Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T02:16:05.875Z Has data issue: false hasContentIssue false

6 - Boolean circuits

from PART ONE - BASIC COMPLEXITY CLASSES

Published online by Cambridge University Press:  05 June 2012

Sanjeev Arora
Affiliation:
Princeton University, New Jersey
Boaz Barak
Affiliation:
Princeton University, New Jersey
Get access

Summary

One might imagine that PNP, but SAT is tractable in the following sense: for every ℓ there is a very short program that runs in time ℓ2 and correctly treats all instances of size ℓ.

– Karp and Lipton, 1982

This chapter investigates a model of computation called the Boolean circuit, which is a generalization of Boolean formulas and a simplified model of the silicon chips used to make modern computers. It is a natural model for nonuniform computation, which crops up often in complexity theory (e.g., see Chapters 19 and 20). In contrast to the standard (or uniform) TM model where the same TM is used on all the infinitely many input sizes, a nonuniform model allows a different algorithm to be used for each input size. Thus Karp and Lipton's quote above refers to the possibility that there could be a small and efficient silicon chip that is tailor-made to solve every 3SAT problem on say, 100,000 variables. The existence of such chips is not ruled out even if PNP. As the reader might now have guessed, in this chapter we give evidence that such efficient chip solvers for 3SAT are unlikely to exist, at least as the number of variables in the 3CNF formula starts to get large.

Type
Chapter
Information
Computational Complexity
A Modern Approach
, pp. 106 - 122
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Boolean circuits
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Boolean circuits
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Boolean circuits
  • Sanjeev Arora, Princeton University, New Jersey, Boaz Barak, Princeton University, New Jersey
  • Book: Computational Complexity
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804090.009
Available formats
×