edition, 1966.Google Scholar
[350] Wermuth, E. M. E., Two remarks on matrix exponentials, Lin. Alg. Appl., 117, 127–132, 1989.CrossRefGoogle Scholar
[351] Wheeler, L. T. and E., Sternberg, Some theorems in classical elastodynamics, Arch. Rational Mech. Anal., 31(1), 51–90, 1968.Google Scholar
[352] Wheeler, L. T., On the derivatives of the stretch and rotation with respect to the deformation gradient, J. Elast., 24(1–3), 129–133, 1990.CrossRefGoogle Scholar
[353] Wolfram, S., Mathematica, Champaign, Illinois: Wolfram Research Inc., 2014.Google Scholar
[354] Wood, J. A., The chain rule for matrix exponential functions, College Math. J., 35(3), 220–222, 2004.CrossRefGoogle Scholar
[355] Xiao, H., Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain, Int. J. Solids Struct., 32(22), 3327–3340, 1995.CrossRefGoogle Scholar
[356] Xiao, H., O. T., Bruhns, and A., Meyers, On objective corotational rates and their defining spin tensors, Int. J. Solids Struct., 35(30), 4001–4014, 1998.CrossRefGoogle Scholar
[357] Xiao, H., O. T., Bruhns, and A., Meyers, Existence and uniqueness of the integrable-exactly hypoelastic equation its significance to finite inelasticity, Acta Mech., 138(1), 31–50, 1999.CrossRefGoogle Scholar
[358] Yavari, A., Compatibility equations of nonlinear elasticity for non-simply connected bodies, Arch. Rational Mech. Anal., 209(1), 237–253, 2013.CrossRefGoogle Scholar
[359] Young, A. W., E. M., Elderton, K., Pearson, On the torsion resulting from flexure in prisms with cross-sections of uniaxial symmetry only, Draper' Company Memoirs, Technical Ser. VII, 1918.Google Scholar
[360] Zheng, X. and P., Palffy-Muhoray, Eigenvalue decomposition for tensors of arbitrary rank, Electronic-Liquid Crystal Communication, 2007.Google Scholar
[361] Zidi, M., Combined torsion, circular and axial shearing of a compressible hyperelastic and prestressed tube, ASME J. Appl. Mech., 67(1), 33–40, 2000.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • C. S. Jog, Indian Institute of Science, Bangalore
  • Book: Continuum Mechanics
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316134054.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • C. S. Jog, Indian Institute of Science, Bangalore
  • Book: Continuum Mechanics
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316134054.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • C. S. Jog, Indian Institute of Science, Bangalore
  • Book: Continuum Mechanics
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316134054.021
Available formats
×