Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T04:41:22.547Z Has data issue: false hasContentIssue false

3 - Xampling: compressed sensing of analog signals

Published online by Cambridge University Press:  05 November 2012

Moshe Mishali
Affiliation:
Technion-Israel Institute of Technology, Israel
Yonina C. Eldar
Affiliation:
Stanford University, USA
Yonina C. Eldar
Affiliation:
Weizmann Institute of Science, Israel
Gitta Kutyniok
Affiliation:
Technische Universität Berlin
Get access

Summary

This chapter generalizes compressed sensing (CS) to reduced-rate sampling of analog signals. It introduces Xampling, a unified framework for low-rate sampling and processing of signals lying in a union of subspaces. Xampling consists of two main blocks: analog compression that narrows down the input bandwidth prior to sampling with commercial devices followed by a nonlinear algorithm that detects the input subspace prior to conventional signal processing. A variety of analog CS applications are reviewed within the unified Xampling framework including a general filter-bank scheme for sparse shift-invariant spaces, periodic nonuniform sampling and modulated wideband conversion for multiband communications with unknown carrier frequencies, acquisition techniques for finite rate of innovation signals with applications to medical and radar imaging, and random demodulation of sparse harmonic tones. A hardware-oriented viewpoint is advocated throughout, addressing practical constraints and exemplifying hardware realizations where relevant.

Introduction

Analog-to-digital conversion (ADC) technology constantly advances along the route that was delineated in the last century by the celebrated Shannon–Nyquist [1, 2] theorem, essentially requiring the sampling rate to be at least twice the highest frequency in the signal. This basic principle underlies almost all digital signal processing (DSP) applications such as audio, video, radio receivers, wireless communications, radar applications, medical devices, optical systems and more. The ever growing demand for data, as well as advances in radio frequency (RF) technology, have promoted the use of high-bandwidth signals, for which the rates dictated by the Shannon–Nyquist theorem impose demanding challenges on the acquisition hardware and on the subsequent storage and DSP processors.

Type
Chapter
Information
Compressed Sensing
Theory and Applications
, pp. 88 - 147
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×