Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T13:42:51.292Z Has data issue: false hasContentIssue false

9 - Graphs

Published online by Cambridge University Press:  05 September 2016

Gonzalo Navarro
Affiliation:
Universidad de Chile
Get access
Type
Chapter
Information
Compact Data Structures
A Practical Approach
, pp. 279 - 346
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnarsson, G. and Greenlaw, R. (2006). Graph Theory: Modeling, Applications, and Algorithms. Pearson.
Álvarez-García, S., Brisaboa, N. R., de Bernardo, G., and Navarro, G. (2014). Interleave k2-tree: Indexing and navigating ternary relations. In Proc. 24th Data Compression Conference (DCC), pages 342–351.Google Scholar
Álvarez-García, S., Brisaboa, N. R., Fernández, J.,Martínez-Prieto, M., and Navarro, G. (2015). Compressed vertical partitioning for efficient RDF management. Knowledge and Information Systems, 44(2), 439–474.Google Scholar
Apostolico, A. and Drovandi, G. (2009). Graph compression by BFS. Algorithms, 2(3), 1031–1044.Google Scholar
Barbay, J., Golynski, A., Munro, J. I., and Rao, S. S. (2007). Adaptive searching in succinctly encoded binary relations and tree-structured documents. Theoretical Computer Science, 387(3), 284–297.Google Scholar
Barbay, J., He, M., Munro, J. I., and Rao, S. S. (2011). Succinct indexes for strings, binary relations and multilabeled trees. ACM Transactions on Algorithms, 7(4), article 52.Google Scholar
Barbay, J., Castelli Aleardi, L., He, M., and Munro, J. I. (2012). Succinct representation of labeled graphs. Algorithmica, 62(1-2), 224–257.Google Scholar
Barbay, J., Claude, F., and Navarro, G. (2013). Compact binary relation representations with rich functionality. Information and Computation, 232, 19–37.Google Scholar
Benjamin, A., Chartrand, G., and Zhang, P. (2015). The FascinatingWorld of Graph Theory. Princeton University Press.
Bernhart, F. and Kainen, P. C. (1979). The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27, 320–331.Google Scholar
Blandford, D. K., Blelloch, G. E., and Kash, I. A. (2003). Compact representations of separable graphs. In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 679–688.Google Scholar
Blelloch, G. E. and Farzan, A. (2010). Succinct representations of separable graphs. In Proc. 21st Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS 6129, pages 138–150.Google Scholar
Boldi, P. and Vigna, S. (2004). The WebGraph framework I: Compression techniques. In Proc. 13th International Conference on World Wide Web (WWW), pages 595–602.Google Scholar
Boldi, P. and Vigna, S. (2005). Codes for the World Wide Web. Internet Mathematics, 2(4), 407–429.Google Scholar
Boldi, P., Santini, M., and Vigna, S. (2009). PermutingWeb and social graphs. Internet Mathematics, 6(3), 257–283.Google Scholar
Boldi, P., Rosa, M., Santini, M., and Vigna, S. (2011). Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In Proc. 20th International Conference on World Wide Web (WWW), pages 587–596.Google Scholar
Bonichon, N., Gavoille, C., Hanusse, N., Poulalhon, D., and Schaeffer, G. (2006). Planar graphs, via well-orderly maps and trees. Graphs and Combinatorics, 22(2), 185–202.Google Scholar
Bose, P., Morin, P., Stojmenovic, I., and Urrutia, J. (2001). Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks, 7(6), 609–616.Google Scholar
Boyer, J. M. and Myrvold, W. J. (2004). On the cutting edge: Simplified O(n) planarity by edge addition. Journal of Graph Algorithms and Applications, 8(3), 241–273.Google Scholar
Brightwell, G. and Goodall, S. (1996). The number of partial orders of fixed width. Order, 13(4), 315–337.Google Scholar
Brisaboa, N. R., Ladra, S., and Navarro, G. (2014). Compact representation of Web graphs with extended functionality. Information Systems, 39(1), 152–174.Google Scholar
Buehrer, G. and Chellapilla, K. (2008). Ascalable pattern mining approach to Web graph compression with communities. In Proc. 1st International Conference on Web Search and Web Data Mining (WSDM), pages 95–106.Google Scholar
Castelli Aleardi, L., Devillers, O., and Schaeffer, G. (2008). Succinct representations of planar maps. Theoretical Computer Science, 408(2-3), 174–187.Google Scholar
Chiang, Y. T., Lin, C. C., and Lu, H.-I. (2005). Orderly spanning treeswith applications. SIAM Journal on Computing, 34(4), 924–945.Google Scholar
Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Panconesi, A., and Raghavan, P. (2009). On compressing social networks. In Proc. 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 219–228.Google Scholar
Chuang, R. C.-N., Garg, A., He, X., Kao, M.-Y., and Lu, H.-I. (1998). Compact encodings of planar graphs via canonical orderings and multiple parentheses. In Proc. 25th International Colloquium on Automata, Languages and Programming (ICALP), LNCS 1443, pages 118–129.Google Scholar
Chung, F. R. K., Leighton, F. T., and Rosenberg, A. L. (1987). Embedding graphs in books: A layout problem with applications to VLSI design. SIAM Journal on Algebraic and Discrete Methods, 8(1), 33–58.Google Scholar
Claude, F. and Ladra, S. (2011). Practical representations for Web and social graphs. In Proc. 20th ACM Conference on Information and Knowledge Management (CIKM), pages 1185–1190.Google Scholar
Claude, F. and Navarro, G. (2010). Extended compact Web graph representations. In T. Elomaa, H. Mannila, and P. Orponen, editors. Algorithms and Applications (Ukkonen Festschrift), LNCS 6060, pages 77–91. Springer.
de Fraysseix, H., Pach, J., and Pollack, R. (1990). How to draw a planar graph on a grid. Combinatorica, 10(1), 41–51.Google Scholar
de Fraysseix, H., Ossona de Mendez, P., and Rosenstiehl, P. (2006). Trémaux trees and planarity. International Journal of Foundations of Computer Science, 17(5), 1017–1030.Google Scholar
Deo, N. (2004). Graph Theory with Applications to Engineering and Computer Science. Prentice-Hall of India.
Duvanenko, V. J. (2009). In-place hybrid N-bit-radix sort. Dr. Dobb's Journal. November.
Farzan, A. and Fischer, J. (2011). Compact representation of posets. In Proc. 22nd International Symposium on Algorithms and Computation (ISAAC), LNCS 7074, pages 302–311.Google Scholar
Farzan, A. and Munro, J. I. (2013). Succinct encoding of arbitrary graphs. Theoretical Computer Science, 513, 38–52.Google Scholar
Fernández, J. D., Martínez-Prieto, M. A., Gutiérrez, C., Polleres, A., and Arias, M. (2013). Binary RDF representation for publication and exchange (HDT). Journal of Web Semantics, 19, 22–41.Google Scholar
Ferragina, P., Piccinno, F., and Venturini, R. (2015). Compressed indexes for string searching in labeled graphs. In Proc. 24th International Conference on World Wide Web (WWW), pages 322–332.Google Scholar
Fischer, J. and Peters, D. (2016). GLOUDS: Representing tree-like graphs. Journal of Discrete Algorithms, 36, 39–49.Google Scholar
Gavoille, C. and Hanusse, N. (1999). Compact routing tables for graphs of bounded genus. In Proc. 26th International Colloquium on Automata, Languages and Programming (ICALP), LNCS 1644, pages 351–360.Google Scholar
Gavoille, C. and Hanusse, N. (2008). On compact encoding of pagenumber. Discrete Mathematics and Theoretical Computer Science, 10(3), 23–24.Google Scholar
Gibson, D.,Kumar, R., and Tomkins, A. (2005).Discovering large dense subgraphs in massive graphs. In Proc. 31st International Conference on Very Large Data Bases (VLDB), pages 721–732.Google Scholar
Grabowski, S. and Bieniecki, W. (2014). Tight and simple Web graph compression for forward and reverse neighbor queries. Discrete Applied Mathematics, 163, 298–306.Google Scholar
He, X., Kao, M. Y., and Lu, H.-I. (2000). A fast general methodology for information-theoretically optimal encodings of graphs. SIAM Journal on Computing, 30, 838–846.Google Scholar
Henzinger, M. R., Klein, P. N., Rao, S., and Subramanian, S. (1997). Faster shortest-path algorithms for planar graphs. Journal of Computer and Systems Sciences, 55(1), 3–23.Google Scholar
Hernández, C. and Navarro, G. (2014). Compressed representations for Web and social graphs. Knowledge and Information Systems, 40(2), 279–313.Google Scholar
Hopcroft, J. and Tarjan, R. E. (1974). Efficient planarity testing. Journal of the ACM, 21(4), 549–568.Google Scholar
Jacobson, G. (1989). Space-efficient static trees and graphs. In Proc. 30th IEEE Symposium on Foundations of Computer Science (FOCS), pages 549–554.Google Scholar
Kannan, S., Naor, M., and Rudich, S. (1992). Implicit representation of graphs. SIAM Journal on Discrete Mathematics, 5(4), 596–603.Google Scholar
Kant, G. (1996). Drawing planar graphs using the canonical ordering. Algorithmica, 16(1), 4–32.Google Scholar
Keeler, K. and Westbrook, J. (1995). Short encodings of planar graphs and maps. Discrete Applied Mathematics, 58, 239–252.Google Scholar
Kleitman, D. J. and Rothschild, B. L. (1975). Asymptotic enumeration of partial orders on a finite set. Transactions of the American Mathematical Society, 205, 205–220.Google Scholar
Kranakis, E., Singh, H., and Urrutia, J. (1999). Compass routing on geometric networks. In Proc. 11th Canadian Conference on Computational Geometry (CCCG).
Liao, C.-C., Lu, H.-I., and Yen, H.-C. (2003). Compact floor-planning via orderly spanning trees. Journal of Algorithms, 48(2), 441–451.Google Scholar
Liskovets, V. A. and Walsh, T. R. (1987). Ten steps to counting planar graphs. Congressus Numerantium, 60, 269–277.Google Scholar
Lu, H.-I. (2002). Linear-time compression of bounded-genus graphs into information-theoretically optimal number of bits. In Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 223–224.Google Scholar
Lu, H.-I. (2010). Improved compact routing tables for planar networks via orderly spanning trees. SIAM Journal on Discrete Mathematics, 23(4), 2079–2092.Google Scholar
Maserrat, H. and Pei, J. (2010). Neighbor query friendly compression of social networks. In Proc. 16th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 533–542.Google Scholar
Masucci, A. P., Stanilov, K., and Batty, M. (2013). Limited urban growth: London's street network dynamics since the 18th century. PLoS ONE, 8(8), e69469.
Mitchell, S. L. (1979). Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Information Processing Letters, 9(5), 229–232.Google Scholar
Miura, K., Azuma, M., and Nishizeki, T. (2005). Canonical decomposition, realizer, Schnyder labeling and orderly spanning trees of plane graphs. International Journal of Foundations of Computer Science, 16(1), 117–141.Google Scholar
Munro, J. I. and Nicholson, P. K. (2015). Succinct posets. Algorithmica. Early view, DOI 10.1007/s00453-015-0047-1.
Munro, J. I. and Raman, V. (2001). Succinct representation of balanced parentheses and static trees. SIAM Journal on Computing, 31(3), 762–776.Google Scholar
Nishizeki, T. and Rahman, M. S. (2004). Planar Graph Drawing, volume 12 of Lecture Notes on Computing. World Scientific.
Schaeffer, S. E. (2007). Graph clustering. Computer Science Review, 1(1), 27–64.Google Scholar
Schnyder, W. (1990). Embedding planar graphs on the grid. In Proc. 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 138–148.Google Scholar
Tutte, W. T. (1962). A census of planar triangulations. Canadian Journal of Mathematics, 14, 21–38.Google Scholar
Tutte, W. T. (1963). A census of planar maps. Canadian Journal of Mathematics, 15, 249–271.Google Scholar
Weiss, C., Karras, P., and Bernstein, A. (2008). Hexastore: Sextuple indexing for semantic Web data management. Proceedings of the VLDB Endowment, 1(1), 1008–1019.Google Scholar
Yamanaka, K. and Nakano, S.-I. (2010). A compact encoding of plane triangulations with efficient query supports. Information Processing Letters, 110(18-19), 803–809.Google Scholar
Yannakakis, M. (1989). Embedding planar graphs in four pages. Journal of Computer and Systems Sciences, 38(1), 36–67.Google Scholar
Zhang, H. and He, X. (2005). Visibility representation of plane graphs via canonical ordering tree. Information Processing Letters, 96(2), 41–48.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Graphs
  • Gonzalo Navarro, Universidad de Chile
  • Book: Compact Data Structures
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316588284.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Graphs
  • Gonzalo Navarro, Universidad de Chile
  • Book: Compact Data Structures
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316588284.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Graphs
  • Gonzalo Navarro, Universidad de Chile
  • Book: Compact Data Structures
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316588284.010
Available formats
×