Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T15:51:51.485Z Has data issue: false hasContentIssue false

Cohesiveness in biofilm matrix polymers

Published online by Cambridge University Press:  03 June 2010

Hans-Curt Flemming
Affiliation:
Department of Aquatic Microbiology, University of Duisburg, Germany
Jost Wingender
Affiliation:
Department of Aquatic Microbiology, University of Duisburg, Germany
Christian Mayer
Affiliation:
Institute for Physical and Theoretical Chemistry, University of Duisburg, Germany
Volker Körstgens
Affiliation:
Institute for Physical and Theoretical Chemistry, University of Duisburg, Germany
Werner Borchard
Affiliation:
Institute for Physical and Theoretical Chemistry, University of Duisburg, Germany
David G. Allison
Affiliation:
University of Manchester
P. Gilbert
Affiliation:
University of Manchester
H. M. Lappin-Scott
Affiliation:
University of Exeter
Get access

Summary

MICROBIAL AGGREGATES

The vast majority of micro-organisms live and grow in aggregated forms such as biofilms, flocs (‘planktonic biofilms’) and sludges. This form of growth is lumped in the somewhat inexact but generally accepted expression ‘biofilm’. The feature which is common to all these phenomena is that the micro-organisms are embedded in a matrix of extracellular polymeric substances (EPS) which are responsible for morphology, structure, coherence, physico-chemical properties and activity of these aggregates (Wingender & Flemming, 1999). Biofilms are ubiquitously distributed in natural soil and aquatic environments, on tissues of plants, animals and man, as well as in technical systems such as filters and other porous materials, reservoirs, pipelines, ship hulls, heat exchangers, separation membranes, etc. (Costerton et al., 1987; Flemming & Schaule, 1996); biofilms may also develop on medical devices, thus initiating persistent infections in humans (Costerton et al., 1999). Biofilms develop adherent to a solid surface (substratum) at solid–water interfaces, but can also be found at water–air and at solid–air interfaces. They are accumulations of micro-organisms (prokaryotic and eukaryotic unicellular organisms), EPS, multivalent cations, inorganic particles, biogenic material (detritus) as well as colloidal and dissolved compounds. EPS are considered as the key components that determine the structural and functional integrity of microbial aggregates. EPS form a three-dimensional, gel-like, highly hydrated and locally charged biofilm matrix, in which the micro-organisms are more or less immobilized. EPS create a microenvironment for sessile cells which is conditioned by the nature of the EPS matrix. In general, the proportion of EPS in biofilms can vary between roughly 50 and 90% of the total organic matter (Christensen & Characklis, 1990; Nielsen et al., 1997).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×