Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T12:44:32.104Z Has data issue: false hasContentIssue false

10 - Quantum computation

from PART ONE - BASIC COMPLEXITY CLASSES

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

Turning to quantum mechanics … secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents. … It has not yet become obvious to me that there's no real problem. I cannot define the real problem, therefore I suspect there's no real problem, but I'm not sure there's no real problem. So that's why I like to investigate things.

– Richard Feynman, 1964

The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative.

– Richard Feynman, in “Simulating Physics with Computers,” 1982

Our first result is the existence of an efficient universal quantum Turning machine in Deutsch's model. … We give the first formal evidence that quantum Turning machines violate the modern complexity theoretic formulation of the Church Turning thesis. We show the existence of a problem relative to an oracle that can be solved in polynomial time on a quantum Turning machine but require super polynomial time on a bounded error probabilistic Turning machine.

– E. Bernstein and U. Vazirani, “Quantum Complexity Theory,” 1997

Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as probabilistic and deterministic Turing machines.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 201 - 236
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Quantum computation
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Quantum computation
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Quantum computation
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.013
Available formats
×