Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T04:16:06.716Z Has data issue: false hasContentIssue false

4 - The Hartree–Fock method

Published online by Cambridge University Press:  05 June 2012

Jos Thijssen
Affiliation:
Technische Universiteit Delft, The Netherlands
Get access

Summary

Introduction

Here and in the following chapter we treat two different approaches to the many-electron problem: the Hartree–Fock theory and the density functional theory. Both theories are simplifications of the full problem of many electrons moving in a potential field. In fact, the physical systems we want to study, such as atoms, molecules and solids, consist not only of electrons but also of nuclei, and each of these particles moves in the field generated by the others.Afirst approximation is to consider the nuclei as being fixed, and to solve the Schrödinger equation for the electronic system in the field of the static nuclei. This approach, called the Born–Oppenheimer approximation, is justified by the nuclei being much heavier than the electrons so that they move at much slower speeds. It remains then to solve for the electronic structure.

The Hartree–Fock methodcan be viewed as a variational method in which the wave functions of the many-electron system have the form of an antisymmetrised product of one-electron wave functions (the antisymmetrisation is necessary because of the fermion character of the electrons). This restriction leads to an effective Schrödinger equation for the individual one-electron wave functions (called orbitals) with a potential determined by the orbitals occupied by the other electrons. This coupling between the orbitals via the potentials causes the resulting equations to become nonlinear in the orbitals, and the solution must be found iteratively in a self-consistency procedure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The Hartree–Fock method
  • Jos Thijssen, Technische Universiteit Delft, The Netherlands
  • Book: Computational Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139171397.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The Hartree–Fock method
  • Jos Thijssen, Technische Universiteit Delft, The Netherlands
  • Book: Computational Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139171397.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The Hartree–Fock method
  • Jos Thijssen, Technische Universiteit Delft, The Netherlands
  • Book: Computational Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139171397.006
Available formats
×