Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T20:09:27.400Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  18 July 2009

Hanne Andersen
Affiliation:
University of Copenhagen
Peter Barker
Affiliation:
University of Oklahoma
Xiang Chen
Affiliation:
California Lutheran University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, W. K. 1998. Why are different features central for natural kinds and artifacts? The role of causal status in determining feature centrality. Cognition 69: 135–178.CrossRefGoogle ScholarPubMed
Ahn, W. K., & Dennis, M. J. 2001. Dissociation between categorization and similarity judgement: Differential effect of causal status on feature weights. In Hahn, U. & Ramscar, M. (eds.): Similarity and Categorization, pp. 87–107. Oxford: Oxford University Press.CrossRefGoogle Scholar
Ahn, W. K., Kalish, C. W., Medin, D. L., & Gelman, S. A. 1995. The role of covariation versus mechanism information in causal attribution. Cognition 54: 299–352.CrossRefGoogle ScholarPubMed
Amaldi, E. 1984. From the discovery of the neutron to the discovery of nuclear fission. Physics Reports 111: 1–332.CrossRefGoogle Scholar
Andersen, H. 1996. Categorization, anomalies and the discovery of nuclear fission. Studies in History and Philosophy of Science 27: 463–492.CrossRefGoogle Scholar
Andersen, H., Barker, P., & Chen, X. 1996. Kuhn's mature philosophy of science and cognitive psychology. Philosophical Psychology 9: 347–363.CrossRefGoogle Scholar
Apian, P. 1540. Petri Apiani Cosmographia. Phrysius, G. (ed.). Antwerp: A. Berckman.Google Scholar
Ariew, R. 1987. The phases of Venus before 1610. Studies in History and Philosophy of Science 15: 213–226.CrossRefGoogle Scholar
Ariew, R. 1999. Descartes and the Last Scholastics. Ithaca, N.Y.: Cornell University Press.Google Scholar
Armstrong, S., Gleitman, L., & Gleitman, H. 1983. On what some concepts might not be. Cognition 13: 263–308.CrossRefGoogle ScholarPubMed
Baltas, A., Gavroglu, K., & Kindi, V. 1997. A physicist who became a historian for philosophical purposes: A discussion between Thomas S. Kuhn and Aristides Baltas, Kostas Gavroglu, and Vassiliki Kindi. Neusis 6: 145–200. Reprinted as: A Discussion with Thomas S. Kuhn. In J. Conant & J. Haugeland (eds.): The Road Since Structure, pp. 253–323. Chicago: University of Chicago Press 2000.Google Scholar
Barker, P. 1990. Copernicus, the orbs and the equant. Synthese 83: 317–323.CrossRefGoogle Scholar
Barker, P. 1998. Kuhn and the sociological revolution. Configurations 6: 21–32.CrossRefGoogle Scholar
Barker, P. 1999. Copernicus and the critics of Ptolemy. Journal for the History of Astronomy 30: 343–358.CrossRefGoogle Scholar
Barker, P. 2000. The role of religion in the Lutheran response to Copernicus. In Osler, M. J. (ed.): Rethinking the Scientific Revolution, pp. 59–88. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barker, P. 2001. Incommensurability and conceptual change during the Copernican revolution. In Sankey, H. & Hoyningen-Huene, P. (eds.): Incommensurability and Related Matters, pp. 241–273. Boston Studies in the Philosophy of Science. Boston: Kluwer.Google Scholar
Barker, P. 2002. Constructing Copernicus. Perspectives on Science 10: 208–227.CrossRefGoogle Scholar
Barker, P., Chen, X., & Andersen, H. 2003. Kuhn on concepts and categorization. In Nickles, T. (ed.): Thomas Kuhn, pp. 212–245. Cambridge: Cambridge University Press.Google Scholar
Barker, P., & Goldstein, B. R. 1994. Distance and velocity in Kepler's astronomy. Annals of Science 51: 59–73.CrossRefGoogle Scholar
Barker, P., & Goldstein, B. R. 1998. Realism and instrumentalism in sixteenth century astronomy: A reappraisal. Perspectives on Science 6: 232–258.Google Scholar
Barnes, B. 1974. Scientific Knowledge and Sociological Theory. London: Routledge & Kegan Paul.Google Scholar
Barnes, B. 1982. Thomas Kuhn and Social Science. London: Macmillan.CrossRefGoogle Scholar
Barsalou, L. W. 1982. Ad hoc categories. Memory and Cognition 11: 211–227.CrossRefGoogle Scholar
Barsalou, L. W. 1985. Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, and Cognition 11: 629–654.Google ScholarPubMed
Barsalou, L. W. 1987. The instability of graded structure: Implications for the nature of concepts. In Neisser, U. (ed.): Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization, pp. 101–140. Cambridge: Cambridge University Press.Google Scholar
Barsalou, L. W. 1988. The concept and organization of autobiographical memories. In Neisser, U. & Winograd, E. (eds.): Remembering Reconsidered: Ecological and Traditional Approaches to the Study of Memory, pp. 193–229. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barsalou, L. W. 1989. Intraconcept similarity and its implications for interconcept similarity. In Vosniadou, S. & Ortony, A. (eds.): Similarity and Analogical Reasoning, pp. 76–121. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barsalou, L. W. 1990. On the indistinguishability of exemplar memory and abstraction in category representation. In Srull, T. & Wyer, R. (eds.): Advances in Social Cognition, Vol. 3, pp. 61–88. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1991. Deriving categories to achieve goals. In Bower, G. H. (ed.): The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 27, pp. 1–64. New York: Academic Press.Google Scholar
Barsalou, L. W. 1992a. Cognitive Psychology: An Overview for Cognitive Scientists. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1992b. Frames, concepts, and conceptual fields. In Lehrer, A. & Kittay, E. (eds.): Frames, Fields and Contrasts: New Essays in Semantical and Lexical Organization, pp. 21–74. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1993. Flexibility, structure and linguistic vagary in concepts: Manifestations of a compositional system of perceptual symbols. In Collins, A. F., Gathercole, S. E., Conway, M. A., & Morris, P. E. (eds.): Theories of Memory, pp. 31–101. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1999. Perceptual symbol systems. Behavioral and Brain Sciences 22: 577–609.Google ScholarPubMed
Barsalou, L. W., & Billman, D. 1989. Systematicity and semantic ambiguity. In Gorfein, D. (ed.): Resolving Semantic Ambiguity, pp. 146–203. New York: Springer.CrossRefGoogle Scholar
Barsalou, L. W., & Hale, C. 1993. Components of conceptual representation: From feature-lists to recursive frames. In Mechelen, I., Hampton, J., Michalski, R., & Theuns, P. (eds.): Categories and Concepts: Theoretical Views and Inductive Data Analysis, pp. 97–144. New York: Academic Press.Google Scholar
Barsalou, L. W., & Sewell, D. 1984. Constructing Representations of Categories from Different Points of View. Emory Cognition Project Report No. 2. Atlanta: Emory University.Google Scholar
Barsalou, L. W., & Sewell, D. 1985. Contrasting the representation of scripts and categories. Journal of Memory and Language 24: 646–665.CrossRefGoogle Scholar
Barsalou, L. W., Solomon, K., & Wu, L. 1999. Perceptual simulation in conceptual tasks. In Hiraga, M., Sinha, C., & Wilcox, S. (eds.): Cultural, Typological, and Psychological Perspectives in Cognitive Linguistics: The Proceedings of the Fourth Conference of the International Cognitive Linguistics Association, Vol. 3, pp. 209–228. Amsterdam: John Benjamins.CrossRefGoogle Scholar
Bartlett, F. C. 1932. Remembering. London: Cambridge University Press.Google Scholar
Bechtel, W. 1988. Philosophy of Mind: An Overview for Cognitive Science. Hillsdale, N.J.: Erlbaum.Google Scholar
Bechtel, W., & Abrahamsen, A. 1991. Connectionism and the Mind: An Introduction to Parallel Processing in Networks. Oxford: Blackwell.Google Scholar
Becquerel, H. 1896a. Sur les radiations émises par phosphorescence. Comptes Rendus 122: 420–421.Google Scholar
Becquerel, H. 1896b. Sur les radiations invisibles émises par les corps phosphorescents. Comptes Rendus 122: 501–503.Google Scholar
Becquerel, H. 1896c. Sur quelques propriétés nouvelles des radiations invisibles émises par divers corps phosphorescents. Comptes Rendus 122: 559–564.Google Scholar
Becquerel, H. 1896d. Sur diverses propriétés des rayons uraniques. Comptes Rendus 123: 855–858.Google Scholar
Biagioli, M. 1990. The anthropology of incommensurability. Studies in History and Philosophy of Science 21: 183–209.CrossRefGoogle Scholar
Biagioli, M. 1994. Galileo Courtier. Chicago: University of Chicago Press.Google Scholar
Black, E. 1977. Manual of Neotropical Birds, Vol. 1. Chicago: University of Chicago Press.Google Scholar
Bloor, D. 1976/1991. Knowledge and Social Imagery. London: Routledge & Kegan Paul. 2nd ed., Chicago: University of Chicago Press, 1991.Google Scholar
Bloor, D. 1983. Wittgenstein: A Social Theory of Knowledge. New York: Columbia University Press.CrossRefGoogle Scholar
Bloor, D. 2002. Wittgenstein, Rules and Institutions. London: Routledge.Google Scholar
Bohr, N. 1936. Neutron capture and nuclear constitution. Nature 137: 344–348.CrossRefGoogle Scholar
Bohr, N., & Wheeler, J. A. 1939. The mechanism of nuclear fission. Physical Review 56: 426–450.CrossRefGoogle Scholar
di Bono, M. 1995. Copernicus, Amico, Fracastoro and Tusi's device: Observations on the use and transmission of a model. Journal for the History of Astronomy 26: 133–154.CrossRefGoogle Scholar
Bourdieu, P. 2001. Science de la science et réflexivité. Paris: Raisons d'agir.Google Scholar
Bower, C., Black, J., & Turner, T. 1979. Scripts in memory for text. Cognitive Psychology 11: 177–220.CrossRefGoogle Scholar
Boyd, R. 1979. Metaphor and theory change: What is “metaphor” a metaphor for? In Ortony, A. (ed.): Metaphor and Thought, pp. 356–408. Cambridge: Cambridge University Press.Google Scholar
Brahe, T. 1588. De mundi aetherei recentioribus phaenomenis. Uraniburg:i.a.Google Scholar
Braybrooke, D., & Rosenberg, A. 1972. Getting the war news straight: The actual situation in philosophy of science. American Political Science Review 66: 818–826.CrossRefGoogle Scholar
Brewer, W. 2000. Bartlett's concept of the schema and its impact on theories of knowledge representation in contemporary cognitive psychology. In Saito, A. (ed.): Bartlett, Culture and Cognition, pp. 69–89. Hove, England: Psychology Press.Google Scholar
Brooks, L. R. 1987. Decentralized control of categorization: The role of prior processing episodes. In Neisser, U. (ed.): Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization, pp. 141–174. Cambridge: Cambridge University Press.Google Scholar
Brown, N. R., Shevell, S. K., & Rips, L. J. 1987. Public memories and their personal context. In Rubin, D. (ed.): Autobiographical Memory, pp. 137–158. Cambridge: Cambridge University Press.Google Scholar
Buchwald, J. 1992. Kinds and the wave theory of light. Studies in History and Philosophy of Science 23: 39–74.CrossRefGoogle Scholar
Cantor, N., Smith, E. E., French, R. D., & Mezzich, J. 1980. Psychiatric diagnosis as prototype organization. Journal of Abnormal Psychology 89: 181–193.CrossRefGoogle Scholar
Carey, S. 1985. Conceptual Change in Childhood. Cambridge, Mass.: The MIT Press.Google Scholar
Carey, S. 1991/1999. Knowledge acquisition: Enrichment or conceptual change? In Margolis, E. & Laurence, S. (eds.): Concepts: Core Readings, pp. 459–487. Cambridge, Mass.: MIT Press.Google Scholar
Carr, E. H. 1961. What Is History?London: Macmillan.Google Scholar
Chen, X. 1995. Taxonomic changes and the particle-wave debate in early nineteenth-century Britain. Studies in History and Philosophy of Science 26: 251–271.CrossRefGoogle Scholar
Chen, X. 1997. Thomas Kuhn's latest notion of incommensurability. Journal for General Philosophy of Science 28: 257–273.CrossRefGoogle Scholar
Chen, X. 2003. Why did John Herschel fail to understand polarization? The differences between object and event concepts. Studies in History and Philosophy of Science 34: 491–513.CrossRefGoogle Scholar
Chen, X., Andersen, H., & Barker, P. 1998. Kuhn's theory of scientific revolutions and cognitive psychology. Philosophical Psychology 11: 5–28.CrossRefGoogle Scholar
Chi, M., Feltovich, P., & Glaser, R. 1981. Categorization and representation of physics problems by experts and novices. Cognitive Sciences 5: 121–152.CrossRefGoogle Scholar
Christianson, J. R. 1999. On Tycho's Island. Cambridge: Cambridge University Press.Google Scholar
Churchland, P. 1989. A Neurocomputational Perspective: The Nature of Mind and the Structure of Science. Cambridge, Mass.: MIT Press.Google Scholar
Clark, A. 1993. Associative Engines: Connectionism, Concepts and Representational Change. Cambridge, Mass.: MIT Press.Google Scholar
Collins, H. M. 1981. What is TRASP? The radical programme as a methodological imperative. Philosophy of the Social Sciences 11: 215–224.CrossRefGoogle Scholar
Collins, H. M., & Pinch, T. 1993. The Golem: What Everyone Should Know about Science, Cambridge: Cambridge University Press.Google Scholar
Conklin, H. C. 1969. Lexicographical treatment of folk taxonomies. In Tyler, S. A. (ed.): Cognitive Anthropology, pp. 41–49. New York: Holt, Rinehart & Winston.Google Scholar
Coulson, S. 2001. Semantic Leaps: Frame Shifting and Conceptual Blending in Meaning Construction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Covey, S. R. 1990. The 7 Habits of Highly Effective People. New York: Simon & Schuster.Google Scholar
Curd, M., & Cover, J. A. 1998. Philosophy of Science: The Central Issues. New York: W. W. Norton.Google Scholar
Curie, I., & Joliot, F. 1934. Un nouveau type de radioactivité. Comptes Rendus 198: 254–256.Google Scholar
Curie, M. 1898. Rayons émis par les composés de l'uranium et du thorium. Comptes Rendus 126: 1101–1103.Google Scholar
Curie, P., & Curie, M. 1898. Sur une substance nouvelle radio-active, contenue dans la pechblende. Comptes Rendus 127: 175–178.Google Scholar
Curie, P., Curie, M., & Bémont, G. 1898. Sur une nouvelle substance fortement radio-active, contenue dans la pechblende. Comptes Rendus 127: 1215– 1217.Google Scholar
Darden, L. 1992. Strategies for anomaly resolution. In Giere, R. (ed.): Cognitive Models of Science, pp. 251–273. Minnesota Studies in the Philosophy of Science, Vol. XV. Minneapolis: University of Minnesota Press.Google Scholar
Darden, L. 1998. Exemplars, abstractions, and anomalies: Representation and theory change in Mendelian and molecular genetics. In Wolters, G., Lennox, J. G., & McLaughlin, P. (eds.): Concepts, Theories and Rationality in the Biological Sciences: The Second Pittsburgh-Konstanz Colloquium in the Philosophy of Science, pp. 137–158. Konstanz/Pittsburgh: Universitätsverlag Konstanz/University of Pittsburgh Press.Google Scholar
Donahue, W. H. 1988. Kepler's fabricated figures: Covering up the mess in the New Astronomy. Journal for the History of Astronomy 19: 217–237.CrossRefGoogle Scholar
Donahue, W. H. 1992. Johannes Kepler – New Astronomy. Cambridge: Cambridge University Press.Google Scholar
Drake, S. 1990. Discoveries and Opinions of Galileo. New York: Anchor Books.CrossRefGoogle Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. 1972. Emotion in the Human Face. Elmsford, N.Y.: Pergamon.Google Scholar
Erreich, A., & Valian, V. 1979. Children's internal organization of locative categories. Child Development 50: 1070–1077.CrossRefGoogle ScholarPubMed
Evans, J. 1998. The History and Practice of Ancient Astronomy. Oxford: Oxford University Press.Google Scholar
Evans, R. J. 1999. In Defense of History. New York: W. W. Norton.Google Scholar
Feather, N., & Bretcher, E. 1939. Atomic numbers of the so-called transuranic elements. Nature 143: 516.CrossRefGoogle Scholar
Fermi, E. 1934. Possible production of elements of atomic number higher than 92. Nature 133: 898–899.CrossRefGoogle Scholar
Fermi, E. 1939. Artificial radioactivity produced by neutron bombardment. Nobel Lecture. Reprinted in E. Fermi, Collected Papers, Vol. 1: Italy 1921–1938, pp. 1037–1043. Chicago: University of Chicago Press, 1962.Google Scholar
Flügge, S. 1939. Kann der Energiegehalt der Atomkerne technisch nutzbar gemacht werden. Die Naturwissenschaften 27: 402–410.CrossRefGoogle Scholar
Gadow, H. 1892. On the classification of birds. Proceedings of the General Meeting for Scientific Business of the Zoological Society of London 1892, pp. 229–256.Google Scholar
Galilei, Galileo 1610/1989. Sidereus nuncius, or the Sidereal Messenger. Translated with introduction, conclusion, and notes by Albert Van Helden. Chicago: University of Chicago Press.Google Scholar
Gamow, G. 1929a. Über die Struktur des Atomkerns. Physikalische Zeitschrift 30: 717–720.Google Scholar
Gamow, G. 1929b. Zur Quantentheorie der Atomzertrümmerung. Zeitschrift der Physik 52: 510–515.CrossRefGoogle Scholar
Gamow, G. 1931. Constitution of Atomic Nuclei and Radioactivity. Oxford: Clarendon.Google Scholar
Gentner, D. 1988. Metaphor as structure mapping: The relational shift. Child Development 59: 47–59.CrossRefGoogle Scholar
Giere, R. 1988. Explaining Science: A Cognitive Approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Giere, R. (ed.) 1992. Cognitive Models of Science. Minneapolis: University of Minnesota Press.Google Scholar
Giere, R., 1994. The cognitive structure of scientific theories. Philosophy of Science 61: 276–296.CrossRefGoogle Scholar
Gingerich, O. 1975. “Crisis” versus aesthetic in the Copernican Revolution. In Beer, A. (ed.): Vistas in Astronomy, Vol. 17, pp. 85–94. Oxford: Pergamon Press.Google Scholar
Gingerich, O. 1993. Erasmus Reinhold and the dissemination of the Copernican theory. In O. Gingerich: The Eye of Heaven. New York: American Institute of Physics.Google Scholar
Goldstein, B. R. 1991. The blasphemy of Alfonso X: History or myth? In Barker, Peter & Ariew, Roger (eds.): Revolution and Continuity: Essays in the History and Philosophy of Early Modern Science, pp. 143–153. Washington, D.C.: Catholic University of America Press.Google Scholar
Goldstein, B. R., & Barker, P. 1995. The role of Rothmann in the dissolution of the celestial spheres. British Journal for the History of Science 28: 385–403.CrossRefGoogle Scholar
Goldstone, R. L., Medin, D. L., & Gentner, D. 1991. Relational similarity and the nonindependence of features in similarity judgments. Cognitive Psychology 23: 222–262.CrossRefGoogle ScholarPubMed
Golinski, J. 1990. The theory of practice and the practice of theory: Sociological approaches in the history of science. Isis 81: 492–505.CrossRefGoogle Scholar
Gooding, D. 1990. Experiment and the Making of Meaning. Dordrecht: Kluwer.CrossRefGoogle Scholar
Gopnick, A., & Meltzoff, A. 1997. Words, Thoughts and Theories. Cambridge, Mass.: The MIT Press.Google Scholar
Hacking, I. 1993. Working in a new world: The taxonomic solution. In Horwich, P. (ed.): World Changes: Thomas Kuhn and the Nature of Science, pp. 275–310. Cambridge, Mass.: The MIT Press.Google Scholar
Hahn, D. (ed.) 1975. Otto Hahn: Erlebnisse und Erkenntnisse. Düsseldorf: Econ Verlag.Google Scholar
Hahn, O. 1946. Von den natürlichen Umwandlungen des Urans zu seiner künstlichen Zerspaltung, Nobel-Vortrag am 13. Dez. 1946. In O. Hahn: Mein Leben, pp. 247–267. Bruckmann: München 1968.Google Scholar
Hahn, O., & Strassmann, F. 1938. Über die Entstehung von Radiumisotopen aus Uran durch Bestrahlen mit schnellen und verlangsammten Neutronen. Die Naturwissenschaften 26: 755–756.CrossRefGoogle Scholar
Halban, H., Joliot, F., & Kowarski, L. 1939a. Liberation of neutrons in the nuclear explosion of uranium. Nature 143: 70–71.Google Scholar
Halban, H., Joliot, F., & Kowarski, L. 1939b. Number of neutrons liberated in the nuclear fission of uranium. Nature 143: 680.CrossRefGoogle Scholar
Hamel, J. 1998. Die astronomische Forschungen in Kassel unter Wilhelm IV. Thun and Frankfurt am Main: Harri Deutsch.Google Scholar
Heider, E. R. 1972. Universals in color naming and memory. Journal of Experimental Psychology 93: 10–20.CrossRefGoogle ScholarPubMed
Helden, A. 1985. Measuring the Universe. Chicago: University of Chicago Press.Google Scholar
Henry, C. 1896. Augmentation du rendement photographique des rayons Röntgen par le sulfure de zinc phosphorescent. Comptes Rendus 122: 312–314.Google Scholar
Homa, D., & Vosburgh, R. 1976. Category breadth and the abstraction of prototypical information. Journal of Experimental Psychology – Human Learning and Memory 2: 322–330.CrossRefGoogle Scholar
Hoyningen-Huene, P. 1993. Reconstructing Scientific Revolutions: Thomas S. Kuhn's Philosophy of Science. Chicago: University of Chicago Press.Google Scholar
Hoyningen-Huene, P., & Sankey, H. 2001. Incommensurability and Related Matters. Dordrecht: Kluwer.CrossRefGoogle Scholar
Kay, P. 1971. Taxonomy and semantic contrast. Language 447: 866–887.CrossRefGoogle Scholar
Keil, F. 1989. Concepts, Kinds and Cognitive Development. Cambridge, Mass.: The MIT Press.Google Scholar
Kendler, T., & Kendler, H. 1970. An ontogeny of optical shift behavior. Child Development 41: 1–27.CrossRefGoogle Scholar
Kepler, J. 1596. Mysterium Cosmographicum. Tübingen: G. Gruppenbachius.Google Scholar
Kepler, J. 1609. Astronomia Nova. Heidelberg: G. Voegelinus. Translated by W. H. Donahue, as: Johannes Kepler: New Astronomy. Cambridge: Cambridge University Press, 1992.Google Scholar
Kepler, J. 1618–1622. Epitome Astronomiae Copernicanae. Linz: Plancus, & Frankfurt: Tampachius.Google Scholar
Krafft, F. 1981. Im Schatten der Sensation: Leben und Wirken von Fritz Strassmann. Weinhein: Verlag Chemie.Google Scholar
Kragh, H. 1999. Quantum Generations: A History of Physics in the Twentieth Century. Princeton, N.J.: Princeton University Press.Google Scholar
Kuhn, T. S. 1957. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, Mass.: Harvard University Press.Google Scholar
Kuhn, T. S. 1959. The essential tension: Tradition and innovation in scientific research. In Taylor, C. W. & Barron, F. (eds.): Scientific Creativity: Its Recognition and Development, pp. 341–354. New York: John Wiley. Reprinted in Kuhn (1977), pp. 225–259.Google Scholar
Kuhn, T. S. 1962. The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S. 1970a. The Structure of Scientific Revolutions. 2nd ed. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S. 1970b. Reflections on my critics. In Lakatos, I. & Musgrave, A. (eds.): Criticism and the Growth of Knowledge, pp. 231–278. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kuhn, T. S. 1974. Second thoughts on paradigms. In Suppe, F. (ed.): The Structure of Scientific Theories, pp. 459–482. Urbana: University of Illinois Press. Reprinted in Kuhn (1977), pp. 293–319.Google Scholar
Kuhn, T. S. 1976. Theory-change as structure-change: Comments on the Sneed formalism. Erkenntnis 10: 179–199.CrossRefGoogle Scholar
Kuhn, T. S. 1977. The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S. 1979. Metaphor in science. In Ortony, A. (ed.): Metaphor and Thought, pp. 533–542. Cambridge: Cambridge University Press, 1979. Reprinted in Kuhn (2000), pp. 196–207.Google Scholar
Kuhn, T. S. 1983a. Commensurability, comparability, communicability. PSA 1982 2: 669–688.Google Scholar
Kuhn, T. S. 1983b. Response to commentaries. In PSA 1982 2: 712–716. Reprinted in Kuhn (2000), pp. 53–57.Google Scholar
Kuhn, T. S. 1989. Possible worlds in history of science. In Allén, S. (ed.): Possible Worlds in Humanities, Arts and Sciences: Proceedings of Nobel Symposium 65, pp. 9–32. Berlin: de Gruyter. Reprinted in Kuhn (2000), pp. 58–89.Google Scholar
Kuhn, T. S. 1990. Dubbing and redubbing: The vulnerability of rigid designation. In Savage, C. W. (ed.): Scientific Theories, pp. 298–318. Minnesota Studies in the Philosophy of Science, Vol. XIV. Minneapolis: University of Minnesota Press.Google Scholar
Kuhn, T. S. 1991. The road since Structure. PSA 1990 2: 3–13.Google Scholar
Kuhn, T. S. 1992. The trouble with the historical philosophy of science. Robert and Maureen Rothschild Distinguished Lecture, 19 Nov. 1991. Cambridge, Mass.: Department of the History of Science, Harvard University. Reprinted in Kuhn (2000), pp. 105–120.
Kuhn, T. S. 1993. Afterwords. In Horwich, P. (ed.): World Changes, pp. 311–341. Cambridge, Mass.: The MIT Press.Google Scholar
Kuhn, T. S. 2000. The Road since Structure. Conant, J. & Haugeland, J. (eds.). Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S., Shapere, D., Bromberger, S., Suppes, P., Putnam, H., & Achinstein, P. 1974. Discussion. In Suppe, F. (ed.): The Structure of Scientific Theories, pp. 500–517. Urbana: University of Illinois Press.Google Scholar
Lakatos, I. 1978. The Methodology of Scientific Research Programmes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lakatos, I., & Musgrave, A. 1970. Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lakoff, G. 1987. Women, Fire and Dangerous Things: What Categories Reveal about the Mind. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Latour, B. 1986. Laboratory Life: The Construction of Scientific Facts. Princeton N.J.: Princeton University Press.Google Scholar
Lattis, J. 1994. Between Copernicus and Galileo: Christopher Clavius and the Collapse of Ptolemaic Astronomy. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Laudan, L. 1977. Progress and Its Problems: Towards a Theory of Scientific Growth. London: Routledge & Keagan Paul.Google Scholar
Loocke, P. (ed.) 1999. The Nature of Concepts: Evolution, Structure and Representation. London: Routledge.CrossRefGoogle Scholar
Maestlin, M. 1578. Observatio et demonstratio cometae aetherei … anno 1577 et 1588. Tübingen: Gruppenbach.Google Scholar
Magnani, L., Nersessian, N. J., & Thagard, P. 1999. Model-Based Reasoning in Scientific Discovery. New York: Plenum.CrossRefGoogle Scholar
Malt, B. C., & Smith, E. E. 1984. Correlated properties in natural categories. Journal of Verbal Learning and Verbal Behavior 23: 250–269.CrossRefGoogle Scholar
Margolis, E., & Laurence, S. (eds.) 1999. Concepts: Core Readings. Cambridge, Mass.: The MIT Press.Google Scholar
Margolis, H. 2002. It Started with Copernicus: How Turning the World Inside Out Led to the Scientific Revolution. Chicago: University of Chicago Press.Google Scholar
McMillan, E. 1939. Radioactive recoil from uranium activated by neutrons. Physical Review 55: 510.CrossRefGoogle Scholar
Medin, D. L. 1989. Concepts and conceptual structure. American Psychologist 44: 1469–1481.CrossRefGoogle ScholarPubMed
Medin, D., Altom, M., Edelson, S., & Freko, D. 1982. Correlated symptoms and simulated medical classification. Journal of Experimental Psychology: Learning, Memory, and Cognition 8: 37–50.Google ScholarPubMed
Medin, D. L., & Schaffer, M. M. 1978. Context theory of classification learning. Psychological Review 86: 207–238.CrossRefGoogle Scholar
Meitner, L., & Delbrück, M. 1935. Der Aufbau der Atomkerne. Natürliche und künstliche Kernumwandlungen. Berlin: Springer.Google Scholar
Meitner, L., & Frisch, O. 1939. Disintegration of uranium by neutrons: A new type of nuclear reaction. Nature 143: 239–240.CrossRefGoogle Scholar
Meitner, L., & Hahn, O. 1936. Neue Umwandlungsprozess bei Bestrahlung des Urans mit Neutronen. Naturwissenschaften 24: 158–159.CrossRefGoogle Scholar
Melanchthon, P. 1549/1846. Initia Doctrinae Physicae. In Bretschneider, C. G. (ed.): Corpus Reformatorum, Vol. 13; pp. 1179–1412. Halis Saxonum: Schwetschke et Filius. Reprint, New York: Johnson Reprint, 1964.Google Scholar
Mervis, C. B., & Pani, J. R. 1980. Acquisition of basic object categories. Cognitive Psychology 12: 496–522.CrossRefGoogle ScholarPubMed
Mervis, C. B., & Rosch, E. 1981. Categorization of natural objects. Annual Review of Psychology 32: 89–115.CrossRefGoogle Scholar
Minsky, M. 1975. A framework for representing knowledge. In Winston, P. (ed.): The Psychology of Computer Vision, pp. 211–277. New York: McGraw-Hill.Google Scholar
Murphy, G. L., & Medin, D. L. 1985. The role of theories in conceptual coherence. Psychological Review 92: 289–316.CrossRefGoogle ScholarPubMed
Murphy, G., & Medin, D. (1985/1999). The role of theories in conceptual coherence. In Margolis, E. & Laurence, S. (eds.): Concepts: Core Readings, pp. 425–458. Cambridge, Mass.: The MIT Press.Google Scholar
Murphy, G., & Smith, E. 1982. Basic-level superiority in picture categorization. Journal of Verbal Learning and Verbal Behavior 21: 1–20.CrossRefGoogle Scholar
Nersessian, N. J. 1984. Faraday to Einstein: Constructing Meaning in Scientific Theories. Dordrecht: Martinus Nijhoff.CrossRefGoogle Scholar
Nersessian, N. J. 1987. A cognitive-historical approach to meaning in scientific theories. In Nersessian, N. (ed.): The Process of Science, pp. 161–177. Dordrecht, Kluwer.CrossRefGoogle Scholar
Nersessian, N. J. 1989. Conceptual change in science and in science education. Synthese 80: 163–183.CrossRefGoogle Scholar
Nersessian, N. J. 1992a. How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.): Cognitive Models of Science, pp. 3–45. Minneapolis: University of Minnesota Press.Google Scholar
Nersessian, N. J. 1992b. In the theoretician's laboratory: Thought experimenting as mental modeling. PSA 2: 291–301.
Nersessian, N. J. 1995. Opening the black box: Cognitive science and the history of science. In A. Thackray (ed.): Constructing Knowledge in the History of Science. Osiris 10: 194–214.Google Scholar
Nersessian, N. J. 1998. Conceptual change. In Bechtel, W. & Graham, G. (eds.): A Companion to Cognitive Science, pp. 155–166. Oxford: Blackwell.Google Scholar
Nersessian, N. J. 1999. Model-based reasoning in conceptual change. In Magnani, L., Nersessian, N. J., & Thagard, P. (eds.): Model-Based Reasoning in Scientific Discovery, pp. 5–22. New York: Kluwer.CrossRefGoogle Scholar
Nersessian, N. J. 2001. Maxwell and “the method of physical analogy”: Model-based reasoning, generic abstraction, and conceptual change. In Malament, D. (ed.): Reading Philosophy of Nature: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, pp. 129–166. LaSalle, IL: Open Court.Google Scholar
Nersessian, N. J. 2003. Kuhn, conceptual change and cognitive science. In Nickles, T. (ed.): Thomas Kuhn, pp. 178–211. Cambridge: Cambridge University Press.Google Scholar
Nersessian, N. J., & Andersen, H. 1998. Conceptual change and incommensurability: A cognitive-historical view. Danish Yearbook of Philosophy 32: 111–151.CrossRefGoogle Scholar
Nersessian, N. J., & Magnani, L. 2002. Model-Based Reasoning: Science, Technology, and Values. New York: Kluwer.Google Scholar
Neugebauer, O. 1968. On the planetary theory of Copernicus. Vistas in Astronomy 10: 89–103.CrossRefGoogle Scholar
Newton, A. 1893. A Dictionary of Birds. London: Adam and Charles Black.CrossRefGoogle Scholar
Nickles, T. 2003. Normal science: From logic to case-based and model-based reasoning. In Nickles, T. (ed.): Thomas Kuhn, pp. 142–177. Cambridge: Cambridge University Press.Google Scholar
Niewenglowski, G. H. 1896. Sur la propriété qu'ont les radiations émises par les corps phosphorescents, de traverser certains corps opaques à la lumière solaire, et sur les expériences de M. G. le Bon, sur la lumière noire. Comptes Rendus 122: 385–386.Google Scholar
Noddack, I. 1934a. Das Periodische System der Elemente und seine Lücken. Angewandte Chemie 47: 301–305.CrossRefGoogle Scholar
Noddack, I. 1934b. Über das Element 93. Angewandte Chemie 47: 653–655.CrossRefGoogle Scholar
Nye, M.-J. 1980. N-rays: An episode in the history and psychology of science. Historical Studies in the Physical Sciences 11: 125–156.CrossRefGoogle Scholar
Pais, A. 1977. Radioactivity's two early puzzles. Reviews of Modern Physics 49: 925–938.CrossRefGoogle Scholar
Pais, A. 1986. Inward Bound: Of Matter and Force in the Physical World. Oxford: Oxford University Press.Google Scholar
Pedersen, O. 1993. Early Physics and Astronomy. Cambridge: Cambridge University Press.Google Scholar
Pickering, A. 1984. Constructing Quarks: A Sociological History of Particle Physics. Chicago: University of Chicago Press.Google Scholar
Pinch, T. 1986. Confronting Nature: The Sociology of Solar-Neutrino Detection. Dordrecht, Kluwer.CrossRefGoogle Scholar
Poincaré, H. 1896. Les rayons cathodiques et les rayons de Röntgen. Revue générale des Sciences pures et appliquées 7: 52–59.Google Scholar
Putnam, H. 1975. The meaning of “meaning.” In Gundersen, K. (ed.): Language, Mind and Knowledge, pp. 131–193. Minnesota Studies in the Philosophy of Science, Vol. VII. Minneapolis: University of Minnesota Press.Google Scholar
Ragep, F. J. 1993. Nasir al-Din al Tusi's Memoir on Astronomy. New York: Springer.Google Scholar
Ray, J. 1678. The Ornithology of Francis Willughby. London: John Martyn.Google Scholar
Reinhold, E. 1542. Theoricae novae planetarum Georgii Purbacchii (sic) Germani ab Erasmo Reinholdo Salveldensi. Inserta item methodica tractio de illuminiatione Lunae. Typus Eclipsis solis futurae Anno 1544. Wittenberg: Luft.Google Scholar
Rey, G. 1985. Concepts and conceptions: A reply to Smith, Medin and Rips. Cognition 19: 297–303.CrossRefGoogle Scholar
Rheticus, G. J. 1540/1979. Narratio prima. Hugonnard-Roche, H.. (eds. and trans.). Wroclaw: Ossolineum, Studia Copernicana 20.Google Scholar
Rhodes, R. 1986. The Making of the Atomic Bomb. New York: Simon & Schuster.Google Scholar
Rips, L. J. 1975. Inductive judgements about natural categories. Journal of Verbal Learning and Verbal Behavior 14: 665–681.CrossRefGoogle Scholar
Röntgen, W. K. 1896. Eine neue Art von Strahlen. Würzburg: Stahel'schen K. Hof- und Universitätsbuch- und Kunsthandlung.Google Scholar
Rosch, E. 1973a. Natural categories. Cognitive Psychology 4: 328–350.CrossRefGoogle Scholar
Rosch, E. 1973b. On the internal structure of perceptual and semantic categories. In Moore, T. E. (ed.): Cognitive Development and the Acquisition of Language, pp. 111–144. New York: Academic Press.Google Scholar
Rosch, E. 1978. Principles of categorization. In Rosch, E. & Lloyd, B. B. (eds.): Cognition and Categorization, pp. 27–48. Hillsdale, N.J. : Erlbaum.Google Scholar
Rosch, E. 1987. Wittgenstein and categorization research in cognitive psychology. In Chapman, M. & Dixon, R. A. (eds.): Meaning and the Growth of Understanding: Wittgenstein's Significance for Developmental Psychology, pp. 151–166. Berlin: Springer.CrossRefGoogle Scholar
Rosch, E., & Mervis, C. B. 1975. Family resemblances: Studies in the internal structures of categories. Cognitive Psychology 7: 573–605.CrossRefGoogle Scholar
Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. 1976. Basic objects in natural categories. Cognitive Psychology 8: 382–439.CrossRefGoogle Scholar
Ross, B., Perkins, S., & Tenpenny, P. 1990. Reminding-based category learning. Cognitive Psychology 22: 460–492.CrossRefGoogle Scholar
Rudwick, M. J. S. 1985. The Great Devonian Controversy: The Shaping of Scientific Knowledge among Gentlemanly Specialists. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Rutherford, E. 1899. Uranium radiation and the electrical conduction produced by it. Philosophical Magazine 47: 109–163. Reprinted in J. Chadwick (ed.): The Collected Papers of Lord Rutherford of Nelson, pp. 169–215. London: George Allen & Unwin, 1962.Google Scholar
Rutherford, E. 1903. The magnetic and electric deviation of the easily absorbed rays from Radium. Philosophical Magazine 5: 177–187. Reprinted in J. Chadwick (ed.): The Collected Papers of Lord Rutherford of Nelson, pp. 549–557. London: George Allen & Unwin, 1962.Google Scholar
Sankey, H. 1994. The Incommensurability Thesis. Aldershot, England: Avesbury.Google Scholar
Schank, R. C. 1975. Conceptual Information Processing. Amsterdam: North Holland.Google Scholar
Schank, R., & Abelson, R. 1977. Scripts, Plans, Goals, and Understanding. Hillsdale, N.J. : Erlbaum.Google Scholar
Scheffler, I. 1967. Science and Subjectivity. Indianapolis: Bobbs-Merrill.Google Scholar
Seaborg, G. 1989. Nuclear fission and transuranic elements – 50 years ago. Journal of Chemical Education 66: 379–384.CrossRefGoogle Scholar
Shapere, D. 1964. The structure of scientific revolutions. Philosophical Review 73: 383–394.CrossRefGoogle Scholar
Shapere, D. 1982. Reason, reference, and the quest for knowledge. Philosophy of Science 49: 1–23.CrossRefGoogle Scholar
Shapere, D. 1989. Evolution and continuity in scientific change. Philosophy of Science 56: 419–437.CrossRefGoogle Scholar
Shapin, S. 1975. Phrenological knowledge and the social structure of early 19th-century Edinburgh. Annals of Science 32: 219–243.CrossRefGoogle Scholar
Shapin, S. 1982. History of science and its sociological reconstructions. History of Science 20: 157–211.CrossRefGoogle Scholar
Shapin, S., & Schaffer, S. 1984. Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life. Princeton: Princeton University Press.Google Scholar
Shepp, B. 1978. From perceived similarity to dimensional structure: A new hypothesis about perspective development. In Rosch, E. & Lloyd, B. (eds.): Cognition and Categorization, pp. 135–167. Hillsdale, NJ: Erlbaum.Google Scholar
Sibley, C., & Ahlquist, J. 1990. Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven: Yale University Press.Google Scholar
Sloman, S. A., Love, B. C., & Ahn, W. K. 1998. Feature centrality and conceptual coherence. Cognitive Science 22: 189–227.CrossRefGoogle Scholar
Smith, B. H. 1997. Belief and Resistance: Dynamics of Contemporary Intellectual Controversy. Cambridge, Mass.: Harvard University Press.Google Scholar
Smith, E., Osherson, D., Rips, L., & Keane, M. 1988. Combining prototypes: A selective modification model. Cognitive Sciences 12: 485–527.CrossRefGoogle Scholar
Smith, J. D., & Kemler-Nelson, D. 1984. Overall similarity in adults' classification: The child in all of us. Journal of Experimental Psychology: General 113: 137–159.CrossRefGoogle Scholar
Solomon, M. 2001. Social Empiricism. Cambridge, Mass.: The MIT Press.Google Scholar
Stein, N. 1992. What's in a story: Interpreting the interpretations of story grammars. Discourse Processes 5: 319–335.CrossRefGoogle Scholar
Stevenson, B. 1994. Kepler's Physical Astronomy. Princeton, N.J.: Princeton University Press.Google Scholar
Stuewer, R. 1994. The origin of the liquid-drop model and the interpretation of nuclear fission. Perspectives on Science 2: 76–129.Google Scholar
Sundevall, C. 1889. Sundevall's Tentamen. London: Porter.Google Scholar
Swerdlow, N. 1976. Pseudodoxia Copernicana. Archives Internationales d'Historie des Sciences 26: 105–158.Google Scholar
Taves, R. 1998. “Frank and Ernest” cartoon published 2-26-1998. NEA Inc.
Thagard, P. 1992. Conceptual Revolutions. Princeton, N.J.: Princeton University Press.Google Scholar
Thoren, V. E. 1990. The Lord of Uraniborg: A Biography of Tycho Brahe. Cambridge: Cambridge University Press.Google Scholar
Treumann, R. A. 1991. A post-fission perspective of the discovery of nuclear fission. Journal for the General Philosophy of Science 22: 143–153.CrossRefGoogle Scholar
Tversky, A. 1977. Features of similarity. Psychological Review 84: 327–352.CrossRefGoogle Scholar
Tversky, B., & Hemenway, K. 1984. Objects, parts, and categories. Journal of Experimental Psychology: General 113: 169–193.CrossRefGoogle ScholarPubMed
Voelkel, J. R. 2001. The composition of Kepler's Astronomia nova. Princeton, N.J.: Princeton University Press.Google Scholar
Waismann, F. 1965. The Principles of Linguistic Philosophy. Harré, R. (ed.). London: Macmillan.Google Scholar
Way, E. C. 1997. Connectionism and conceptual structure. American Behavioral Scientist 40: 729–753.CrossRefGoogle Scholar
Weart, S. 1983. The discovery of physics and a nuclear physics paradigm. In Shea, W. R. (ed.): Otto Hahn and the Rise of Nuclear Physics, pp. 91–133. Dordrecht: Kluwer.CrossRefGoogle Scholar
Weizsäcker, F. 1937. Die Atomkerne. Berlin: Springer.Google Scholar
Westman, R. S. 1975. The Melanchthon Circle, Rheticus, and the Wittenberg Interpretation of the Copernican Theory. Isis 66: 165–193.CrossRefGoogle Scholar
Westman, R. 1994. Two cultures or one? A second look at Kuhn's The Copernican Revolution. Isis 85: 79–155.CrossRefGoogle Scholar
Williams, T. M., Freyer, M. L., & Aiken, L. S. 1977. Development of visual pattern classification in preschool children: Prototypes and distinctive features. Developmental Psychology 13: 577–584.CrossRefGoogle Scholar
Wisniewski, E., & Medin, D. 1991. Harpoons and long sticks: The interaction of theory and similarity in rule induction. In Fischer, D., Pazzani, M., & Langley, P. (eds.): Concept Formation: Knowledge and Experience in Unsupervised Learning, pp. 237–278. San Mateo, Calif.: Morgan Kaufmann.Google Scholar
Wittgenstein, L. W. 1953. Philosophical Investigations. G. E. M. Ansceombe (trans.). Oxford: Blackwell.Google Scholar
Ahn, W. K. 1998. Why are different features central for natural kinds and artifacts? The role of causal status in determining feature centrality. Cognition 69: 135–178.CrossRefGoogle ScholarPubMed
Ahn, W. K., & Dennis, M. J. 2001. Dissociation between categorization and similarity judgement: Differential effect of causal status on feature weights. In Hahn, U. & Ramscar, M. (eds.): Similarity and Categorization, pp. 87–107. Oxford: Oxford University Press.CrossRefGoogle Scholar
Ahn, W. K., Kalish, C. W., Medin, D. L., & Gelman, S. A. 1995. The role of covariation versus mechanism information in causal attribution. Cognition 54: 299–352.CrossRefGoogle ScholarPubMed
Amaldi, E. 1984. From the discovery of the neutron to the discovery of nuclear fission. Physics Reports 111: 1–332.CrossRefGoogle Scholar
Andersen, H. 1996. Categorization, anomalies and the discovery of nuclear fission. Studies in History and Philosophy of Science 27: 463–492.CrossRefGoogle Scholar
Andersen, H., Barker, P., & Chen, X. 1996. Kuhn's mature philosophy of science and cognitive psychology. Philosophical Psychology 9: 347–363.CrossRefGoogle Scholar
Apian, P. 1540. Petri Apiani Cosmographia. Phrysius, G. (ed.). Antwerp: A. Berckman.Google Scholar
Ariew, R. 1987. The phases of Venus before 1610. Studies in History and Philosophy of Science 15: 213–226.CrossRefGoogle Scholar
Ariew, R. 1999. Descartes and the Last Scholastics. Ithaca, N.Y.: Cornell University Press.Google Scholar
Armstrong, S., Gleitman, L., & Gleitman, H. 1983. On what some concepts might not be. Cognition 13: 263–308.CrossRefGoogle ScholarPubMed
Baltas, A., Gavroglu, K., & Kindi, V. 1997. A physicist who became a historian for philosophical purposes: A discussion between Thomas S. Kuhn and Aristides Baltas, Kostas Gavroglu, and Vassiliki Kindi. Neusis 6: 145–200. Reprinted as: A Discussion with Thomas S. Kuhn. In J. Conant & J. Haugeland (eds.): The Road Since Structure, pp. 253–323. Chicago: University of Chicago Press 2000.Google Scholar
Barker, P. 1990. Copernicus, the orbs and the equant. Synthese 83: 317–323.CrossRefGoogle Scholar
Barker, P. 1998. Kuhn and the sociological revolution. Configurations 6: 21–32.CrossRefGoogle Scholar
Barker, P. 1999. Copernicus and the critics of Ptolemy. Journal for the History of Astronomy 30: 343–358.CrossRefGoogle Scholar
Barker, P. 2000. The role of religion in the Lutheran response to Copernicus. In Osler, M. J. (ed.): Rethinking the Scientific Revolution, pp. 59–88. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barker, P. 2001. Incommensurability and conceptual change during the Copernican revolution. In Sankey, H. & Hoyningen-Huene, P. (eds.): Incommensurability and Related Matters, pp. 241–273. Boston Studies in the Philosophy of Science. Boston: Kluwer.Google Scholar
Barker, P. 2002. Constructing Copernicus. Perspectives on Science 10: 208–227.CrossRefGoogle Scholar
Barker, P., Chen, X., & Andersen, H. 2003. Kuhn on concepts and categorization. In Nickles, T. (ed.): Thomas Kuhn, pp. 212–245. Cambridge: Cambridge University Press.Google Scholar
Barker, P., & Goldstein, B. R. 1994. Distance and velocity in Kepler's astronomy. Annals of Science 51: 59–73.CrossRefGoogle Scholar
Barker, P., & Goldstein, B. R. 1998. Realism and instrumentalism in sixteenth century astronomy: A reappraisal. Perspectives on Science 6: 232–258.Google Scholar
Barnes, B. 1974. Scientific Knowledge and Sociological Theory. London: Routledge & Kegan Paul.Google Scholar
Barnes, B. 1982. Thomas Kuhn and Social Science. London: Macmillan.CrossRefGoogle Scholar
Barsalou, L. W. 1982. Ad hoc categories. Memory and Cognition 11: 211–227.CrossRefGoogle Scholar
Barsalou, L. W. 1985. Ideals, central tendency, and frequency of instantiation as determinants of graded structure in categories. Journal of Experimental Psychology: Learning, Memory, and Cognition 11: 629–654.Google ScholarPubMed
Barsalou, L. W. 1987. The instability of graded structure: Implications for the nature of concepts. In Neisser, U. (ed.): Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization, pp. 101–140. Cambridge: Cambridge University Press.Google Scholar
Barsalou, L. W. 1988. The concept and organization of autobiographical memories. In Neisser, U. & Winograd, E. (eds.): Remembering Reconsidered: Ecological and Traditional Approaches to the Study of Memory, pp. 193–229. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barsalou, L. W. 1989. Intraconcept similarity and its implications for interconcept similarity. In Vosniadou, S. & Ortony, A. (eds.): Similarity and Analogical Reasoning, pp. 76–121. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Barsalou, L. W. 1990. On the indistinguishability of exemplar memory and abstraction in category representation. In Srull, T. & Wyer, R. (eds.): Advances in Social Cognition, Vol. 3, pp. 61–88. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1991. Deriving categories to achieve goals. In Bower, G. H. (ed.): The Psychology of Learning and Motivation: Advances in Research and Theory, Vol. 27, pp. 1–64. New York: Academic Press.Google Scholar
Barsalou, L. W. 1992a. Cognitive Psychology: An Overview for Cognitive Scientists. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1992b. Frames, concepts, and conceptual fields. In Lehrer, A. & Kittay, E. (eds.): Frames, Fields and Contrasts: New Essays in Semantical and Lexical Organization, pp. 21–74. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1993. Flexibility, structure and linguistic vagary in concepts: Manifestations of a compositional system of perceptual symbols. In Collins, A. F., Gathercole, S. E., Conway, M. A., & Morris, P. E. (eds.): Theories of Memory, pp. 31–101. Hillsdale, N.J.: Erlbaum.Google Scholar
Barsalou, L. W. 1999. Perceptual symbol systems. Behavioral and Brain Sciences 22: 577–609.Google ScholarPubMed
Barsalou, L. W., & Billman, D. 1989. Systematicity and semantic ambiguity. In Gorfein, D. (ed.): Resolving Semantic Ambiguity, pp. 146–203. New York: Springer.CrossRefGoogle Scholar
Barsalou, L. W., & Hale, C. 1993. Components of conceptual representation: From feature-lists to recursive frames. In Mechelen, I., Hampton, J., Michalski, R., & Theuns, P. (eds.): Categories and Concepts: Theoretical Views and Inductive Data Analysis, pp. 97–144. New York: Academic Press.Google Scholar
Barsalou, L. W., & Sewell, D. 1984. Constructing Representations of Categories from Different Points of View. Emory Cognition Project Report No. 2. Atlanta: Emory University.Google Scholar
Barsalou, L. W., & Sewell, D. 1985. Contrasting the representation of scripts and categories. Journal of Memory and Language 24: 646–665.CrossRefGoogle Scholar
Barsalou, L. W., Solomon, K., & Wu, L. 1999. Perceptual simulation in conceptual tasks. In Hiraga, M., Sinha, C., & Wilcox, S. (eds.): Cultural, Typological, and Psychological Perspectives in Cognitive Linguistics: The Proceedings of the Fourth Conference of the International Cognitive Linguistics Association, Vol. 3, pp. 209–228. Amsterdam: John Benjamins.CrossRefGoogle Scholar
Bartlett, F. C. 1932. Remembering. London: Cambridge University Press.Google Scholar
Bechtel, W. 1988. Philosophy of Mind: An Overview for Cognitive Science. Hillsdale, N.J.: Erlbaum.Google Scholar
Bechtel, W., & Abrahamsen, A. 1991. Connectionism and the Mind: An Introduction to Parallel Processing in Networks. Oxford: Blackwell.Google Scholar
Becquerel, H. 1896a. Sur les radiations émises par phosphorescence. Comptes Rendus 122: 420–421.Google Scholar
Becquerel, H. 1896b. Sur les radiations invisibles émises par les corps phosphorescents. Comptes Rendus 122: 501–503.Google Scholar
Becquerel, H. 1896c. Sur quelques propriétés nouvelles des radiations invisibles émises par divers corps phosphorescents. Comptes Rendus 122: 559–564.Google Scholar
Becquerel, H. 1896d. Sur diverses propriétés des rayons uraniques. Comptes Rendus 123: 855–858.Google Scholar
Biagioli, M. 1990. The anthropology of incommensurability. Studies in History and Philosophy of Science 21: 183–209.CrossRefGoogle Scholar
Biagioli, M. 1994. Galileo Courtier. Chicago: University of Chicago Press.Google Scholar
Black, E. 1977. Manual of Neotropical Birds, Vol. 1. Chicago: University of Chicago Press.Google Scholar
Bloor, D. 1976/1991. Knowledge and Social Imagery. London: Routledge & Kegan Paul. 2nd ed., Chicago: University of Chicago Press, 1991.Google Scholar
Bloor, D. 1983. Wittgenstein: A Social Theory of Knowledge. New York: Columbia University Press.CrossRefGoogle Scholar
Bloor, D. 2002. Wittgenstein, Rules and Institutions. London: Routledge.Google Scholar
Bohr, N. 1936. Neutron capture and nuclear constitution. Nature 137: 344–348.CrossRefGoogle Scholar
Bohr, N., & Wheeler, J. A. 1939. The mechanism of nuclear fission. Physical Review 56: 426–450.CrossRefGoogle Scholar
di Bono, M. 1995. Copernicus, Amico, Fracastoro and Tusi's device: Observations on the use and transmission of a model. Journal for the History of Astronomy 26: 133–154.CrossRefGoogle Scholar
Bourdieu, P. 2001. Science de la science et réflexivité. Paris: Raisons d'agir.Google Scholar
Bower, C., Black, J., & Turner, T. 1979. Scripts in memory for text. Cognitive Psychology 11: 177–220.CrossRefGoogle Scholar
Boyd, R. 1979. Metaphor and theory change: What is “metaphor” a metaphor for? In Ortony, A. (ed.): Metaphor and Thought, pp. 356–408. Cambridge: Cambridge University Press.Google Scholar
Brahe, T. 1588. De mundi aetherei recentioribus phaenomenis. Uraniburg:i.a.Google Scholar
Braybrooke, D., & Rosenberg, A. 1972. Getting the war news straight: The actual situation in philosophy of science. American Political Science Review 66: 818–826.CrossRefGoogle Scholar
Brewer, W. 2000. Bartlett's concept of the schema and its impact on theories of knowledge representation in contemporary cognitive psychology. In Saito, A. (ed.): Bartlett, Culture and Cognition, pp. 69–89. Hove, England: Psychology Press.Google Scholar
Brooks, L. R. 1987. Decentralized control of categorization: The role of prior processing episodes. In Neisser, U. (ed.): Concepts and Conceptual Development: Ecological and Intellectual Factors in Categorization, pp. 141–174. Cambridge: Cambridge University Press.Google Scholar
Brown, N. R., Shevell, S. K., & Rips, L. J. 1987. Public memories and their personal context. In Rubin, D. (ed.): Autobiographical Memory, pp. 137–158. Cambridge: Cambridge University Press.Google Scholar
Buchwald, J. 1992. Kinds and the wave theory of light. Studies in History and Philosophy of Science 23: 39–74.CrossRefGoogle Scholar
Cantor, N., Smith, E. E., French, R. D., & Mezzich, J. 1980. Psychiatric diagnosis as prototype organization. Journal of Abnormal Psychology 89: 181–193.CrossRefGoogle Scholar
Carey, S. 1985. Conceptual Change in Childhood. Cambridge, Mass.: The MIT Press.Google Scholar
Carey, S. 1991/1999. Knowledge acquisition: Enrichment or conceptual change? In Margolis, E. & Laurence, S. (eds.): Concepts: Core Readings, pp. 459–487. Cambridge, Mass.: MIT Press.Google Scholar
Carr, E. H. 1961. What Is History?London: Macmillan.Google Scholar
Chen, X. 1995. Taxonomic changes and the particle-wave debate in early nineteenth-century Britain. Studies in History and Philosophy of Science 26: 251–271.CrossRefGoogle Scholar
Chen, X. 1997. Thomas Kuhn's latest notion of incommensurability. Journal for General Philosophy of Science 28: 257–273.CrossRefGoogle Scholar
Chen, X. 2003. Why did John Herschel fail to understand polarization? The differences between object and event concepts. Studies in History and Philosophy of Science 34: 491–513.CrossRefGoogle Scholar
Chen, X., Andersen, H., & Barker, P. 1998. Kuhn's theory of scientific revolutions and cognitive psychology. Philosophical Psychology 11: 5–28.CrossRefGoogle Scholar
Chi, M., Feltovich, P., & Glaser, R. 1981. Categorization and representation of physics problems by experts and novices. Cognitive Sciences 5: 121–152.CrossRefGoogle Scholar
Christianson, J. R. 1999. On Tycho's Island. Cambridge: Cambridge University Press.Google Scholar
Churchland, P. 1989. A Neurocomputational Perspective: The Nature of Mind and the Structure of Science. Cambridge, Mass.: MIT Press.Google Scholar
Clark, A. 1993. Associative Engines: Connectionism, Concepts and Representational Change. Cambridge, Mass.: MIT Press.Google Scholar
Collins, H. M. 1981. What is TRASP? The radical programme as a methodological imperative. Philosophy of the Social Sciences 11: 215–224.CrossRefGoogle Scholar
Collins, H. M., & Pinch, T. 1993. The Golem: What Everyone Should Know about Science, Cambridge: Cambridge University Press.Google Scholar
Conklin, H. C. 1969. Lexicographical treatment of folk taxonomies. In Tyler, S. A. (ed.): Cognitive Anthropology, pp. 41–49. New York: Holt, Rinehart & Winston.Google Scholar
Coulson, S. 2001. Semantic Leaps: Frame Shifting and Conceptual Blending in Meaning Construction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Covey, S. R. 1990. The 7 Habits of Highly Effective People. New York: Simon & Schuster.Google Scholar
Curd, M., & Cover, J. A. 1998. Philosophy of Science: The Central Issues. New York: W. W. Norton.Google Scholar
Curie, I., & Joliot, F. 1934. Un nouveau type de radioactivité. Comptes Rendus 198: 254–256.Google Scholar
Curie, M. 1898. Rayons émis par les composés de l'uranium et du thorium. Comptes Rendus 126: 1101–1103.Google Scholar
Curie, P., & Curie, M. 1898. Sur une substance nouvelle radio-active, contenue dans la pechblende. Comptes Rendus 127: 175–178.Google Scholar
Curie, P., Curie, M., & Bémont, G. 1898. Sur une nouvelle substance fortement radio-active, contenue dans la pechblende. Comptes Rendus 127: 1215– 1217.Google Scholar
Darden, L. 1992. Strategies for anomaly resolution. In Giere, R. (ed.): Cognitive Models of Science, pp. 251–273. Minnesota Studies in the Philosophy of Science, Vol. XV. Minneapolis: University of Minnesota Press.Google Scholar
Darden, L. 1998. Exemplars, abstractions, and anomalies: Representation and theory change in Mendelian and molecular genetics. In Wolters, G., Lennox, J. G., & McLaughlin, P. (eds.): Concepts, Theories and Rationality in the Biological Sciences: The Second Pittsburgh-Konstanz Colloquium in the Philosophy of Science, pp. 137–158. Konstanz/Pittsburgh: Universitätsverlag Konstanz/University of Pittsburgh Press.Google Scholar
Donahue, W. H. 1988. Kepler's fabricated figures: Covering up the mess in the New Astronomy. Journal for the History of Astronomy 19: 217–237.CrossRefGoogle Scholar
Donahue, W. H. 1992. Johannes Kepler – New Astronomy. Cambridge: Cambridge University Press.Google Scholar
Drake, S. 1990. Discoveries and Opinions of Galileo. New York: Anchor Books.CrossRefGoogle Scholar
Ekman, P., Friesen, W. V., & Ellsworth, P. 1972. Emotion in the Human Face. Elmsford, N.Y.: Pergamon.Google Scholar
Erreich, A., & Valian, V. 1979. Children's internal organization of locative categories. Child Development 50: 1070–1077.CrossRefGoogle ScholarPubMed
Evans, J. 1998. The History and Practice of Ancient Astronomy. Oxford: Oxford University Press.Google Scholar
Evans, R. J. 1999. In Defense of History. New York: W. W. Norton.Google Scholar
Feather, N., & Bretcher, E. 1939. Atomic numbers of the so-called transuranic elements. Nature 143: 516.CrossRefGoogle Scholar
Fermi, E. 1934. Possible production of elements of atomic number higher than 92. Nature 133: 898–899.CrossRefGoogle Scholar
Fermi, E. 1939. Artificial radioactivity produced by neutron bombardment. Nobel Lecture. Reprinted in E. Fermi, Collected Papers, Vol. 1: Italy 1921–1938, pp. 1037–1043. Chicago: University of Chicago Press, 1962.Google Scholar
Flügge, S. 1939. Kann der Energiegehalt der Atomkerne technisch nutzbar gemacht werden. Die Naturwissenschaften 27: 402–410.CrossRefGoogle Scholar
Gadow, H. 1892. On the classification of birds. Proceedings of the General Meeting for Scientific Business of the Zoological Society of London 1892, pp. 229–256.Google Scholar
Galilei, Galileo 1610/1989. Sidereus nuncius, or the Sidereal Messenger. Translated with introduction, conclusion, and notes by Albert Van Helden. Chicago: University of Chicago Press.Google Scholar
Gamow, G. 1929a. Über die Struktur des Atomkerns. Physikalische Zeitschrift 30: 717–720.Google Scholar
Gamow, G. 1929b. Zur Quantentheorie der Atomzertrümmerung. Zeitschrift der Physik 52: 510–515.CrossRefGoogle Scholar
Gamow, G. 1931. Constitution of Atomic Nuclei and Radioactivity. Oxford: Clarendon.Google Scholar
Gentner, D. 1988. Metaphor as structure mapping: The relational shift. Child Development 59: 47–59.CrossRefGoogle Scholar
Giere, R. 1988. Explaining Science: A Cognitive Approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Giere, R. (ed.) 1992. Cognitive Models of Science. Minneapolis: University of Minnesota Press.Google Scholar
Giere, R., 1994. The cognitive structure of scientific theories. Philosophy of Science 61: 276–296.CrossRefGoogle Scholar
Gingerich, O. 1975. “Crisis” versus aesthetic in the Copernican Revolution. In Beer, A. (ed.): Vistas in Astronomy, Vol. 17, pp. 85–94. Oxford: Pergamon Press.Google Scholar
Gingerich, O. 1993. Erasmus Reinhold and the dissemination of the Copernican theory. In O. Gingerich: The Eye of Heaven. New York: American Institute of Physics.Google Scholar
Goldstein, B. R. 1991. The blasphemy of Alfonso X: History or myth? In Barker, Peter & Ariew, Roger (eds.): Revolution and Continuity: Essays in the History and Philosophy of Early Modern Science, pp. 143–153. Washington, D.C.: Catholic University of America Press.Google Scholar
Goldstein, B. R., & Barker, P. 1995. The role of Rothmann in the dissolution of the celestial spheres. British Journal for the History of Science 28: 385–403.CrossRefGoogle Scholar
Goldstone, R. L., Medin, D. L., & Gentner, D. 1991. Relational similarity and the nonindependence of features in similarity judgments. Cognitive Psychology 23: 222–262.CrossRefGoogle ScholarPubMed
Golinski, J. 1990. The theory of practice and the practice of theory: Sociological approaches in the history of science. Isis 81: 492–505.CrossRefGoogle Scholar
Gooding, D. 1990. Experiment and the Making of Meaning. Dordrecht: Kluwer.CrossRefGoogle Scholar
Gopnick, A., & Meltzoff, A. 1997. Words, Thoughts and Theories. Cambridge, Mass.: The MIT Press.Google Scholar
Hacking, I. 1993. Working in a new world: The taxonomic solution. In Horwich, P. (ed.): World Changes: Thomas Kuhn and the Nature of Science, pp. 275–310. Cambridge, Mass.: The MIT Press.Google Scholar
Hahn, D. (ed.) 1975. Otto Hahn: Erlebnisse und Erkenntnisse. Düsseldorf: Econ Verlag.Google Scholar
Hahn, O. 1946. Von den natürlichen Umwandlungen des Urans zu seiner künstlichen Zerspaltung, Nobel-Vortrag am 13. Dez. 1946. In O. Hahn: Mein Leben, pp. 247–267. Bruckmann: München 1968.Google Scholar
Hahn, O., & Strassmann, F. 1938. Über die Entstehung von Radiumisotopen aus Uran durch Bestrahlen mit schnellen und verlangsammten Neutronen. Die Naturwissenschaften 26: 755–756.CrossRefGoogle Scholar
Halban, H., Joliot, F., & Kowarski, L. 1939a. Liberation of neutrons in the nuclear explosion of uranium. Nature 143: 70–71.Google Scholar
Halban, H., Joliot, F., & Kowarski, L. 1939b. Number of neutrons liberated in the nuclear fission of uranium. Nature 143: 680.CrossRefGoogle Scholar
Hamel, J. 1998. Die astronomische Forschungen in Kassel unter Wilhelm IV. Thun and Frankfurt am Main: Harri Deutsch.Google Scholar
Heider, E. R. 1972. Universals in color naming and memory. Journal of Experimental Psychology 93: 10–20.CrossRefGoogle ScholarPubMed
Helden, A. 1985. Measuring the Universe. Chicago: University of Chicago Press.Google Scholar
Henry, C. 1896. Augmentation du rendement photographique des rayons Röntgen par le sulfure de zinc phosphorescent. Comptes Rendus 122: 312–314.Google Scholar
Homa, D., & Vosburgh, R. 1976. Category breadth and the abstraction of prototypical information. Journal of Experimental Psychology – Human Learning and Memory 2: 322–330.CrossRefGoogle Scholar
Hoyningen-Huene, P. 1993. Reconstructing Scientific Revolutions: Thomas S. Kuhn's Philosophy of Science. Chicago: University of Chicago Press.Google Scholar
Hoyningen-Huene, P., & Sankey, H. 2001. Incommensurability and Related Matters. Dordrecht: Kluwer.CrossRefGoogle Scholar
Kay, P. 1971. Taxonomy and semantic contrast. Language 447: 866–887.CrossRefGoogle Scholar
Keil, F. 1989. Concepts, Kinds and Cognitive Development. Cambridge, Mass.: The MIT Press.Google Scholar
Kendler, T., & Kendler, H. 1970. An ontogeny of optical shift behavior. Child Development 41: 1–27.CrossRefGoogle Scholar
Kepler, J. 1596. Mysterium Cosmographicum. Tübingen: G. Gruppenbachius.Google Scholar
Kepler, J. 1609. Astronomia Nova. Heidelberg: G. Voegelinus. Translated by W. H. Donahue, as: Johannes Kepler: New Astronomy. Cambridge: Cambridge University Press, 1992.Google Scholar
Kepler, J. 1618–1622. Epitome Astronomiae Copernicanae. Linz: Plancus, & Frankfurt: Tampachius.Google Scholar
Krafft, F. 1981. Im Schatten der Sensation: Leben und Wirken von Fritz Strassmann. Weinhein: Verlag Chemie.Google Scholar
Kragh, H. 1999. Quantum Generations: A History of Physics in the Twentieth Century. Princeton, N.J.: Princeton University Press.Google Scholar
Kuhn, T. S. 1957. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge, Mass.: Harvard University Press.Google Scholar
Kuhn, T. S. 1959. The essential tension: Tradition and innovation in scientific research. In Taylor, C. W. & Barron, F. (eds.): Scientific Creativity: Its Recognition and Development, pp. 341–354. New York: John Wiley. Reprinted in Kuhn (1977), pp. 225–259.Google Scholar
Kuhn, T. S. 1962. The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S. 1970a. The Structure of Scientific Revolutions. 2nd ed. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S. 1970b. Reflections on my critics. In Lakatos, I. & Musgrave, A. (eds.): Criticism and the Growth of Knowledge, pp. 231–278. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kuhn, T. S. 1974. Second thoughts on paradigms. In Suppe, F. (ed.): The Structure of Scientific Theories, pp. 459–482. Urbana: University of Illinois Press. Reprinted in Kuhn (1977), pp. 293–319.Google Scholar
Kuhn, T. S. 1976. Theory-change as structure-change: Comments on the Sneed formalism. Erkenntnis 10: 179–199.CrossRefGoogle Scholar
Kuhn, T. S. 1977. The Essential Tension: Selected Studies in Scientific Tradition and Change. Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S. 1979. Metaphor in science. In Ortony, A. (ed.): Metaphor and Thought, pp. 533–542. Cambridge: Cambridge University Press, 1979. Reprinted in Kuhn (2000), pp. 196–207.Google Scholar
Kuhn, T. S. 1983a. Commensurability, comparability, communicability. PSA 1982 2: 669–688.Google Scholar
Kuhn, T. S. 1983b. Response to commentaries. In PSA 1982 2: 712–716. Reprinted in Kuhn (2000), pp. 53–57.Google Scholar
Kuhn, T. S. 1989. Possible worlds in history of science. In Allén, S. (ed.): Possible Worlds in Humanities, Arts and Sciences: Proceedings of Nobel Symposium 65, pp. 9–32. Berlin: de Gruyter. Reprinted in Kuhn (2000), pp. 58–89.Google Scholar
Kuhn, T. S. 1990. Dubbing and redubbing: The vulnerability of rigid designation. In Savage, C. W. (ed.): Scientific Theories, pp. 298–318. Minnesota Studies in the Philosophy of Science, Vol. XIV. Minneapolis: University of Minnesota Press.Google Scholar
Kuhn, T. S. 1991. The road since Structure. PSA 1990 2: 3–13.Google Scholar
Kuhn, T. S. 1992. The trouble with the historical philosophy of science. Robert and Maureen Rothschild Distinguished Lecture, 19 Nov. 1991. Cambridge, Mass.: Department of the History of Science, Harvard University. Reprinted in Kuhn (2000), pp. 105–120.
Kuhn, T. S. 1993. Afterwords. In Horwich, P. (ed.): World Changes, pp. 311–341. Cambridge, Mass.: The MIT Press.Google Scholar
Kuhn, T. S. 2000. The Road since Structure. Conant, J. & Haugeland, J. (eds.). Chicago: University of Chicago Press.Google Scholar
Kuhn, T. S., Shapere, D., Bromberger, S., Suppes, P., Putnam, H., & Achinstein, P. 1974. Discussion. In Suppe, F. (ed.): The Structure of Scientific Theories, pp. 500–517. Urbana: University of Illinois Press.Google Scholar
Lakatos, I. 1978. The Methodology of Scientific Research Programmes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lakatos, I., & Musgrave, A. 1970. Criticism and the Growth of Knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lakoff, G. 1987. Women, Fire and Dangerous Things: What Categories Reveal about the Mind. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Latour, B. 1986. Laboratory Life: The Construction of Scientific Facts. Princeton N.J.: Princeton University Press.Google Scholar
Lattis, J. 1994. Between Copernicus and Galileo: Christopher Clavius and the Collapse of Ptolemaic Astronomy. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Laudan, L. 1977. Progress and Its Problems: Towards a Theory of Scientific Growth. London: Routledge & Keagan Paul.Google Scholar
Loocke, P. (ed.) 1999. The Nature of Concepts: Evolution, Structure and Representation. London: Routledge.CrossRefGoogle Scholar
Maestlin, M. 1578. Observatio et demonstratio cometae aetherei … anno 1577 et 1588. Tübingen: Gruppenbach.Google Scholar
Magnani, L., Nersessian, N. J., & Thagard, P. 1999. Model-Based Reasoning in Scientific Discovery. New York: Plenum.CrossRefGoogle Scholar
Malt, B. C., & Smith, E. E. 1984. Correlated properties in natural categories. Journal of Verbal Learning and Verbal Behavior 23: 250–269.CrossRefGoogle Scholar
Margolis, E., & Laurence, S. (eds.) 1999. Concepts: Core Readings. Cambridge, Mass.: The MIT Press.Google Scholar
Margolis, H. 2002. It Started with Copernicus: How Turning the World Inside Out Led to the Scientific Revolution. Chicago: University of Chicago Press.Google Scholar
McMillan, E. 1939. Radioactive recoil from uranium activated by neutrons. Physical Review 55: 510.CrossRefGoogle Scholar
Medin, D. L. 1989. Concepts and conceptual structure. American Psychologist 44: 1469–1481.CrossRefGoogle ScholarPubMed
Medin, D., Altom, M., Edelson, S., & Freko, D. 1982. Correlated symptoms and simulated medical classification. Journal of Experimental Psychology: Learning, Memory, and Cognition 8: 37–50.Google ScholarPubMed
Medin, D. L., & Schaffer, M. M. 1978. Context theory of classification learning. Psychological Review 86: 207–238.CrossRefGoogle Scholar
Meitner, L., & Delbrück, M. 1935. Der Aufbau der Atomkerne. Natürliche und künstliche Kernumwandlungen. Berlin: Springer.Google Scholar
Meitner, L., & Frisch, O. 1939. Disintegration of uranium by neutrons: A new type of nuclear reaction. Nature 143: 239–240.CrossRefGoogle Scholar
Meitner, L., & Hahn, O. 1936. Neue Umwandlungsprozess bei Bestrahlung des Urans mit Neutronen. Naturwissenschaften 24: 158–159.CrossRefGoogle Scholar
Melanchthon, P. 1549/1846. Initia Doctrinae Physicae. In Bretschneider, C. G. (ed.): Corpus Reformatorum, Vol. 13; pp. 1179–1412. Halis Saxonum: Schwetschke et Filius. Reprint, New York: Johnson Reprint, 1964.Google Scholar
Mervis, C. B., & Pani, J. R. 1980. Acquisition of basic object categories. Cognitive Psychology 12: 496–522.CrossRefGoogle ScholarPubMed
Mervis, C. B., & Rosch, E. 1981. Categorization of natural objects. Annual Review of Psychology 32: 89–115.CrossRefGoogle Scholar
Minsky, M. 1975. A framework for representing knowledge. In Winston, P. (ed.): The Psychology of Computer Vision, pp. 211–277. New York: McGraw-Hill.Google Scholar
Murphy, G. L., & Medin, D. L. 1985. The role of theories in conceptual coherence. Psychological Review 92: 289–316.CrossRefGoogle ScholarPubMed
Murphy, G., & Medin, D. (1985/1999). The role of theories in conceptual coherence. In Margolis, E. & Laurence, S. (eds.): Concepts: Core Readings, pp. 425–458. Cambridge, Mass.: The MIT Press.Google Scholar
Murphy, G., & Smith, E. 1982. Basic-level superiority in picture categorization. Journal of Verbal Learning and Verbal Behavior 21: 1–20.CrossRefGoogle Scholar
Nersessian, N. J. 1984. Faraday to Einstein: Constructing Meaning in Scientific Theories. Dordrecht: Martinus Nijhoff.CrossRefGoogle Scholar
Nersessian, N. J. 1987. A cognitive-historical approach to meaning in scientific theories. In Nersessian, N. (ed.): The Process of Science, pp. 161–177. Dordrecht, Kluwer.CrossRefGoogle Scholar
Nersessian, N. J. 1989. Conceptual change in science and in science education. Synthese 80: 163–183.CrossRefGoogle Scholar
Nersessian, N. J. 1992a. How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (ed.): Cognitive Models of Science, pp. 3–45. Minneapolis: University of Minnesota Press.Google Scholar
Nersessian, N. J. 1992b. In the theoretician's laboratory: Thought experimenting as mental modeling. PSA 2: 291–301.
Nersessian, N. J. 1995. Opening the black box: Cognitive science and the history of science. In A. Thackray (ed.): Constructing Knowledge in the History of Science. Osiris 10: 194–214.Google Scholar
Nersessian, N. J. 1998. Conceptual change. In Bechtel, W. & Graham, G. (eds.): A Companion to Cognitive Science, pp. 155–166. Oxford: Blackwell.Google Scholar
Nersessian, N. J. 1999. Model-based reasoning in conceptual change. In Magnani, L., Nersessian, N. J., & Thagard, P. (eds.): Model-Based Reasoning in Scientific Discovery, pp. 5–22. New York: Kluwer.CrossRefGoogle Scholar
Nersessian, N. J. 2001. Maxwell and “the method of physical analogy”: Model-based reasoning, generic abstraction, and conceptual change. In Malament, D. (ed.): Reading Philosophy of Nature: Essays in the History and Philosophy of Science and Mathematics to Honor Howard Stein on his 70th Birthday, pp. 129–166. LaSalle, IL: Open Court.Google Scholar
Nersessian, N. J. 2003. Kuhn, conceptual change and cognitive science. In Nickles, T. (ed.): Thomas Kuhn, pp. 178–211. Cambridge: Cambridge University Press.Google Scholar
Nersessian, N. J., & Andersen, H. 1998. Conceptual change and incommensurability: A cognitive-historical view. Danish Yearbook of Philosophy 32: 111–151.CrossRefGoogle Scholar
Nersessian, N. J., & Magnani, L. 2002. Model-Based Reasoning: Science, Technology, and Values. New York: Kluwer.Google Scholar
Neugebauer, O. 1968. On the planetary theory of Copernicus. Vistas in Astronomy 10: 89–103.CrossRefGoogle Scholar
Newton, A. 1893. A Dictionary of Birds. London: Adam and Charles Black.CrossRefGoogle Scholar
Nickles, T. 2003. Normal science: From logic to case-based and model-based reasoning. In Nickles, T. (ed.): Thomas Kuhn, pp. 142–177. Cambridge: Cambridge University Press.Google Scholar
Niewenglowski, G. H. 1896. Sur la propriété qu'ont les radiations émises par les corps phosphorescents, de traverser certains corps opaques à la lumière solaire, et sur les expériences de M. G. le Bon, sur la lumière noire. Comptes Rendus 122: 385–386.Google Scholar
Noddack, I. 1934a. Das Periodische System der Elemente und seine Lücken. Angewandte Chemie 47: 301–305.CrossRefGoogle Scholar
Noddack, I. 1934b. Über das Element 93. Angewandte Chemie 47: 653–655.CrossRefGoogle Scholar
Nye, M.-J. 1980. N-rays: An episode in the history and psychology of science. Historical Studies in the Physical Sciences 11: 125–156.CrossRefGoogle Scholar
Pais, A. 1977. Radioactivity's two early puzzles. Reviews of Modern Physics 49: 925–938.CrossRefGoogle Scholar
Pais, A. 1986. Inward Bound: Of Matter and Force in the Physical World. Oxford: Oxford University Press.Google Scholar
Pedersen, O. 1993. Early Physics and Astronomy. Cambridge: Cambridge University Press.Google Scholar
Pickering, A. 1984. Constructing Quarks: A Sociological History of Particle Physics. Chicago: University of Chicago Press.Google Scholar
Pinch, T. 1986. Confronting Nature: The Sociology of Solar-Neutrino Detection. Dordrecht, Kluwer.CrossRefGoogle Scholar
Poincaré, H. 1896. Les rayons cathodiques et les rayons de Röntgen. Revue générale des Sciences pures et appliquées 7: 52–59.Google Scholar
Putnam, H. 1975. The meaning of “meaning.” In Gundersen, K. (ed.): Language, Mind and Knowledge, pp. 131–193. Minnesota Studies in the Philosophy of Science, Vol. VII. Minneapolis: University of Minnesota Press.Google Scholar
Ragep, F. J. 1993. Nasir al-Din al Tusi's Memoir on Astronomy. New York: Springer.Google Scholar
Ray, J. 1678. The Ornithology of Francis Willughby. London: John Martyn.Google Scholar
Reinhold, E. 1542. Theoricae novae planetarum Georgii Purbacchii (sic) Germani ab Erasmo Reinholdo Salveldensi. Inserta item methodica tractio de illuminiatione Lunae. Typus Eclipsis solis futurae Anno 1544. Wittenberg: Luft.Google Scholar
Rey, G. 1985. Concepts and conceptions: A reply to Smith, Medin and Rips. Cognition 19: 297–303.CrossRefGoogle Scholar
Rheticus, G. J. 1540/1979. Narratio prima. Hugonnard-Roche, H.. (eds. and trans.). Wroclaw: Ossolineum, Studia Copernicana 20.Google Scholar
Rhodes, R. 1986. The Making of the Atomic Bomb. New York: Simon & Schuster.Google Scholar
Rips, L. J. 1975. Inductive judgements about natural categories. Journal of Verbal Learning and Verbal Behavior 14: 665–681.CrossRefGoogle Scholar
Röntgen, W. K. 1896. Eine neue Art von Strahlen. Würzburg: Stahel'schen K. Hof- und Universitätsbuch- und Kunsthandlung.Google Scholar
Rosch, E. 1973a. Natural categories. Cognitive Psychology 4: 328–350.CrossRefGoogle Scholar
Rosch, E. 1973b. On the internal structure of perceptual and semantic categories. In Moore, T. E. (ed.): Cognitive Development and the Acquisition of Language, pp. 111–144. New York: Academic Press.Google Scholar
Rosch, E. 1978. Principles of categorization. In Rosch, E. & Lloyd, B. B. (eds.): Cognition and Categorization, pp. 27–48. Hillsdale, N.J. : Erlbaum.Google Scholar
Rosch, E. 1987. Wittgenstein and categorization research in cognitive psychology. In Chapman, M. & Dixon, R. A. (eds.): Meaning and the Growth of Understanding: Wittgenstein's Significance for Developmental Psychology, pp. 151–166. Berlin: Springer.CrossRefGoogle Scholar
Rosch, E., & Mervis, C. B. 1975. Family resemblances: Studies in the internal structures of categories. Cognitive Psychology 7: 573–605.CrossRefGoogle Scholar
Rosch, E., Mervis, C., Gray, W., Johnson, D., & Boyes-Braem, P. 1976. Basic objects in natural categories. Cognitive Psychology 8: 382–439.CrossRefGoogle Scholar
Ross, B., Perkins, S., & Tenpenny, P. 1990. Reminding-based category learning. Cognitive Psychology 22: 460–492.CrossRefGoogle Scholar
Rudwick, M. J. S. 1985. The Great Devonian Controversy: The Shaping of Scientific Knowledge among Gentlemanly Specialists. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Rutherford, E. 1899. Uranium radiation and the electrical conduction produced by it. Philosophical Magazine 47: 109–163. Reprinted in J. Chadwick (ed.): The Collected Papers of Lord Rutherford of Nelson, pp. 169–215. London: George Allen & Unwin, 1962.Google Scholar
Rutherford, E. 1903. The magnetic and electric deviation of the easily absorbed rays from Radium. Philosophical Magazine 5: 177–187. Reprinted in J. Chadwick (ed.): The Collected Papers of Lord Rutherford of Nelson, pp. 549–557. London: George Allen & Unwin, 1962.Google Scholar
Sankey, H. 1994. The Incommensurability Thesis. Aldershot, England: Avesbury.Google Scholar
Schank, R. C. 1975. Conceptual Information Processing. Amsterdam: North Holland.Google Scholar
Schank, R., & Abelson, R. 1977. Scripts, Plans, Goals, and Understanding. Hillsdale, N.J. : Erlbaum.Google Scholar
Scheffler, I. 1967. Science and Subjectivity. Indianapolis: Bobbs-Merrill.Google Scholar
Seaborg, G. 1989. Nuclear fission and transuranic elements – 50 years ago. Journal of Chemical Education 66: 379–384.CrossRefGoogle Scholar
Shapere, D. 1964. The structure of scientific revolutions. Philosophical Review 73: 383–394.CrossRefGoogle Scholar
Shapere, D. 1982. Reason, reference, and the quest for knowledge. Philosophy of Science 49: 1–23.CrossRefGoogle Scholar
Shapere, D. 1989. Evolution and continuity in scientific change. Philosophy of Science 56: 419–437.CrossRefGoogle Scholar
Shapin, S. 1975. Phrenological knowledge and the social structure of early 19th-century Edinburgh. Annals of Science 32: 219–243.CrossRefGoogle Scholar
Shapin, S. 1982. History of science and its sociological reconstructions. History of Science 20: 157–211.CrossRefGoogle Scholar
Shapin, S., & Schaffer, S. 1984. Leviathan and the Air-Pump: Hobbes, Boyle, and the Experimental Life. Princeton: Princeton University Press.Google Scholar
Shepp, B. 1978. From perceived similarity to dimensional structure: A new hypothesis about perspective development. In Rosch, E. & Lloyd, B. (eds.): Cognition and Categorization, pp. 135–167. Hillsdale, NJ: Erlbaum.Google Scholar
Sibley, C., & Ahlquist, J. 1990. Phylogeny and Classification of Birds: A Study in Molecular Evolution. New Haven: Yale University Press.Google Scholar
Sloman, S. A., Love, B. C., & Ahn, W. K. 1998. Feature centrality and conceptual coherence. Cognitive Science 22: 189–227.CrossRefGoogle Scholar
Smith, B. H. 1997. Belief and Resistance: Dynamics of Contemporary Intellectual Controversy. Cambridge, Mass.: Harvard University Press.Google Scholar
Smith, E., Osherson, D., Rips, L., & Keane, M. 1988. Combining prototypes: A selective modification model. Cognitive Sciences 12: 485–527.CrossRefGoogle Scholar
Smith, J. D., & Kemler-Nelson, D. 1984. Overall similarity in adults' classification: The child in all of us. Journal of Experimental Psychology: General 113: 137–159.CrossRefGoogle Scholar
Solomon, M. 2001. Social Empiricism. Cambridge, Mass.: The MIT Press.Google Scholar
Stein, N. 1992. What's in a story: Interpreting the interpretations of story grammars. Discourse Processes 5: 319–335.CrossRefGoogle Scholar
Stevenson, B. 1994. Kepler's Physical Astronomy. Princeton, N.J.: Princeton University Press.Google Scholar
Stuewer, R. 1994. The origin of the liquid-drop model and the interpretation of nuclear fission. Perspectives on Science 2: 76–129.Google Scholar
Sundevall, C. 1889. Sundevall's Tentamen. London: Porter.Google Scholar
Swerdlow, N. 1976. Pseudodoxia Copernicana. Archives Internationales d'Historie des Sciences 26: 105–158.Google Scholar
Taves, R. 1998. “Frank and Ernest” cartoon published 2-26-1998. NEA Inc.
Thagard, P. 1992. Conceptual Revolutions. Princeton, N.J.: Princeton University Press.Google Scholar
Thoren, V. E. 1990. The Lord of Uraniborg: A Biography of Tycho Brahe. Cambridge: Cambridge University Press.Google Scholar
Treumann, R. A. 1991. A post-fission perspective of the discovery of nuclear fission. Journal for the General Philosophy of Science 22: 143–153.CrossRefGoogle Scholar
Tversky, A. 1977. Features of similarity. Psychological Review 84: 327–352.CrossRefGoogle Scholar
Tversky, B., & Hemenway, K. 1984. Objects, parts, and categories. Journal of Experimental Psychology: General 113: 169–193.CrossRefGoogle ScholarPubMed
Voelkel, J. R. 2001. The composition of Kepler's Astronomia nova. Princeton, N.J.: Princeton University Press.Google Scholar
Waismann, F. 1965. The Principles of Linguistic Philosophy. Harré, R. (ed.). London: Macmillan.Google Scholar
Way, E. C. 1997. Connectionism and conceptual structure. American Behavioral Scientist 40: 729–753.CrossRefGoogle Scholar
Weart, S. 1983. The discovery of physics and a nuclear physics paradigm. In Shea, W. R. (ed.): Otto Hahn and the Rise of Nuclear Physics, pp. 91–133. Dordrecht: Kluwer.CrossRefGoogle Scholar
Weizsäcker, F. 1937. Die Atomkerne. Berlin: Springer.Google Scholar
Westman, R. S. 1975. The Melanchthon Circle, Rheticus, and the Wittenberg Interpretation of the Copernican Theory. Isis 66: 165–193.CrossRefGoogle Scholar
Westman, R. 1994. Two cultures or one? A second look at Kuhn's The Copernican Revolution. Isis 85: 79–155.CrossRefGoogle Scholar
Williams, T. M., Freyer, M. L., & Aiken, L. S. 1977. Development of visual pattern classification in preschool children: Prototypes and distinctive features. Developmental Psychology 13: 577–584.CrossRefGoogle Scholar
Wisniewski, E., & Medin, D. 1991. Harpoons and long sticks: The interaction of theory and similarity in rule induction. In Fischer, D., Pazzani, M., & Langley, P. (eds.): Concept Formation: Knowledge and Experience in Unsupervised Learning, pp. 237–278. San Mateo, Calif.: Morgan Kaufmann.Google Scholar
Wittgenstein, L. W. 1953. Philosophical Investigations. G. E. M. Ansceombe (trans.). Oxford: Blackwell.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hanne Andersen, University of Copenhagen, Peter Barker, University of Oklahoma, Xiang Chen, California Lutheran University
  • Book: The Cognitive Structure of Scientific Revolutions
  • Online publication: 18 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498404.009
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hanne Andersen, University of Copenhagen, Peter Barker, University of Oklahoma, Xiang Chen, California Lutheran University
  • Book: The Cognitive Structure of Scientific Revolutions
  • Online publication: 18 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498404.009
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hanne Andersen, University of Copenhagen, Peter Barker, University of Oklahoma, Xiang Chen, California Lutheran University
  • Book: The Cognitive Structure of Scientific Revolutions
  • Online publication: 18 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511498404.009
Available formats
×