Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2013
  • Online publication date: November 2013

3 - Electronic structure and optical transitions in colloidal semiconductor nanocrystals

References

1 R. D. Schaller, V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 92 (2004), 186601.
2 R. J. Ellingson, M. C. Beard, J. C. Johnson, et al., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Letters, 5 (2005), 865–871.
3 L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. Journal of Physical Chemistry, 90 (1986), 2555–2560.
4 L. Bányai, S. W. Koch, Semiconductor Quantum Dots. River Edge, NJ: World Scientific Publishing Company, 1993.
5 H. Weller, Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angewandte Chemie International Edition, 32 (1993), 41–53.
6 U. Woggon, Optical Properties of Semiconductor Quantum Dots. Berlin: Springer, 1996.
7 A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science, 271 (1996), 933–937.
8 S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals. Cambridge: Cambridge University Press, 1998.
9 M. Nirmal, L. Brus, Luminescence photophysics in semiconductor nanocrystals. Accounts of Chemical Research, 32 (1999), 407–414.
10 A. L. Efros, M. Rosen, Electronic structure of semiconductor nanocrystals. Annual Review of Materials Science, 30 (2000), 475–521.
11 A. Eychmuller, Structure and photophysics of semiconductor nanocrystals. Journal of Physical Chemistry B, 104 (2000), 6514–6528.
12 D. Norris, Electronic structure in semiconductor nanocrystals. In Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, V. I. Klimov, ed., pp. 65–102. New York, NY: Marcel Dekker, 2003.
13 C. Delerue, M. Lannoo, Nanostructures: Theory and Modeling. Berlin, Heidelberg: Springer-Verlag, 2004.
14 C. Burda, X. Chen, R. Narayanan, M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 105 (2005), 1025–1102.
15 E. H. Sargent, Infrared quantum dots. Advanced Materials, 17 (2005), 515–522.
16 Y. Masumoto, T. Takagahara, Semiconductor Quantum Dots: Physics, Spectroscopy, and Applications. Berlin, Heidelberg: Springer, 2010.
17 D. E. Gómez, M. Califano, P. Mulvaney, Optical properties of single semiconductor nanocrystals. Physical Chemistry Chemical Physics, 8 (2006), 4989–5011.
18 O. V. Prezhdo, Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies. Accounts of Chemical Research, 42 (2009), 2005–2016.
19 O. Madelung, Semiconductors: Data Handbook. Berlin: Springer-Verlag, 2004.
20 A. L. Efros, A. L. Efros, Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors, 16 (1982), 772–775.
21 L. E. Brus, A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. Journal of Chemical Physics, 79 (1983), 5566–5571.
22 L. E. Brus, Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. Journal of Chemical Physics, 80 (1984), 4403–4409.
23 P. C. Sercel, K. J. Vahala, Analytical formalism for determining quantum-wire and quantum-dot band structure in the multiband envelope-function approximation. Physical Review B, 42 (1990), 3690–3710.
24 N. Ashcroft, N. D. Mermin, Solid State Physics. Fort Worth, TX: Saunders College Publishing, 1976.
25 O. I. Mićić, H. M. Cheong, H. Fu, et al., Size-dependent spectroscopy of InP quantum dots. Journal of Physical Chemistry B, 101 (1997), 4904–4912.
26 W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15 (2003), 2854–2860.
27 C. D. M. Donegá, R. Koole, Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. Journal of Physical Chemistry C, 113 (2009), 6511–6520.
28 I. Moreels, K. Lambert, D. Smeets, et al., Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 3 (2009), 3023–3030.
29 L. Cademartiri, E. Montanari, G. Calestani, et al., Size-dependent extinction coefficients of PbS quantum dots. Journal of the American Chemical Society, 128 (2006), 10337–10346.
30 I. Moreels, K. Lambert, D. De Muynck, et al., Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chemistry of Materials, 19 (2007), 6101–6106.
31 Q. Dai, Y. Wang, X. Li, et al., Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. ACS Nano, 3 (2009), 1518–1524.
32 P. Yu, M. C. Beard, R. J. Ellingson, et al., Absorption cross-section and related optical properties of colloidal InAs quantum dots. Journal of Physical Chemistry B, 109 (2005), 7084–7087.
33 C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 115 (1993), 8706–8715.
34 L. Qu, Z. A. Peng, X. Peng, Alternative routes toward high quality CdSe nanocrystals. Nano Letters, 1 (2001), 333–337.
35 C. B. Murray, S. Sun, W. Gaschler, et al., Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM Journal of Research and Development, 45 (2001), 47–56.
36 D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase, H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Letters, 1 (2001), 207–211.
37 C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science, 30 (2000), 545–610.
38 M. Nirmal, C. B. Murray, M. G. Bawendi, Fluorescence-line narrowing in CdSe quantum dots: surface localization of the photogenerated exciton. Physical Review B, 50 (1994), 2293.
39 D. J. Norris, M. G. Bawendi, Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Review B, 53 (1996), 16338–16346.
40 M. A. Hines, P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry, 100 (1996), 468–471.
41 B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, et al., (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. Journal of Physical Chemistry B, 101 (1997), 9463–9475.
42 Invitrogen Corporation, “QDot Nanocrystal Technology”. www.invitrogen.com (accessed December 1, 2010).
43 J. Yao, D. R. Larson, H. D. Vishwasrao, et al., Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proceedings of the National Academy of Sciences USA, 102 (2005), 14284–14289.
44 M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels. Science, 281 (1998), 2013–2016.
45 W. C. W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281 (1998), 2016–2018.
46 B. Dubertret, P. Skourides, D. J. Norris, et al., In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 298 (2002), 1759–1762.
47 S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. Journal of the American Chemical Society, 125 (2003), 11466–11467.
48 R. Xie, X. Zhong, T. Basche, Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe Cores. Advanced Materials, 17 (2005), 2741–2745.
49 S. A. Ivanov, A. Piryatinski, J. Nanda, et al., Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. Journal of the American Chemical Society, 129 (2007), 11708–11719.
50 G. D. Scholes, Controlling the optical properties of inorganic nanoparticles. Advanced Functional Materials, 18 (2008), 1157–1172.
51 S. S. Lo, T. Mirkovic, C. H. Chuang, C. Burda, G. D. Scholes, Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Advanced Materials, 23 (2011), 180–197.
52 V. I. Klimov, S. A. Ivanov, J. Nanda, et al., Single-exciton optical gain in semiconductor nanocrystals. Nature, 447 (2007), 441–446.
53 P. Peng, D. J. Milliron, S. M. Hughes, et al., Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Letters, 5 (2005), 1809–1813.
54 H. Zhong, Y. Zhou, Y. Yang, C. Yang, Y. Li, Synthesis of type II CdTe-CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications. Journal of Physical Chemistry C, 111 (2007), 6538–6543.
55 S. Kim, Y. T. Lim, E. G. Soltesz, et al., Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nature Biotechnology, 22 (2004), 93–97.
56 J. M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Physical Review, 97 (1955), 869–883.
57 J. M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: general theory. Physical Review, 102 (1956), 1030–1041.
58 E. O. Kane, Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1 (1957), 249–261.
59 C. R. Pidgeon, R. N. Brown, Interband magneto-absorption and Faraday rotation in InSb. Physical Review, 146 (1966), 575.
60 A. I. Ekimov, F. Hache, M. C. Schanne-Klein, et al., Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: assignment of the first electronic transitions. Journal of the Optical Society of America B, 10 (1993), 100–107.
61 G. B. Grigoryan, E. M. Kazaryan, A. L. Efros, T. V. Yazeva, Quantized holes and the absorption edge in spherical semiconductor microcrystals with a complex valence band structure Sov. Physics of the Solid State, 32 (1990), 1031.
62 J. B. Xia, Electronic structures of zero-dimensional quantum wells. Physical Review B, 40 (1989), 8500–8507.
63 K. J. Vahala, P. C. Sercel, Application of a total-angular-momentum basis to quantum-dot band structure. Physical Review Letters, 65 (1990), 239–242.
64 A. L. Efros, A. V. Rodina, Band-edge absorption and luminescence of nonspherical nanometer-size crystals. Physical Review B, 47 (1993), 10005–10007.
65 T. Takagahara, Effects of dielectric confinement and electron–hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B, 47 (1993), 4569–4584.
66 M. Nirmal, D. J. Norris, M. Kuno, et al., Observation of the “dark exciton” in CdSe quantum dots. Physical Review Letters, 75 (1995), 3728–3731.
67 C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics. Paris: Wiley & Sons, 1977.
68 D. J. Norris, A. L. Efros, M. Rosen, M. G. Bawendi, Size dependence of exciton fine structure in CdSe quantum dots. Physical Review B, 53 (1996), 16347–16354.
69 M. G. Bawendi, W. L. Wilson, L. Rothberg, et al., Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters. Physical Review Letters, 65 (1990), 1623–1626.
70 F. W. Wise, Lead salt quantum dots: the limit of strong quantum confinement. Accounts of Chemical Research, 33 (2000), 773–780.
71 S. H. Wei, A. Zunger, Electronic and structural anomalies in lead chalcogenides. Physical Review B, 55 (1997), 13605–13610.
72 J. M. An, A. Franceschetti, S. V. Dudiy, A. Zunger, The peculiar electronic structure of PbSe quantum dots. Nano Letters, 6 (2006), 2728–2735.
73 G. Allan, C. Delerue, Confinement effects in PbSe quantum wells and nanocrystals. Physical Review B, 70 (2004), 245321.
74 I. Kang, F. W. Wise, Electronic structure and optical properties of PbS and PbSe quantum dots. Journal of the Optical Society of America B, 14 (1997), 1632–1646.
75 H. Du, C. Chen, R. Krishnan, et al., Optical properties of colloidal PbSe nanocrystals. Nano Letters, 2 (2002), 1321–1324.
76 D. R. Hamann, Semiconductor charge densities with hard-core and soft-core pseudopotentials. Physical Review Letters, 42 (1979), 662–665.
77 L. W. Wang, A. Zunger, Local-density-derived semiempirical pseudopotentials. Physical Review B, 51 (1995), 17398–17416.
78 A. Zunger, Pseudopotential theory of semiconductor quantum dots. Physica Status Solidi B, 224 (2001), 727–734.
79 L. M. Ramaniah, S. V. Nair, Optical absorption in semiconductor quantum dots: a tight-binding approach. Physical Review B, 47 (1993), 7132.
80 R. S. Kane, R. E. Cohen, R. Silbey, Theoretical study of the electronic structure of PbS nanoclusters. Journal of Physical Chemistry, 100 (1996), 7928–7932.
81 S. Pokrant, K. B. Whaley, Tight-binding studies of surface effects on electronic structure of CdSe nanocrystals: the role of organic ligands, surface reconstruction, and inorganic capping shells. European Physical Journal D, 6 (1999), 255–267.
82 G. Allan, Y. M. Niquet, C. Delerue, Quantum confinement energies in zinc-blende III–V and group IV semiconductors. Applied Physics Letters, 77 (2000), 639–641.
83 L. W. Wang, A. Zunger, Electronic structure pseudopotential calculations of large (approx.1000 atoms) Si quantum dots. Journal of Physical Chemistry, 98 (1994), 2158–2165.
84 L. W. Wang, A. Zunger, Pseudopotential calculations of nanoscale CdSe quantum dots. Physical Review B, 53 (1996), 9579–9582.
85 H. Fu, A. Zunger, Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots. Physical Review B, 55 (1997), 1642–1653.
86 E. Rabani, B. Hetényi, B. J. Berne, L. E. Brus, Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. Journal of Chemical Physics, 110 (1999), 5355–5369.
87 S. L. Sewall, R. R. Cooney, P. Kambhampati, Experimental tests of effective mass and atomistic approaches to quantum dot electronic structure: ordering of electronic states. Applied Physics Letters, 94 (2009), 243116.
88 B. L. Wehrenberg, C. Wang, P. Guyot-Sionnest, Interband and intraband optical studies of PbSe colloidal quantum dots. Journal of Physical Chemistry B, 106 (2002), 10634–10640.
89 P. Liljeroth, P. A. Z. Van Emmichoven, S. G. Hickey, et al., Density of states measured by scanning-tunneling spectroscopy sheds new light on the optical transitions in PbSe nanocrystals. Physical Review Letters, 95 (2005), 086801.
90 M. T. Trinh, A. J. Houtepen, J. M. Schins, J. Piris, L. D. A. Siebbeles, Nature of the second optical transition in PbSe nanocrystals. Nano Letters, 8 (2008), 2112–2117.
91 J. J. Peterson, L. Huang, C. Delerue, G. Allan, T. D. Krauss, Uncovering forbidden optical transitions in PbSe nanocrystals. Nano Letters, 7 (2007), 3827–3831.
92 G. Nootz, L. A. Padilha, P. D. Olszak, et al., Role of symmetry breaking on the optical transitions in lead-salt quantum dots. Nano Letters, 10 (2010), 3577–3582.
93 E. Runge, E. K. U. Gross, Density-functional theory for time-dependent systems. Physical Review Letters, 52 (1984), 997–1000.
94 E. K. U. Gross, W. Kohn, Local density-functional theory of frequency-dependent linear response. Physical Review Letters, 55 (1985), 2850–2852.
95 O. V. Prezhdo, Multiple excitons and the electron–phonon bottleneck in semiconductor quantum dots: an ab initio perspective. Chemical Physics Letters, 460 (2008), 1–9.
96 C. F. Craig, W. R. Duncan, O. V. Prezhdo, Trajectory surface hopping in the time-dependent Kohn–Sham approach for electron-nuclear dynamics. Physical Review Letters, 95 (2005), 163001.
97 B. F. Habenicht, C. F. Craig, O. V. Prezhdo, Time-domain ab initio simulation of electron and hole relaxation dynamics in a single-wall semiconducting carbon nanotube. Physical Review Letters, 96 (2006), 187401.
98 S. V. Kilina, C. F. Craig, D. S. Kilin, O. V. Prezhdo, Ab initio time-domain study of phonon-assisted relaxation of charge carriers in a PbSe quantum dot. Journal of Physical Chemistry C, 111 (2007), 4871–4878.
99 H. Kamisaka, S. V. Kilina, K. Yamashita, O. V. Prezhdo, Ultrafast vibrationally-induced dephasing of electronic excitations in PbSe quantum dots. Nano Letters, 6 (2006), 2295–2300.
100 S. Kudera, M. Zanella, C. Giannini, et al., Sequential growth of magic-size CdSe nanocrystals. Advanced Materials, 19 (2007), 548–552.
101 C. M. Evans, L. Guo, J. J. Peterson, S. Maccagnano-Zacher, T. D. Krauss, Ultrabright PbSe magic-sized clusters. Nano Letters, 8 (2008), 2896–2899.
102 S. Hinds, S. Myrskog, L. Levina, et al., NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. Journal of the American Chemical Society, 129 (2007), 7218–7219.
103 X. Wang, X. Ren, K. Kahen, et al., Non-blinking semiconductor nanocrystals. Nature, 459 (2009), 686–689.
104 N. Akopian, G. Patriarche, L. Liu, J. C. Harmand, V. Zwiller, Crystal phase quantum dots. Nano Letters, 10 (2010), 1198–1201.
105 A. M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research, 43 (2010), 190–200.
106 W. E. Moerner, M. Orrit, Illuminating single molecules in condensed matter. Science, 283 (1999), 1670–1676.
107 M. Nirmal, B. O. Dabbousi, M. G. Bawendi, et al., Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383 (1996), 802–804.
108 S. A. Empedocles, D. J. Norris, M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Physical Review Letters, 77 (1996), 3873–3876.
109 S. Empedocles, M. Bawendi, Spectroscopy of single CdSe nanocrystallites. Accounts of Chemical Research, 32 (1999), 389–396.
110 H. Htoon, P. J. Cox, V. I. Klimov, Structure of excited-state transitions of individual semiconductor nanocrystals probed by photoluminescence excitation spectroscopy. Physical Review Letters, 93 (2004), 187402.
111 A. M. Smith, A. M. Mohs, S. Nie, Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nature Nanotechnology, 4 (2009), 56–63.
112 A. Pandey, P. Guyot-Sionnest, Slow electron cooling in colloidal quantum dots. Science, 322 (2008), 929–932.
113 H. Liu, P. Guyot-Sionnest, Photoluminescence lifetime of lead selenide colloidal quantum dots. Journal of Physical Chemistry C, 114 (2010), 14860–14863.
114 C. A. Leatherdale, M. G. Bawendi, Observation of solvatochromism in CdSe colloidal quantum dots. Physical Review B, 63 (2001), 1653151–1653156.
115 M. Jones, S. S. Lo, G. D. Scholes, Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics. Proceedings of the National Academy of Sciences USA, 106 (2009), 3011–3016.
116 A. Franceschetti, J. M. An, A. Zunger, Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Letters, 6 (2006), 2191–2195.
117 J. A. McGuire, J. Joo, J. M. Pietryga, R. D. Schaller, V. I. Klimov, New aspects of carrier multiplication in semiconductor nanocrystals. Accounts of Chemical Research, 41 (2008), 1810–1819.
118 A. J. Nozik, M. C. Beard, J. M. Luther, et al., Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chemical Reviews, 110 (2010), 6873–6890.
119 C. Delerue, G. Allan, J. J. H. Pijpers, M. Bonn, Carrier multiplication in bulk and nanocrystalline semiconductors: mechanism, efficiency, and interest for solar cells. Physical Review B, 81 (2010), 125306.