Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:12:51.392Z Has data issue: false hasContentIssue false

20 - A novel treatment targeting cognitive dysfunction in mood disorders

from Part IV - Treatment opportunities for ameliorating cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 289 - 305
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamcio, B., Sargin, D., Stradomska, A., Medrihan, L., Gertler, C., Theis, F., … Ehrenreich, H. (2008). Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biology, 6: 37.CrossRefGoogle ScholarPubMed
Banks, W. A., Jumbe, N. L., Farrell, C. L., Niehoff, M. L., & Heatherington, A. C. (2004). Passage of erythropoietic agents across the blood–brain barrier: A comparison of human and murine erythropoietin and the analog darbepoetin alfa. European Journal of Pharmacology, 505(1–3): 93101.Google Scholar
Bora, E., Harrison, B. J., Yucel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, 43(10): 20172026.Google Scholar
Bourne, C., Aydemir, O., Balanza-Martinez, V., Bora, E., Brissos, S., Cavanagh, J. T., … Goodwin, G. M. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. Acta Psychiatrica Scandinavica, 128(3): 149162.Google Scholar
Brines, M. L., Ghezzi, P., Keenan, S., Agnello, D., de Lanerolle, N. C., Cerami, C., … Cerami, A. (2000). Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences of the United States of America, 97(19): 1052610531.Google Scholar
Buemi, M., Cavallaro, E., Floccari, F., Sturiale, A., Aloisi, C., Trimarchi, M., … Frisina, N. (2003). The pleiotropic effects of erythropoietin in the central nervous system. Journal of Neuropathology and Experimental Neurology, 62(3): 228236.Google Scholar
Byts, N. & Siren, A. L. (2009). Erythropoietin: A multimodal neuroprotective agent. Experimental & Translational Stroke Medicine, 1: 4.CrossRefGoogle ScholarPubMed
Digicaylioglu, M., Bichet, S., Marti, H. H., Wenger, R. H., Rivas, L. A., Bauer, C., & Gassmann, M. (1995). Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 92(9): 37173720.Google Scholar
Dirnagl, U., Simon, R. P., & Hallenbeck, J. M. (2003). Ischemic tolerance and endogenous neuroprotection. Trends in Neurosciences, 26(5): 248254.Google Scholar
Ehrenreich, H., Fischer, B., Norra, C., Schellenberger, F., Stender, N., Stiefel, M., … Bartels, C. (2007a). Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain, 130(Pt. 10): 25772588.CrossRefGoogle ScholarPubMed
Ehrenreich, H., Hinze-Selch, D., Stawicki, S., Aust, C., Knolle-Veentjer, S., Wilms, S., … Krampe, H. (2007b). Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Molecular Psychiatry, 12(2): 206220.Google Scholar
Eriksson, T. M., Delagrange, P., Spedding, M., Popoli, M., Mathe, A. A., Ogren, S. O., & Svenningsson, P. (2011). Emotional memory impairments in a genetic rat model of depression: Involvement of 5-HT/MEK/Arc signaling in restoration. Molecular Psychiatry, 17(2): 173184.Google Scholar
Ge, X. H., Zhu, G. J., Geng, D. Q., Zhang, Z. J., & Liu, C. F. (2012). Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis via glycogen synthase kinase 3beta-mediated mitochondrial translocation of Bax in PC12 cells. Neurological Sciences, 33(6): 12491256.CrossRefGoogle ScholarPubMed
Girgenti, M. J., Hunsberger, J., Duman, C. H., Sathyanesan, M., Terwilliger, R., & Newton, S. S. (2009). Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biological Psychiatry, 66(3): 267274.Google Scholar
Hamilton, J. P. & Gotlib, I. H. (2008). Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biological Psychiatry, 63(12): 11551162.Google Scholar
Harmer, C. J. (2010). Antidepressant drug action: A neuropsychological perspective. Depression and Anxiety, 27(3): 231233.CrossRefGoogle Scholar
Inkster, B., Nichols, T. E., Saemann, P. G., Auer, D. P., Holsboer, F., Muglia, P., & Matthews, P. M. (2009). Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder. Archives of General Psychiatry, 66(7): 721728.Google Scholar
Jelkmann, W., Bohlius, J., Hallek, M., & Sytkowski, A. J. (2008). The erythropoietin receptor in normal and cancer tissues. Critical Reviews in Oncology/Hematology, 67(1): 3961.Google Scholar
Kastner, A., Grube, S., El-Kordi, A., Stepniak, B., Friedrichs, H., Sargin, D., … Ehrenreich, H. (2012). Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia. Molecular Medicine, 18: 10291040.Google Scholar
Leconte, C., Bihel, E., Lepelletier, F. X., Bouet, V., Saulnier, R., Petit, E., … Schumann-Bard, P. (2011). Comparison of the effects of erythropoietin and its carbamylated derivative on behaviour and hippocampal neurogenesis in mice. Neuropharmacology, 60(2–3): 354364.CrossRefGoogle ScholarPubMed
Marti, H. H., Wenger, R. H., Rivas, L. A., Straumann, U., Digicaylioglu, M., Henn, V., … Gassmann, M. (1996). Erythropoietin gene expression in human, monkey and murine brain. European Journal of Neuroscience, 8(4): 666676.CrossRefGoogle ScholarPubMed
Miskowiak, K., Ehrenreich, H., Christensen, E. M., Kessing, L. V., & Vinberg, M. (2014a). Recombinant human erythropoietin to target cognitive dysfunction in bipolar disorder: A double-blind, randomized, placebo-controlled phase 2 trial. Journal of Clinical Psychiatry, 75(12): 13471355.Google Scholar
Miskowiak, K. W., Favaron, E., Hafizi, S., Inkster, B., Goodwin, G. M., Cowen, P. J., & Harmer, C. J. (2009). Effects of erythropoietin on emotional processing biases in patients with major depression: an exploratory fMRI study. Psychopharmacology (Berlin), 207(1): 133142.CrossRefGoogle ScholarPubMed
Miskowiak, K. W., Favaron, E., Hafizi, S., Inkster, B., Goodwin, G. M., Cowen, P. J., & Harmer, C. J. (2010a). Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients. Psychopharmacology (Berlin), 210(3) 419428.Google Scholar
Miskowiak, K., Inkster, B., O’Sullivan, U., Selvaraj, S., Goodwin, G. M., & Harmer, C. J. (2008a). Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration. Experimental Brain Research, 184(3): 313321.Google Scholar
Miskowiak, K., Inkster, B., Selvaraj, S., Goodwin, G., & Harmer, C. (2007a). Erythropoietin has no effect on hippocampal response during memory retrieval 3 days post-administration. Psychopharmacology (Berlin), 195(3): 451453.CrossRefGoogle ScholarPubMed
Miskowiak, K., Inkster, B., Selvaraj, S., Wise, R., Goodwin, G. M., & Harmer, C. J. (2008b). Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology, 33(3): 611618.Google Scholar
Miskowiak, K., O’Sullivan, U., & Harmer, C. J. (2007b). Erythropoietin enhances hippocampal response during memory retrieval in humans. Journal of Neuroscience, 27(11): 27882792.Google Scholar
Miskowiak, K., O’Sullivan, U., & Harmer, C. J. (2007c). Erythropoietin reduces neural and cognitive processing of fear in human models of antidepressant drug action. Biological Psychiatry, 62(11): 12441250.Google Scholar
Miskowiak, K. W., Vinberg, M., Christensen, E. M., Bukh, J. D., Harmer, C. J., Ehrenreich, H., & Kessing, L. V. (2014b). Recombinant human erythropoietin for treating treatment-resistant depression: A double-blind, randomized, placebo-controlled phase 2 trial. Neuropsychopharmacology, 39(6): 13991408.Google Scholar
Miskowiak, K. W., Vinberg, M., Harmer, C. J., Ehrenreich, H., Knudsen, G. M., Macoveanu, J., … Kessing, L. V. (2010b). Effects of erythropoietin on depressive symptoms and neurocognitive deficits in depression and bipolar disorder. Trials, 11: 97.Google Scholar
Miskowiak, K. W., Vinberg, M., Macoveanu, J., Ehrenreich, H., Køster, N., Inkster, B., … Siebner, H. R. (2015). Effects of erythropoietin on hippocampal volume and memory in mood disorders. Biological Psychiatry, 78(4): 270277.Google Scholar
Mogensen, J., Miskowiak, K., Sørensen, T. A., Lind, C. T., Olsen, N. V., Springborg, J. B., & Mala, H. (2004). Erythropoietin improves place learning in fimbria-fornix-transected rats and modifies the search pattern of normal rats. Pharmacology, Biochemistry, and Behavior, 77(2): 381390.Google Scholar
Nakamura, T., Ebihara, I., Shimada, N., & Koide, H. (1998). Elevated levels of erythropoietin in cerebrospinal fluid of depressed patients. American Journal of Medical Sciences, 315(3): 199201.Google Scholar
Sargin, D., El-Kordi, A., Agarwal, A., Muller, M., Wojcik, S. M., Hassouna, I., … Ehrenreich, H. (2011). Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice. BMC Biology, 9: 27.Google Scholar
Sargin, D., Friedrichs, H., El-Kordi, A., & Ehrenreich, H. (2010). Erythropoietin as neuroprotective and neuroregenerative treatment strategy: Comprehensive overview of 12 years of preclinical and clinical research. Best Practice & Research. Clinical Anaesthesiology, 24(4): 573594.Google Scholar
Siren, A. L., Fasshauer, T., Bartels, C., & Ehrenreich, H. (2009). Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics, 6(1): 108127.Google Scholar
Tsai, P. T., Ohab, J. J., Kertesz, N., Groszer, M., Matter, C., Gao, J., … Carmichael, S. T. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. Journal of Neuroscience, 26(4): 12691274.Google Scholar
Tse, S., Chan, S., Ng, K. L., & Yatham, L. N. (2014). Meta-analysis of predictors of favorable employment outcomes among individuals with bipolar disorder. Bipolar Disorders, 16(3): 217229.Google Scholar
Wustenberg, T., Begemann, M., Bartels, C., Gefeller, O., Stawicki, S., Hinze-Selch, D., … Ehrenreich, H. (2011). Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Molecular Psychiatry, 16(1): 2636.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×