Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T23:04:42.195Z Has data issue: false hasContentIssue false

8 - Cognitive Agents Interacting in Real and Virtual Worlds

Published online by Cambridge University Press:  15 December 2009

Ron Sun
Affiliation:
Rensselaer Polytechnic Institute, New York
Get access

Summary

INTRODUCTION

This chapter describes agents, based on the ACT-R cognitive architecture, which operate in real robotic and virtual synthetic domains. The virtual and robotic task domains discussed here share nearly identical challenges from the agent modeling perspective. Most importantly, these domains involve agents that interact with humans and each other in real-time in a three-dimensional space. This chapter describes a unified approach to developing ACT-R agents for these environments that takes advantage of the synergies presented by these environments.

In both domains, agents must be able to perceive the space they move through (i.e., architecture, terrain, obstacles, objects, vehicles, etc.). In some cases the information available fromperception is raw sensor data, whereas in other cases it is at a much higher level of abstraction. Similarly, in both domains actions can be specified and implemented at a very low level (e.g., through the movement of individual actuators or simulated limbs) or at a much higher level of abstraction (e.g., moving to a particular location, which depends on other low-level actions).

Controlling programs for both robots and synthetic agents must operate on some representation of the external environment that is created through the processing of sensory input. Thus, the internal robotic representation of the external world is in effect a simulated virtual environment. Many of the problems in robotics then hinge on being able to create a sufficiently rich and abstract internal representation of the world from sensor data that captures the essential nuances necessary to perceive properly (e.g., perceiving a rock rather than a thousand individual pixels from a camera sensor bitmap) and a sufficiently abstract representation of actions to allow it to act properly.

Type
Chapter
Information
Cognition and Multi-Agent Interaction
From Cognitive Modeling to Social Simulation
, pp. 186 - 218
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×