Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:01:59.747Z Has data issue: false hasContentIssue false

21 - Pseudorandom constructions: Expanders and extractors

from PART THREE - ADVANCED TOPICS

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

How difficult could it be to find hay in a haystack?

–Howard Karloff

The probabilistic method is a powerful method to show the existence of objects (e.g., graphs, functions) with certain desirable properties. We have already seen it used in Chapter 6 to show the existence of functions with high-circuit complexity, in Chapter 19 to show the existence of good error-correcting codes, and in several other places in this book. But sometimes the mere existence of an object is not enough: We need an explicit and efficient construction. This chapter provides such constructions for two well-known (and related) families of pseudorandom objects, expanders and extractors. They are important in computer science because they can often be used to replace (or reduce) the amount of randomness needed in certain settings. This is reminiscent of derandomization, the topic of Chapter 20, and indeed we will see several connections to derandomization throughout the chapter. However, a big difference between Chapter 20 and this one is that all results proven here are unconditional, in other words do not rely on unproven assumptions. Another topic that is related to expanders is constructions of error-correcting codes and related hardness-amplification results, which we saw in Chapter 19. For a brief discussion of the many deep and fascinating connections between codes, expanders, pseudorandom generators, and extractors, see the chapter notes.

Expanders are graphs whose connectivity properties (how many edges lie between every two sets A, B of vertices) are similar to those of “random” graphs–in this sense they are “pseudorandom” or “like random.”

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 421 - 459
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×