Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T01:03:08.564Z Has data issue: false hasContentIssue false

22 - Exercise and cognition

from Part IV - Treatment opportunities for ameliorating cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 321 - 338
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angevaren, M., Aufdemkampe, G., Verhaar, H. J. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, July, 16(3): CD005381.Google Scholar
Arnone, D., McIntosh, A. M., Ebmeier, K. P., Munafò, M. R., & Anderson, I. M. (2012). Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. European Neuropsychopharmacology, 22(1): 116.Google Scholar
Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doraiswamy, M., Moore, K., … Krishnan, K. R. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62(5): 633638.Google Scholar
Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience & Biobehavioral Reviews, 30(6): 791807.CrossRefGoogle ScholarPubMed
Berchtold, N. C. & Cotman, C. W. (2013). Exercise and cognitive function: Neurobiological mechanisms. In Ekkekakis, P. (ed.), Routledge Handbook of Physical Activity and Mental Health (pp. 287299). Abingdon: Routledge.Google Scholar
Blondell, S. J., Hammersley-Mather, R., & Veerman, J. L. (2014). Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health, 14: 510.Google Scholar
Blumenthal, J. A., Babyak, M. A., Doraiswamy, P. M., Watkins, L., Hoffman, B. M., Barbour, K. A., … Sherwood, A. (2007). Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosomatic Medicine, 69(7): 587596.Google Scholar
Blumenthal, J. A., Babyak, M. A., Moore, K. A., Craighead, E., Herman, S., Khatri, P., … Krishnan, K. R. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159(19): 23492356.CrossRefGoogle ScholarPubMed
Blumenthal, J. A., Sherwood, A., Babyak, M. A., Watkins, L., Smith, P. J., Hoffman, B., … Jiang, W. (2012). Exercise and pharmacological treatment of depressive symptoms in patients with coronary heart disease. Journal of the American College of Cardiology, 60(12): 10531063.CrossRefGoogle ScholarPubMed
Brenes, G. A., Williamson, J. D., Messier, S. P., Rejeski, W. J., Pahor, M., Ip, E., & Penninx, B. W. J. H. (2007). Treatment of minor depression in older adults: A pilot study comparing sertraline and exercise. Aging and Mental Health, 11(1): 6168.Google Scholar
Briones, T. L., Klintsova, A. Y., & Greenough, W. T. (2004). Stability of synaptic plasticity in the adult rat visual cortex induced by complex environment exposure. Brain Research, 1018(1): 130135.Google Scholar
Burdette, J. H., Laurienti, P. J., Espeland, M. A., Morgan, A., Telesford, Q., Vechlekar, C. D., … Rejeski, W. J. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2: 23.Google ScholarPubMed
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2): 126131.Google ScholarPubMed
Chamberlain, S. R. & Robbins, T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27(8): 694718.CrossRefGoogle ScholarPubMed
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453: 87101.Google Scholar
Chaouloff, F., Kennett, G. A., Serrurrier, B., Merino, D., & Curzon, G. (1986). Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. Journal of Neurochemistry, 46(5): 16471650.CrossRefGoogle ScholarPubMed
Chmura, J., Nazar, K., & Kaciuba-Uścilko, H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. International Journal of Sports Medicine, 15(4): 172176.CrossRefGoogle ScholarPubMed
Colcombe, S. & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2): 125130.Google Scholar
Cooney, G. M., Dwan, K., Greig, C. A., Lawlor, D. A., Rimer, J., Waugh, F. R., … & Mead, G. E. (2013). Exercise for depression. Cochrane Database of Systematic Reviews, 12(9): CD004366.Google Scholar
Cooper, C. J. (1973). Anatomical and physiological mechanisms of arousal, with special reference to the effects of exercise. Ergonomics, 16(5): 601609.Google Scholar
Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9): 464472.CrossRefGoogle Scholar
Cowen, P. & Sherwood, A. C. (2013). The role of serotonin in cognitive function: Evidence from recent studies and implications for understanding depression. Journal of Psychopharmacology, 27(7): 575583.Google Scholar
Cowles, E. (1898). Gymnastics in the treatment of inebriety. American Physical Education Review, 3(2): 107110.Google Scholar
Ding, Y.-H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3(1): 1523.Google Scholar
Dotson, V. M., Beydoun, M. A., & Zonderman, A. B. (2010). Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology, 75(1): 2734.CrossRefGoogle ScholarPubMed
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7): 30173022.Google Scholar
Fan, Y., Liu, Z., Weinstein, P. R., Fike, J. R., & Liu, J. (2007). Environmental enrichment enhances neurogenesis and improves functional outcome after cranial irradiation. European Journal of Neuroscience, 25(1): 3846.Google Scholar
Faulkner, G., Hefferon, K., & Mutrie, N. (2015a). Putting positive psychology into motion through physical activity. In Linley, A. & Joseph, S. (eds.), Positive Psychology in Practice (2nd edition). Hoboken, NJ: John Wiley.Google Scholar
Faulkner, G., Trinh, L., & Arbour-Nicitopoulos, K. (2015b). Physical activity and mental health. In Crocker, P. (ed.), Sport and Exercise Psychology: A Canadian Perspective (3rd edition). Toronto: Pearson Education Canada.Google Scholar
Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4): 728734.CrossRefGoogle ScholarPubMed
Foley, L. S., Prapavessis, H., Osuch, E. A., De Pace, J. A., Murphy, B. A., & Podolinsky, N. J. (2008). An examination of potential mechanisms for exercise as a treatment for depression: A pilot study. Mental Health and Physical Activity, 1(2): 6973.CrossRefGoogle Scholar
Fox, K. R. (1999). The influence of physical exercise on mental well-being. Public Health Nutrition, 2(3A): 411418.Google Scholar
Gates, N., Fiatarone Singh, M. A., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. American Journal of Geriatric Psychiatry, 21(11): 10861097.CrossRefGoogle ScholarPubMed
Gunstad, J., Strain, G., Devlin, M. J., Wing, R., Cohen, R. A., Paul, R. H., … Mitchell, J. E. (2011). Improved memory function 12 weeks after bariatric surgery. Surgery for Obesity and Related Diseases, 7(4): 465472.Google Scholar
Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35(1): 4149.Google Scholar
Heyn, P., Abreu, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 85(10); 16941704.CrossRefGoogle ScholarPubMed
Hoffman, B. M., Babyak, M. A., Craighead, W. E., Sherwood, A., Doraiswamy, P. M., Coons, M. J., & Blumental, J. H. (2011). Exercise and pharmacotherapy in patients with major depression: One-year follow-up of the SMILE study. Psychosomatic Medicine, 73(2): 127133.Google Scholar
Hoffman, B. M., Blumenthal, J. A., Babyak, M. A., Smith, P. J., Rogers, S. D., Doraiswamy, P. M., & Sherwood, A. (2008). Exercise fails to improve neurocognition in depressed middle-aged and older adults. Medicine and Science in Sports and Exercise, 40(7): 13441352.Google Scholar
Huang, T., Larsen, K. T., Ried-Larsen, M., Moller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian Journal of Medicine and Science in Sports, 24(1): 110.Google Scholar
Hughson, R. L., Green, H. J., & Sharratt, M. T. (1995). Gas exchange, blood lactate, and plasma catecholamines during incremental exercise in hypoxia and normoxia. Journal of Applied Physiology, 79(4): 11341141.Google Scholar
Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of exercise on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 16: 1231.Google Scholar
Kessing, L. V. & Andersen, P. K. (2004). Does the risk of developing dementia increase with the number of episodes in patients with depressive disorder and in patients with bipolar disorder? Journal of Neurology, Neurosurgery, and Psychiatry, 75(12):16621666.Google Scholar
Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., & Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. Journal of Neuroscience, 33(19): 82708275.CrossRefGoogle ScholarPubMed
Krogh, J., Rostrup, E., Thomsen, C., Elfving, B., Videbech, P., & Nordentoft, M. (2014). The effect of exercise on hippocampal volume and neurotrophines in patients with major depression: A randomized clinical trial. Journal of Affective Disorders, 165: 2430.CrossRefGoogle ScholarPubMed
Krogh, J., Saltin, B., Gluud, C., & Nordentoft, M. (2009). The DEMO trial: A randomized, parallel-group, observer-blinded clinical trial of strength versus aerobic versus relaxation training for patients with mild to moderate depression. Journal of Clinical Psychiatry, 70(6): 790800.Google Scholar
Kubesch, S., Bretschneider, V., Freudenmann, R., Weidenhammer, N., Lehmann, M., Spitzer, M., & Gron, G. (2003). Aerobic endurance exercise improves executive functions in depressed patients. Journal of Clinical Psychiatry, 64(9): 10051012.Google Scholar
Lambourne, K. & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341: 1224.CrossRefGoogle ScholarPubMed
Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., & Katzmarzyk, P. T. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet, 380(9838): 219229.Google Scholar
Lopez-Lopez, C., LeRoith, D., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101(26): 98339838.CrossRefGoogle ScholarPubMed
Mammen, G. & Faulkner, G. E. (2013). Physical activity and the prevention of depression. American Journal of Preventive Medicine, 45(5): 649657.Google Scholar
Mathur, N. & Pedersen, B. K. (2008). Exercise as a mean to control low-grade systemic inflammation. Mediators of Inflammation, 2008: 109502.CrossRefGoogle ScholarPubMed
McMorris, T. (2009). Exercise and cognitive function: A neuroendocrinological explanation. In McMorris, T., Tomporowski, P., & Audiffren, M. (eds.), Exercise and Cognitive Function (pp. 4168). Oxford: Wiley-Blackwell.Google Scholar
McMorris, T. & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3): 33851.CrossRefGoogle ScholarPubMed
McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3–4): 421428.Google Scholar
Meeusen, R. & De Meirleir, K. (1995). Exercise and brain neurotransmission. Sports Medicine, 20(3): 160188.Google Scholar
Meeusen, R., Piacentini, M. F., & De Meirleir, K. (2001). Brain microdialysis in exercise research. Sports Medicine, 31(14): 965983.Google Scholar
Meeusen, R., Thorre, K., Chaouloff, F., Sarre, S., De Meirleir, K., Ebinger, G., & Michotte, Y. (1996). Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Research, 740(1–2): 245252.Google Scholar
Melancon, M. O., Lorrain, D., & Dionne, I. J. (2012). Exercise increases tryptophan availability to the brain in older men age 57–70 years. Medicine and Science in Sports and Exercise, 44(5): 881887.Google Scholar
Morgan, G. S., Gallacher, J., Bayer, A., Fish, M., Ebrahim, S., & Ben-Shlomo, Y. (2012). Physical activity in middle-age and dementia in later life: Findings from a prospective cohort of men in Caerphilly, South Wales and a meta-analysis. Journal of Alzheimer's Disease, 31(3): 569580.Google Scholar
Neumeister, A., Carson, R., Henry, S., Planeta-Wilson, B., Binneman, B., Maguire, R. P., … Frost, J. J. (2006). Cerebral metabolic effects of intravenous glycine in healthy human subjects. Journal of Clinical Psychopharmacology, 26(6): 595599.Google Scholar
Nybo, L., Nielsen, B., Blomstrand, E., Møller, K., & Secher, N. (2003). Neurohumoral responses during prolonged exercise in humans. Journal of Applied Physiology, 95(3): 11251131.Google Scholar
Pajonk, F.-G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., … Falkai, P. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67(2): 133143.CrossRefGoogle ScholarPubMed
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8): 16451666.Google Scholar
Rowell, L. B. & Shepherd, J. T. (eds.) (1996). Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. New York: Oxford University Press.Google Scholar
Sellbom, K. S. & Gunstad, J. (2012). Cognitive function and decline in obesity. Journal of Alzheimer's Disease, 30(Suppl. 2): S89S95.Google Scholar
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., … & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3): 239252.CrossRefGoogle ScholarPubMed
Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G. F., Casini, A., & Macchi, C. (2011). Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. Journal of Internal Medicine, 269(1): 107117.Google Scholar
Stanton, R. & Reaburn, P. (2014). Exercise and the treatment of depression: A review of the exercise program variables. Journal of Science and Medicine in Sport, 17(2): 177182.CrossRefGoogle ScholarPubMed
Teunissen, C. E., Van Boxtel, M., Bosma, H., Bosmans, E., Delanghe, J., De Bruijn, C., … de Vente, J. (2003). Inflammation markers in relation to cognition in a healthy aging population. Journal of Neuroimmunology, 134(1–2): 142150.CrossRefGoogle Scholar
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3): 297324.CrossRefGoogle ScholarPubMed
Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2: 266270.CrossRefGoogle ScholarPubMed
Vasques, P. E., Moraes, H., Silveira, H., Deslandes, A. C., & Laks, J. (2011). Acute exercise improves cognition in the depressed elderly: The effect of dual-tasks. Clinics, 66(9): 15531557.Google Scholar
Veena, J., Srikumar, B. N., Mahati, K., Bhagya, V., Raju, T. R., & Shankaranarayana Rao, B. S. (2009). Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. Journal of Neuroscience Research, 87(4): 831843.CrossRefGoogle ScholarPubMed
Wilson, W. M. & Marsden, C. A. (1996). In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behavioural Pharmacology, 7(1): 101104.Google Scholar
World Health Organization (2010). Global Recommendations on Physical Activity for Health. Geneva: World Health Organization.Google Scholar
Yaffe, K., Kanaya, A., Lindquist, K., Simonsick, E. M., Harris, T., Shorr, R. I., … Newman, A. B. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA, 292(18): 22372242.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×