Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T10:24:10.537Z Has data issue: false hasContentIssue false

Chapter 5 - Hypothalamic–Pituitary–Adrenal Cortex Axis

Published online by Cambridge University Press:  24 December 2018

Michael Wilkinson
Affiliation:
Dalhousie University, Nova Scotia
S. Ali Imran
Affiliation:
Dalhousie University, Nova Scotia
Get access
Type
Chapter
Information
Clinical Neuroendocrinology
An Introduction
, pp. 75 - 96
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

de Kloet, E R, Joëls, M & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6, 463475.Google Scholar
Kadmiel, M & Cidlowski, J A. (2013). Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34, 518530.Google Scholar
Lacroix, A, Feelders, R A, Stratakis, C A & Nieman, L K. (2015). Cushing’s syndrome. Lancet 386, 913927.Google Scholar
Loriaux, D L. (2017). Diagnosis and differential diagnosis of Cushing’s syndrome. New Engl J Med 376, 14511459.Google Scholar
Oster, H, Challet, E, Ott, V et al. (2017). The functional and clinical significance of the 24-h rhythm of circulating glucocorticoids. Endocr Rev 38, 345.Google Scholar
Quax, R A, Manenschijn, L, Koper, J W et al. (2013). Glucocorticoid sensitivity in health and disease. Nat Rev Endocr 9, 670686.Google Scholar
Ramamoorthy, S & Cidlowski, J A. (2013). Exploring the molecular mechanisms of glucocorticoid receptor action from sensitivity to resistance. Endocr Dev 24, 4156.Google Scholar
Rodriguez, A C I, Epel, E S, White, M L, Standen, E C, Seckl, J R & Tomiyama, A J. (2015). Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: a systematic review. Psychoneuroendocr 62, 301318.Google Scholar

References

Abelson, J L & Liberzon, I. (1999). Dose response of adrenocorticotropin and cortisol to the CCK-B agonist pentagastrin. Neuropsychopharmacol 21, 485494.Google Scholar
Agha, A, Phillips, J, O’Kelly, P, Tormey, W & Thompson, C J. (2005). The natural history of post-traumatic hypopituitarism: implications for assessment and treatment. Am J Med 118, 1416.e1–1416.e7.CrossRefGoogle ScholarPubMed
Andela, C D, van Haalen, F M, Ragnarsson, O et al. (2015). Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Europ J Endocr 173, R1R14.CrossRefGoogle Scholar
Asa, S L & Ezzat, S. (2002). The pathogenesis of pituitary tumours. Nat Rev Cancer 2, 836849.Google Scholar
Bachelot, A, Chakhtoura, Z, Plu-Bureau, G et al. (2012). Influence of hormonal control on LH pulsatility and secretion in women with classical congenital adrenal hyperplasia. Europ J Endocr 167, 499505.Google Scholar
Bachelot, A, Grouthier, V, Courtillot, C, Dulon, J & Touraine, P. (2017). Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: update on the management of adult patients and prenatal treatment. Europ J Endocr 176, R167R181.Google Scholar
Benedict, C, Hallschmid, M, Scheibner, J et al. (2005). Gut protein uptake and mechanisms of meal-induced cortisol release. J Clin Endocr Metab 90, 16921696.Google Scholar
Berardelli, R, Karamouzis, I, Marinazzo, E et al. (2010). Effect of acute and prolonged mineralocorticoid receptor blockade on spontaneous and stimulated hypothalamic–pituitary–adrenal axis in humans. Europ J Endocr 162, 10671074.CrossRefGoogle ScholarPubMed
Berardelli, R, Karamouzis, I, D’Angelo, V et al. (2013). Role of mineralocorticoid receptors on the hypothalamus–pituitary–adrenal axis in humans. Endocr 43, 5158.Google Scholar
Berga, S L, Daniels, T L & Giles, D E. (1997). Women with functional hypothalamic amenorrhea but not other forms of anovulation display amplified cortisol concentrations. Fert Steril 67, 10241030.Google Scholar
Berga, S L. (2016). Social determinants of infertility: beyond the obvious. Fert Steril 105, 14591460.Google Scholar
Berthon, B S, MacDonald-Wicks, L K & Wood, L G. (2014). A systematic review of the effect of oral glucocorticoids on energy intake, appetite, and body weight in humans. Nutr Res 34, 179190.Google Scholar
Besser, G M & Thorner, M O. (2002). Comprehensive Clinical Endocrinology, 3rd Edition (St Louis, MO: Mosby).Google Scholar
Betterlie, C & Morlin, L. (2011). Autoimmune Addison’s disease. Endocr Dev 20, 161172.Google Scholar
Bierer, L M, Ivanov, I, Carpenter, D M et al. (2015). White matter abnormalities in gulf war veterans with posttraumatic stress disorder: a pilot study. Psychoneuroendocr 51, 567576.Google Scholar
Boonen, E, Vervenne, H, Meersseman, P et al. (2013). Reduced cortisol metabolism during critical illness. New Eng J Med 368, 14771488.Google Scholar
Bose, M, Oliván, B & Laferrére, B. (2009). Stress and obesity: the role of the hypothalamic–pituitary–adrenal axis in metabolic disease. Curr Opin Endocr Diabetes Obes 16, 340346.Google Scholar
Bresson, J L, Clavequin, M C, Fellmann, D & Bugnon, C. (1985). Anatomical and ontogenetic studies of the human paraventriculo-infundibular corticoliberin system. Neurosci 14, 10771090.Google Scholar
Brown, E S & Chandler, P A. (2001). Mood and cognitive changes during systemic corticosteroid therapy. Primary Care Comp J Clin Psych 3, 1721.Google Scholar
Bruera, E, Roca, E, Cedaro, L, Carraro, S & Chacon, R. (1985). Action of oral methylprednisolone in terminal cancer patients: a prospective randomized double-blind study. Cancer Treat Rep 69, 751754.Google Scholar
Cao-Lei, L, Suwansirikul, S, Jutavijittum, P, Mériaux, SB, Turner, JD Muller, CP. (2013). Glucocorticoid receptor gene expression and promoter CpG modifications throughout the human brain. J Psych Res 47, 15971607.CrossRefGoogle ScholarPubMed
Castro, M, Elias, L L K, Elias, P C L & Moreira, A C. (2003). A dose–response study of salivary cortisol after dexamethasone suppression test in Cushing’s disease and its potential use in the differential diagnosis of Cushing’s syndrome. Clin Endocr 59, 800805.Google Scholar
Chriguer, R S, Elias, L L K, da Silva, I M, Jr., Vieira, J G H, Moreira, A C & de Castro, M. (2005). Glucocorticoid sensitivity in young healthy individuals: in vitro and in vivo studies. J Clin Endocr Metab 90, 59785984.Google Scholar
Chrousos, G P, Torpy, D J & Gold, P W. (1998). Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129, 229240.Google Scholar
Cohan, P. (2014). Pasireotide and mifepristone: new options in the medical management of Cushing’s disease. Endocr Pract 20, 8493.Google Scholar
Cohan, P, Wang, C, McArthur, D L et al. (2005). Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33, 23582366.Google Scholar
Cohrs, S, Röher, C, Jordan, W et al. (2006). The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacol 185, 1118.Google Scholar
de Kloet, E R, Joëls, M & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6, 463475.Google Scholar
El-Maouche, D, Arlt, W & Merke, D P. (2017). Congenital adrenal hyperplasia. Lancet 390, 21942210.Google Scholar
Faghih, R T, Dahleh, M A, Adler, G K, Klerman, E B & Brown, E N. (2014). Deconvolution of serum cortisol levels by using compressed sensing. PLoS ONE 9, e85204.Google Scholar
Fleseriu, M, Biller, B M K, Findling, J W, Molitch, M E, Schteingart, D E & Gross, C on behalf of the SEISMIC Study Investigators. (2012). Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing’s syndrome. J Clin Endocr Metab 97, 20392049.Google Scholar
Garin, M C, Burns, C M, Kaul, S & Cappola, A R. (2013). The human experience with ghrelin administration. J Clin Endocr Metab 98, 18261837.Google Scholar
Gibbison, B, Spiga, F, Walker, J J et al. (2015). Dynamic pituitary-adrenal interactions in response to cardiac surgery. Crit Care Med 43, 791800.Google Scholar
Gil-Lozano, M, Pérez-Tilve, D, Alvarez-Crespo, M et al. (2010). GLP-1(7–36)-amide and exendin-4 stimulate the HPA axis in rodents and humans. Endocr 151, 26292640.Google Scholar
Giraldi, F P, Moro, M & Cavagnini, F. (2003). Gender-related differences in the presentation and course of Cushing’s disease. J Clin Endocr Metab 88, 15541558.Google Scholar
Goletiani, N V, Siegel, A J, Lukas, S E & Hudson, J I. (2015). The effects of smoked nicotine on measures of subjective states and hypothalamic–pituitary–adrenal axis hormones in women during the follicular and luteal phases of the menstrual cycle. J Addict Med 9, 195203.Google Scholar
González-Cabrera, J, Fernández-Prada, M, Iribar-Ibabe, C & Peinado, J M. (2014). Acute and chronic stress increase salivary cortisol: a study in the real-life setting of a national examination undertaken by medical graduates. Stress 17, 149156.Google Scholar
Hall, B S, Moda, R N & Liston, C. (2015). Glucocorticoid mechanisms of functional connectivity changes in stress-related neuropsychiatric disorders. Neurobiol Stress 1, 174183.Google Scholar
Hardy, J R, Rees, E, Ling, J et al. (2001). A prospective survey of the use of dexamethasone on a palliative care unit. Palliat Med 15, 38.Google Scholar
Heaney, AP & Melmed, S. (2004). Molecular targets in pituitary tumours. Nature Rev Cancer 4, 285295.Google Scholar
Henley, D E, Leendertz, J A, Russell, G M et al. (2009). Development of an automated blood sampling system for use in humans. J Med Eng Technol 33, 199208.CrossRefGoogle ScholarPubMed
Hollanders, J L, van der Voorn, B, Kieviet, N et al. (2017). Glucocorticoids in neonatal hair: a reflection of intra-uterine glucocorticoid regulation? Endocr Connections 6, 667675.Google Scholar
Hook, V, Funkelstein, L, Lu, D, Bark, S, Wegrzyn, J & Hwang, S-R. (2008). Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Ann Revs Pharmacol Toxicol 48, 393423.Google Scholar
Ivars, K, Nelson, N, Theodorsson, A, Theodorsson, E, Ström, J O & Mörelius, E. (2017). Development of salivary cortisol circadian rhythm in preterm infants. PLOS One 12, e0182685.Google Scholar
Jackson, R V, Grice, J E, Hockings, G I & Torpy, D J. (1995). Naloxone-induced ACTH release: mechanism of action in humans. Clin Endocr 43, 423424.Google Scholar
Jessop, D S, Dallman, M F, Fleming, D & Lightman, S L. (2001). Resistance to glucocorticoid feedback in obesity. J Clin Endocr Metab 86, 41094114.Google Scholar
Judd, L L, Schettler, P J, Brown, E S et al. (2014). Adverse consequences of glucocorticoid medication: psychological, cognitive, and behavioral effects. Am J Psych 171, 10451051.Google Scholar
Kadmiel, M & Cidlowski, J A. (2013). Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci 34, 518530.Google Scholar
Kalafatakis, K, Russell, G M, Zarros, A &. Lightman, S L. (2016). Temporal control of glucocorticoid neurodynamics and its relevance for brain homeostasis, neuropathology and glucocorticoid-based therapeutics. Neurosci Biobehav Rev 61, 1225.Google Scholar
Kowal, B F, Turco, J & Nangia, A K. (2006). Addison’s disease presenting as male infertility. Fert Steril 85, 1059.e1-e3.Google Scholar
Krolewski, D M, Medina, A, Kerman, I A et al. (2010). Expression patterns of corticotropin-releasing factor, arginine vasopressin, histidine decarboxylase, melanin-concentrating hormone, and orexin genes in the human hypothalamus. J Comp Neurol 518, 45914611.Google Scholar
Lacroix, A, Feelders, R A, Stratakis, C A & Nieman, L K. (2015). Cushing’s syndrome. Lancet 386, 913927.CrossRefGoogle ScholarPubMed
Lado-Abeal, J, Rodriguez-Arnao, J, Newell-Price, J D C et al. (1998). Menstrual abnormalities in women with Cushing’s disease are correlated with hypercortisolemia rather than raised circulating androgen levels. J Clin Endocr Metab 83, 30833088Google Scholar
Lamberts, S W J, Verleun, T, Oosterom, R, de Jong, F & Hackeng, W H L. (1984). Corticotropin-releasing factor (ovine) and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J Clin Endocr Metab 58:298303.Google Scholar
Lightman, S L & Conway-Campbell, B L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci 11, 710718.Google Scholar
Liston, C, McEwen, B S & Casey, B J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proc Nat Acad Sci USA 106, 912917.CrossRefGoogle ScholarPubMed
Locatelli, V, Bresciani, E, Tamiazzo, L & Torsello, A. (2010). Central nervous system-acting drugs influencing hypothalamic-pituitary-adrenal axis function. Endocr Dev 17, 108120.Google Scholar
López, J F, Palkovits, M, Arató, M, Mansour, A, Akil, U & Watson, S J. (1992). Localization and quantification of pro-opiomelanocortin mRNA and glucocorticoid receptor mRNA in pituitaries of suicide victims. Neuroendocr 56, 491501.Google Scholar
Loriaux, D L. (2017). Diagnosis and differential diagnosis of Cushing’s Syndrome. New Engl J Med 376, 14511459.Google Scholar
Luton, J-P, Thieblot, P, Valcke, J-C, Mahoudeau, J A & Bricaire, H. (1977). Reversible gonadotropin deficiency in male Cushing’s disease. J Clin Endocr Metab 45, 488495.Google Scholar
McKeage, K. (2013). Pasireotide: a review of its use in Cushing’s disease. Drugs 73, 563574.Google Scholar
Meyer, J S & Novak, M A. (2012). Minireview: Hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocr 153, 41204127.Google Scholar
Mihály, E, Fekete, C, Lechan, R M & Liposits, Z. (2002). Corticotropin-releasing hormone-synthesizing neurons of the human hypothalamus receive neuropeptide Y-immunoreactive innervation from neurons residing primarily outside the infundibular nucleus. J Comp Neurol 446, 235243.Google Scholar
Miller, G E, Chen, E & Zhou, E S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol Bull 133, 2545.Google Scholar
Miranda, H, Gore, R J, Boyer, J, Nobrega, S & Punnett, L. (2015). Health behaviors and overweight in nursing home employees: contribution of workplace stressors and implications for worksite health promotion. Sci World J 2015, Article ID 915359.Google Scholar
Misra, M & Klibanski, A. (2014). Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocr 2, 581592.Google Scholar
Munro, V, Tugwell, B, Doucette, S, Clarke, D B, Lacroix, A & Imran, S A. (2016). Recovery of adrenal function after chronic secondary adrenal insufficiency in patients with hypopituitarism. Clin Endocr 85, 216222.Google Scholar
Nicolaides, N C, Kino, T, Chrousos, G P & Charmandari, E. (2014). Primary generalized glucocorticoid resistance, or Chrousos syndrome. www.endotext.orgGoogle Scholar
Nicolaides, N C, Lamprokostopoulou, A, Sertedaki, A & Charmandari, E. (2016). Recent advances in the molecular mechanisms causing primary generalized glucocorticoid resistance. Hormones 15, 2334.Google Scholar
Oster, H, Challet, E, Ott, V et al. (2017). The functional and clinical significance of the 24-h rhythm of circulating glucocorticoids. Endocr Rev 38, 345.Google Scholar
Pasquali, R, Cantobelli, S, Casimirri, F et al. (1993). The hypothalamic–pituitary–adrenal axis in obese women with different patterns of body fat distribution. J Clin Endocr Metab 77, 341346.Google Scholar
Pasquali, R, Anconetani, B, Chattat, R et al. (1996). Hypothalamic–pituitary–adrenal axis activity and its relationship to the autonomic nervous system in women with visceral and subcutaneous obesity: effects of the corticotropin-releasing factor/arginine-vasopressin test and of stress. Metabolism 45, 351356.Google Scholar
Pasquali, R, Biscotti, D, Spinucci, G et al. (1998). Pulsatile secretion of ACTH and cortisol in premenopausal women: effect of obesity and body fat distribution. Clin Endocr 48, 603612.Google Scholar
Pasquali, R, Gagliardi, L, Vicennati, V et al. (1999). ACTH and cortisol response to combined corticotropin releasing hormone-arginine vasopressin stimulation in obese males and its relationship to body weight, fat distribution and parameters of the metabolic syndrome. Int J Obesity 23, 419424.Google Scholar
Pasquali, R, Vicennati, V, Cacciari, M & Pagotto, U. (2006). The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Anns NY Acad Sci 1083, 111128.Google Scholar
Perlman, W R, Webster, M J, Herman, M M, Kleinman, J E & Weickert, C S. (2007). Age-related differences in glucocorticoid receptor mRNA levels in the human brain. Neurobiol Aging 28, 447458.Google Scholar
Potter, G D M, Skene, D J, Arendt, J, Cade, J E, Grant, P J & Hardie, L J. (2016). Circadian rhythm and sleep disruption: causes, metabolic consequences, and countermeasures. Endocr Rev 37, 584608.Google Scholar
Prokai, D & Berga, S L. (2016). Neuroprotection via reduction in stress: altered menstrual patterns as a marker for stress and implications for long-term neurologic health in women. Int J Mol Sci 17, 2147.Google Scholar
Quax, R A, Manenschijn, L, Koper, J W et al. (2013). Glucocorticoid sensitivity in health and disease. Nat Rev Endocr 9, 670686.Google Scholar
Raab, C, Weidmann, E, Schmidt, A et al. (1999). The effects of interleukin-2 treatment on endothelin and the activation of the hypothalamic–pituitary–adrenal axis. Clin Endocr 50, 3744.Google Scholar
Raadsheer, F C, Sluiter, A A, Ravid, R, Tilders, F J H & Swaab, D F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus: age-dependent colocalization with vasopressin. Brain Res 615, 5062.Google Scholar
Rasmussen, S A, Rosebush, P I, Smyth, H S & Mazurek, M F. (2015). Cushing disease presenting as primary psychiatric illness: a case report and literature review. J Psychiatric Prac 21, 449457.Google Scholar
Reichman, D E, White, P C, New, M I & Rosenwaks, Z. (2014). Fertility in patients with congenital adrenal hyperplasia. Fert Steril 101, 301309.Google Scholar
Rittmaster, RS, Cutler, GB Jr., Gold, P W et al. (1987). The relationship of saline-induced changes in vasopressin secretion to basal and corticotropin-releasing hormone-stimulated adrenocorticotropin and cortisol secretion in man. J Clin Endocr Metab 64, 371376.CrossRefGoogle ScholarPubMed
Rodriguez, A C I, Epel, E S, White, M L, Standen, E C, Seckl, J R & Tomiyama, A J. (2015). Hypothalamic–pituitary–adrenal axis dysregulation and cortisol activity in obesity: a systematic review. Psychoneuroendocr 62, 301318.Google Scholar
Roelfsema, F, Aoun, P & Veldhuis, J D. (2016). Pulsatile cortisol feedback on ACTH secretion is mediated by the glucocorticoid receptor and modulated by gender. J Clin Endocr Metab 101, 40944102.Google Scholar
Roelfsema, F, Yang, R J, Olson, T P, Joyner, M J, Takahashi, P Y & Veldhuis, J D. (2017). Enhanced coupling within gonadotropic and adrenocorticotropic axes by moderate exercise in healthy men. J Clin Endocr Metab 102, 24822490.Google Scholar
Rohleder, N, Beulen, S E, Chen, E, Wolf, J M & Kirschbaum, C. (2007). Stress on the floor: the cortisol stress response to social-evaluative threat in competitive ballroom dancers. Pers Soc Psychol Bull 33, 6984.Google Scholar
Ross, I L, Levitt, N S, Blom, D J & Haarburger, D. (2014). Male and female hypogonadism are highly prevalent in South Africans with Addison’s disease. Horm Metab Res 46, 691696.Google Scholar
Russell, G M, Henley, D E, Leendertz, J et al. (2010). Rapid glucocorticoid receptor-mediated inhibition of hypothalamic–pituitary–adrenal ultradian activity in healthy males. J Neurosci 30, 61066115.Google Scholar
Saketos, M, Sharma, N & Santoro, N F. (1993). Suppression of the hypothalamic-pituitary-ovarian axis in normal women by glucocorticoids. Biol Reprod 49, 12701276.Google Scholar
Salehi, F, Kovacs, K, Scheithauer, B W, Pfeifer, E A & Cusimano, M. (2007). Histologic study of the human pituitary gland in acute traumatic brain injury. Brain injury 21, 651656.Google Scholar
Sarlos, S & Inder, W J. (2013). Selective use of the insulin tolerance test to diagnose hypopituitarism. Int Med J 43, 8993.CrossRefGoogle ScholarPubMed
Scheer, F A J L, Hilton, M F, Mantzoros, C S & Shea, S A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Nat Acad Sci USA 106, 44534458.Google Scholar
Schneiderman, N, Ironson, G S & Siegel, S D. (2005). Stress and health: psychological, behavioral, and biological determinants. Ann Rev Clin Psychol 1, 607628.Google Scholar
Schorr, M & Miller, K K. (2017). The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocr 13, 174186.Google Scholar
Starkman, M N, Schteingart, D E & Schork, M A. (1986). Cushing’s syndrome after treatment: changes in cortisol and ACTH levels, and amelioration of the depressive syndrome. Psych Res 19, 177188.Google Scholar
Starkman, M N. (2013). Neuropsychiatric findings in Cushing syndrome and exogenous glucocorticoid administration. Endocr Metab Clin N Amer 42, 477488.Google Scholar
Stimson, R H, Mohd-Shukri, N A, Bolton, J L, Andrew, R, Reynolds, R M & Walker, B R. (2014). The postprandial rise in plasma cortisol in men is mediated by macronutrient-specific stimulation of adrenal and extra-adrenal cortisol production. J Clin Endocr Metab 99, 160168.Google Scholar
Swinburn, C R, Wakefield, J M, Newman, P S & Jones, P W. (1988). Evidence of prednisolone induced mood change (‘steroid euphoria’) in patients with chronic obstructive airways disease. Brit J Clin Pharmacol 26, 709713.Google Scholar
Tennant, F, Shannon, J A, Nork, J G, Sagherian, A & Berman, M. (1991). Abnormal adrenal gland metabolism in opioid addicts: implications for clinical treatment. J Psychoactive drugs 23, 135149.Google Scholar
Trifonova, S T, Gantenbein, M, Turner, J D & Muller, C P. (2013). The use of saliva for assessment of cortisol pulsatile secretion by deconvolution analysis. Psychoneuroendocr 38, 10901101.Google Scholar
van der Klaauw, A A, Keogh, J M, Henning, E et al. (2013). High protein intake stimulates postprandial GLP1 and PYY release. Obesity 21, 16021607.Google Scholar
van Honk, J & Pruessner, J C. (2010). Psychoneuroendocrine imaging: a special issue of psychoneuroendocrinology. Psychoneuroendocr 35, 14.Google Scholar
Veldhuis, J D, Lizarralde, G & Iranmanesh, A. (1992). Divergent effects of short term glucocorticoid excess on the gonadotropic and somatotropic axes in normal men. J Clin Endocr Metab 74, 96102.Google Scholar
Veldhuis, J D, Roelfsema, F, Iranmanesh, A, Carroll, B J, Keenan, D M & Pincus, S M. (2009). Basal, pulsatile, entropic (patterned), and spiky (staccato-like) properties of ACTH secretion: impact of age, gender, and body mass index. J Clin Endocr Metab 94, 40454052.Google Scholar
Wang, S-S, Kamphuis, W, Huitinga, I, Zhou, J-N & Swaab, D F. (2008). Gene expression analysis in the human hypothalamus in depression by laser microdissection and real-time PCR: the presence of multiple receptor imbalances. Mol Psych 13, 786799.Google Scholar
Watson, S J, Lopez, J F, Young, E A, Vale, W, Rivier, J & Akil, H. (1987). Effects of low dose ovine corticotropin-releasing hormone in humans: endocrine relationships and β-endorphin/γ-lipotropin responses. J Clin Endocr Metab 66, 1015.Google Scholar
Wester, V L & van Rossum, E F C. (2015). Clinical applications of cortisol measurements in hair. Europ J Endocr 173, M1M10.Google Scholar
Whirledge, S & Cidlowski, J A. (2017). Glucocorticoids and reproduction: traffic control on the road to reproduction. Trends Endocr Metab 28, 399415.Google Scholar
Yedinak, C G, Hopkins, S, Williams, J, Ibrahim, A, Cetas, J S & Fleseriu, M. (2017). Medical therapy with pasireotide in recurrent Cushing’s disease: experience of patients treated for at least 1 year at a single center. Front Endocr 8, Article # 35.Google Scholar
Yip, C-E, Stewart, S A, Imran, F et al. (2013). Role of morning basal serum cortisol in assessment of hypothalamic pituitary-adrenal axis. Clin Invest Med 36, E216E222.Google Scholar
Zampetti, B, Grossrubatscher, E, Ciaramella, B D, Boccardi, E & Loli, P. (2016). Bilateral inferior petrosal sinus sampling. Endocr Connect 5, R12R25.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×