Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-08T11:17:50.130Z Has data issue: false hasContentIssue false

7 - MRS in infectious, inflammatory, and demyelinating lesions

Published online by Cambridge University Press:  04 August 2010

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Alberto Bizzi
Affiliation:
Istituto Neurologico Carlo Besta, Milan
Nicola De Stefano
Affiliation:
Università degli Studi, Siena
Rao Gullapalli
Affiliation:
University of Maryland, Baltimore
Doris D. M. Lin
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Key points

  • MRS can provide useful clinical, metabolic information in infection, inflammation, and demyelination.

  • Pyogenic abscess have a unique metabolic pattern with decreased levels of all normally observed brain metabolites, and elevation of succinate, alanine, acetate, and amino acids, as well as lipids and lactate. This pattern is quite distinct from that seen in brain tumors.

  • Tuberculomas are characterized by elevated lipid and an absence of all other resonances.

  • MRS is extensively used in research studies of HIV infection; early changes include elevated choline and myo-inositol perhaps associated with microglial proliferation, while later changes (associated with cognitive impairment, and dementia) include reduced NAA (neuronal loss).

  • MRS may also be useful in assisting differential diagnosis in HIV-associated lesions.

  • MRS shows decreased NAA (suggesting axonal dysfunction and loss) in early multiple sclerosis, as well as increased Cho and myo-inositol and lipids (suggesting demyelination). NAA correlates with clinical disability. White matter that appears normal on T2 MRI may be abnormal metabolically in MS. Lactate may be elevated in acute, inflammatory demyelination.

  • Acute disseminated encephalomyelitis (ADEM) may show similar spectral patterns to MS; however, ADEM with good clinical outcome usually only shows mild NAA losses in lesions.

Introduction

Intracranial infection, inflammation, and demyelination include a wide range of disorders of the central nervous system (CNS). Magnetic resonance imaging (MRI) plays a crucial role in the diagnosis and therapeutic decision making in these diseases.

Type
Chapter
Information
Clinical MR Spectroscopy
Techniques and Applications
, pp. 110 - 130
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Foerster, BR, Thurnher, MM, Malani, PN, Petrou, M, Carets-Zumelzu, F, Sundgren, PC. Intracranial infections: clinical and imaging characteristics. Acta Radiol 2007; 48: 875–93.CrossRefGoogle ScholarPubMed
Garvey, G. Current concepts of bacterial infections of the central nervous system. Bacterial meningitis and bacterial brain abscess. J Neurosurg 1983; 59: 735–44.CrossRefGoogle ScholarPubMed
Cecil, KM, Lenkinski, RE. Proton MR spectroscopy in inflammatory and infectious brain disorders. Neuroimaging Clin N Am 1998; 8: 863–80.Google ScholarPubMed
Habib, AA, Mozaffar, T. Brain abscess. Arch Neurol 2001; 58: 1302–04.CrossRefGoogle ScholarPubMed
Krcmery, V, Fedor-Freybergh, PG. Neuroinfections in developed versus developing countries. Neuro Endocrinol Lett 2007; 28(Suppl 2): 5–6.Google ScholarPubMed
Osenbach, RK, Loftus, CM. Diagnosis and management of brain abscess. Neurosurg Clin N Am 1992; 3: 403–20.Google ScholarPubMed
Calfee, DP, Wispelwey, B. Brain abscess. Semin Neurol 2000; 20: 353–60.CrossRefGoogle ScholarPubMed
Haimes, AB, Zimmerman, RD, Morgello, S, Weingarten, K, Becker, RD, Jennis, R, et al. MR imaging of brain abscesses. Am J Roentgenol 1989; 152: 1073–85.CrossRefGoogle ScholarPubMed
Kastrup, O, Wanke, I, Maschke, M. Neuroimaging of infections. Neurorx 2005; 2: 324–32.CrossRefGoogle ScholarPubMed
Kingsley, PB, Shah, TC, Woldenberg, R. Identification of diffuse and focal brain lesions by clinical magnetic resonance spectroscopy. NMR Biomed 2006; 19: 435–62.CrossRefGoogle ScholarPubMed
Poptani, H, Gupta, RK, Gupta, K, Roy, R, Pandey, R, Jain, VK, et al. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. Am J Neuroradiol 1995; 16: 1593–603.Google ScholarPubMed
Poptani, H, Kaartinen, J, Gupta, RK, Niemitz, M, Hiltunen, Y, Kauppinen, RA. Diagnostic assessment of brain tumours and non-neoplastic brain disorders in vivo using proton nuclear magnetic resonance spectroscopy and artificial neural networks. J Cancer ResClin Oncol 1999; 125: 343–9.CrossRefGoogle ScholarPubMed
Garg, M, Gupta, RK, Husain, M, Chawla, S, Chawla, J, Kumar, R, et al. Brain abscesses: etiologic categorization with in vivo proton MR spectroscopy. Radiology 2004; 230: 519–27.CrossRefGoogle ScholarPubMed
Poptani, H, Gupta, RK, Jain, VK, Roy, R, Pandey, R. Cystic intracranial mass lesions: possible role of in vivo MR spectroscopy in its differential diagnosis. Magn Reson Imaging 1995; 13: 1019–29.CrossRefGoogle ScholarPubMed
Dev, R, Gupta, RK, Poptani, H, Roy, R, Sharma, S, Husain, M. Role of in vivo proton magnetic resonance spectroscopy in the diagnosis and management of brain abscesses. Neurosurgery 1998; 42: 37–42.CrossRefGoogle ScholarPubMed
Shukla-Dave, A, Gupta, RK, Roy, R, Husain, N, Paul, L, Venkatesh, SK, et al. Prospective evaluation of in vivo proton MR spectroscopy in differentiation of similar appearing intracranial cystic lesions. Magn Reson Imaging 2001; 19: 103–10.CrossRefGoogle ScholarPubMed
Lai, PH, Hsu, SS, Ding, SW, Ko, CW, Fu, JH, Weng, MJ, et al. Proton magnetic resonance spectroscopy and diffusion-weighted imaging in intracranial cystic mass lesions. Surg Neurol 2007; 68(Suppl 1): S25–36.CrossRefGoogle ScholarPubMed
Gupta, RK, Vatsal, DK, Husain, N, Chawla, S, Prasad, KN, Roy, R, et al. Differentiation of tuberculous from pyogenic brain abscesses with in vivo proton MR spectroscopy and magnetization transfer MR imaging. Am J Neuroradiol 2001; 22: 1503–09.Google ScholarPubMed
Mendz, GL, McCall, MN, Kuchel, PW. Identification of methyl resonances in the 1H NMR spectrum of incubated blood cell lysates. J Biol Chem 1989; 264: 2100–07.Google ScholarPubMed
Grand, S, Lai, ES, Esteve, F, Rubin, C, Hoffmann, D, Remy, C, et al. In vivo 1H MRS of brain abscesses versus necrotic brain tumors. Neurology 1996; 47: 846–8.CrossRefGoogle ScholarPubMed
Lai, PH, Ho, JT, Chen, WL, Hsu, SS, Wang, JS, Pan, HB, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. Am J Neuroradiol 2002; 23: 1369–77.Google ScholarPubMed
Tedeschi, G, Lundbom, N, Raman, R, Bonavita, S, Duyn, JH, Alger, JR, et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 1997; 87: 516–24.CrossRefGoogle ScholarPubMed
McKnight, TR, Lamborn, KR, Love, TD, Berger, MS, Chang, S, Dillon, WP, et al. Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg 2007; 106: 660–6.CrossRefGoogle ScholarPubMed
Burtscher, IM, Holtas, S. In vivo proton MR spectroscopy of untreated and treated brain abscesses. Am J Neuroradiol 1999; 20: 1049–53.Google ScholarPubMed
Bayindir, C, Mete, O, Bilgic, B. Retrospective study of 23 pathologically proven cases of central nervous system tuberculomas. Clin Neurol Neurosurg 2006; 108: 353–7.CrossRefGoogle ScholarPubMed
Bernaerts, A, Vanhoenacker, FM, Parizel, PM, Goethem, JW, Van, AR, Laridon, A, et al. Tuberculosis of the central nervous system: overview of neuroradiological findings. Eur Radiol 2003; 13: 1876–90.CrossRefGoogle ScholarPubMed
Shah, GV. Central nervous system tuberculosis: imaging manifestations. Neuroimaging Clin N Am 2000; 10: 355–74.Google ScholarPubMed
Cinque, P, Cleator, GM, Weber, T, Monteyne, P, Sindic, CJ, Loon, AM. The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. The EU Concerted Action on Virus Meningitis and Encephalitis. J Neurol Neurosurg Psychiatry 1996; 61: 339–45.CrossRefGoogle ScholarPubMed
Tien, RD, Felsberg, GJ, Osumi, AK. Herpesvirus infections of the CNS: MR findings. Am J Roentgenol 1993; 161: 167–76.CrossRefGoogle ScholarPubMed
Schroth, G, Gawehn, J, Thron, A, Vallbracht, A, Voigt, K. Early diagnosis of herpes simplex encephalitis by MRI. Neurology 1987; 37: 179–83.CrossRefGoogle ScholarPubMed
Salvan, AM, Confort-Gouny, S, Cozzone, PJ, Vion-Dury, J. Atlas of brain proton magnetic resonance spectra. Part III: Viral infections. J Neuroradiol 1999; 26: 154–61.Google ScholarPubMed
Menon, DK, Sargentoni, J, Peden, CJ, Bell, JD, Cox, IJ, Coutts, GA, et al. Proton MR spectroscopy in herpes simplex encephalitis: assessment of neuronal loss. J Comput Assist Tomogr 1990; 14: 449–52.CrossRefGoogle ScholarPubMed
Takanashi, J, Sugita, K, Ishii, M, Aoyagi, M, Niimi, H. Longitudinal MR imaging and proton MR spectroscopy in herpes simplex encephalitis. J Neurol Sci 1997; 149: 99–102.CrossRefGoogle ScholarPubMed
Demaerel, P, Wilms, G, Robberecht, W, Johannik, K, Van, HP, Carton, H, et al. MRI of herpes simplex encephalitis. Neuroradiology 1992; 34: 490–3.CrossRefGoogle ScholarPubMed
Price, RW. Neurological complications of HIV infection. Lancet 1996; 348: 445–52.CrossRefGoogle ScholarPubMed
Price, RW, Epstein, LG, Becker, JT, Cinque, P, Gisslen, M, Pulliam, L, et al. Biomarkers of HIV-1 CNS infection and injury. Neurology 2007; 69: 1781–8.CrossRefGoogle ScholarPubMed
Anthony, IC, Bell, JE. The neuropathology of HIV/AIDS. Int Rev Psychiatry 2008; 20: 15–24.CrossRefGoogle ScholarPubMed
Hult, B, Chana, G, Masliah, E, Everall, I. Neurobiology of HIV. Int Rev Psychiatry 2008; 20: 3–13.CrossRefGoogle ScholarPubMed
Nath, A, Schiess, N, Venkatesan, A, Rumbaugh, J, Sacktor, N, McArthur, J. Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 2008; 20: 25–31.CrossRefGoogle ScholarPubMed
Trotot, PM, Gray, F. Diagnostic imaging contribution in the early stages of HIV infection of the brain. Neuroimaging Clin N Am 1997; 7: 243–60.Google Scholar
Offiah, CE, Turnbull, IW. The imaging appearances of intracranial CNS infections in adult HIV and AIDS patients. Clin Radiol 2006; 61: 393–401.CrossRefGoogle ScholarPubMed
Dal Canto, MC. Mechanisms of HIV infection of the central nervous system and pathogenesis of AIDS–dementia complex. Neuroimaging Clin N Am 1997; 7: 231–41.Google ScholarPubMed
Menon, DK, Baudouin, CJ, Tomlinson, D, Hoyle, C. Proton MR spectroscopy and imaging of the brain in AIDS: evidence of neuronal loss in regions that appear normal with imaging. J Comput Assist Tomogr 1990; 14: 882–5.CrossRefGoogle ScholarPubMed
Meyerhoff, DJ, MacKay, S, Bachman, L, Poole, N, Dillon, WP, Weiner, MW, et al. Reduced brain N-acetylaspartate suggests neuronal loss in cognitively impaired human immunodeficiency virus-seropositive individuals: in vivo 1H magnetic resonance spectroscopic imaging. Neurology 1993; 43: 509–15.CrossRefGoogle ScholarPubMed
Jarvik, JG, Lenkinski, RE, Grossman, RI, Gomori, JM, Schnall, MD, Frank, I. Proton MR spectroscopy of HIV-infected patients: characterization of abnormalities with imaging and clinical correlation. Radiology 1993; 186: 739–44.CrossRefGoogle ScholarPubMed
Chong, WK, Paley, M, Wilkinson, ID, Hall-Craggs, MA, Sweeney, B, Harrison, MJ, et al. Localized cerebral proton MR spectroscopy in HIV infection and AIDS. Am J Neuroradiol 1994; 15: 21–5.Google ScholarPubMed
Barker, PB, Lee, RR, McArthur, JC. AIDS dementia complex: evaluation with proton MR spectroscopic imaging. Radiology 1995; 195: 58–64.CrossRefGoogle ScholarPubMed
Wilkinson, ID, Miller, RF, Miszkiel, KA, Paley, MN, Hall-Craggs, MA, Baldeweg, T, et al. Cerebral proton magnetic resonance spectroscopy in asymptomatic HIV infection. AIDS 1997; 11: 289–95.CrossRefGoogle ScholarPubMed
Tarasow, E, Wiercinska-Drapalo, A, Kubas, B, Dzienis, W, Orzechowska-Bobkiewicz, A, Prokopowicz, D, et al. Cerebral MR spectroscopy in neurologically asymptomatic HIV-infected patients. Acta Radiol 2003; 44: 206–12.CrossRefGoogle ScholarPubMed
Yiannoutsos, CT, Ernst, T, Chang, L, Lee, PL, Richards, T, Marra, CM, et al. Regional patterns of brain metabolites in AIDS dementia complex. Neuroimage 2004; 23: 928–35.CrossRefGoogle ScholarPubMed
Moller, HE, Vermathen, P, Lentschig, MG, Schuierer, G, Schwarz, S, Wiedermann, D, et al. Metabolic characterization of AIDS dementia complex by spectroscopic imaging. J Magn Reson Imaging 1999; 9: 10–8.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Meyerhoff, DJ, Bloomer, C, Cardenas, V, Norman, D, Weiner, MW, Fein, G. Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology 1999; 52: 995–1003.CrossRefGoogle ScholarPubMed
Skolnick, AA. Magnetic resonance spectroscopy may offer early look at HIV disease-mediated changes in brain [News]. J Am Med Assoc 1993; 269: 1084.CrossRefGoogle Scholar
Tracey, I, Carr, CA, Guimaraes, AR, Worth, JL, Navia, BA, Gonzalez, RG. Brain choline-containing compounds are elevated in HIV-positive patients before the onset of AIDS dementia complex: a proton magnetic resonance spectroscopic study. Neurology 1996; 46: 783–8. [Erratum appears in Neurology 1996; 46: 1787.]CrossRefGoogle ScholarPubMed
Suwanwelaa, N, Phanuphak, P, Phanthumchinda, K, Suwanwela, NC, Tantivatana, J, Ruxrungtham, K, et al. Magnetic resonance spectroscopy of the brain in neurologically asymptomatic HIV-infected patients. Magn Reson Imaging 2000; 18: 859–65.CrossRefGoogle ScholarPubMed
Chong, WK, Sweeney, B, Wilkinson, ID, Paley, M, Hall-Craggs, MA, Kendall, BE, et al. Proton spectroscopy of the brain in HIV infection: correlation with clinical, immunologic, and MR imaging findings. Radiology 1993; 188: 119–24.CrossRefGoogle ScholarPubMed
Salvan, AM, Vion-Dury, J, Confort-Gouny, S, Nicoli, F, Lamoureux, S, Cozzone, PJ. Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy. AIDS Res Hum Retrovir 1997; 13: 1055–66.CrossRefGoogle ScholarPubMed
Chang, L, Ernst, T, Witt, MD, Ames, N, Gaiefsky, M, Miller, E. Relationships among brain metabolites, cognitive function, and viral loads in antiretroviral-naive HIV patients. Neuroimage 2002; 17: 1638–48.CrossRefGoogle ScholarPubMed
Paul, RH, Yiannoutsos, CT, Miller, EN, Chang, L, Marra, CM, Schifitto, G, et al. Proton MRS and neuropsychological correlates in AIDS dementia complex: evidence of subcortical specificity. J Neuropsychiatry Clin Neurosci 2007; 19: 283–92.CrossRefGoogle ScholarPubMed
Vion-Dury, J, Nicoli, F, Salvan, AM, Confort-Gouny, S, Dhiver, C, et al. Reversal of brain metabolic alterations with zidovudine detected by proton localised magnetic resonance spectroscopy [Letter]. Lancet 1995; 345: 60–1.CrossRefGoogle Scholar
Sacktor, N, Skolasky, RL, Ernst, T, Mao, X, Selnes, O, Pomper, MG, et al. A multicenter study of two magnetic resonance spectroscopy techniques in individuals with HIV dementia. J Magn Reson Imaging 2005; 21: 325–33.CrossRefGoogle ScholarPubMed
Chang, L, Lee, PL, Yiannoutsos, CT, Ernst, T, Marra, CM, Richards, T, et al. A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 2004; 23: 1336–47.CrossRefGoogle Scholar
Lee, PL, Yiannoutsos, CT, Ernst, T, Chang, L, Marra, CM, Jarvik, JG, et al. A multi-center 1H MRS study of the AIDS dementia complex: validation and preliminary analysis. J Magn Reson Imaging 2003; 17: 625–33.CrossRefGoogle ScholarPubMed
Paley, M, Cozzone, PJ, Alonso, J, Vion-Dury, J, Confort-Gouny, S, Wilkinson, ID, et al. A multicenter proton magnetic resonance spectroscopy study of neurological complications of AIDS. AIDS Res Hum Retrovir 1996; 12: 213–22.CrossRefGoogle Scholar
Chang, L, Ernst, T, Leonido-Yee, M, Witt, M, Speck, O, Walot, I, et al. Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 1999; 53: 782–9.CrossRefGoogle ScholarPubMed
Schifitto, G, Navia, BA, Yiannoutsos, CT, Marra, CM, Chang, L, Ernst, T, et al. Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 2007; 21: 1877–86.CrossRefGoogle ScholarPubMed
Avison, MJ, Nath, A, Berger, JR. Understanding pathogenesis and treatment of HIV dementia: a role for magnetic resonance? Trends Neurosci 2002; 25: 468–73.CrossRefGoogle ScholarPubMed
Navia, BA, Rostasy, K. The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 2005; 8: 3–24.CrossRefGoogle ScholarPubMed
Pomper, MG, Sacktor, N. New techniques for imaging Human Immunodeficiency Virus associated cognitive impairment in the era of highly active antiretroviral therapy. Arch Neurol 2007; 64: 1233–5.CrossRefGoogle ScholarPubMed
Maschke, M, Kastrup, O, Forsting, M, Diener, HC. Update on neuroimaging in infectious central nervous system disease. Curr Opin Neurol 2004; 17: 475–80.CrossRefGoogle ScholarPubMed
Chang, L, Miller, BL, McBride, D, Cornford, M, Oropilla, G, Buchthal, S, et al. Brain lesions in patients with AIDS: H-1 MR spectroscopy. Radiology 1995; 197: 525–31.CrossRefGoogle ScholarPubMed
Simpson, DM, Tagliati, M, Ramcharitar, S. Neurologic complications of AIDS: new concepts and treatments. Mt Sinai J Med 1994; 61: 484–91.Google ScholarPubMed
Mamidi, A, DeSimone, JA, Pomerantz, RJ. Central nervous system infections in individuals with HIV-1 infection. J Neurovirol 2002; 8: 158–67.CrossRefGoogle ScholarPubMed
Antinori, A, Ammassari, A, De, Luca A, Cingolani, A, Murri, R, Scoppettuolo, G, et al. Diagnosis of AIDS-related focal brain lesions: a decision-making analysis based on clinical and neuroradiologic characteristics combined with polymerase chain reaction assays in CSF. Neurology 1997; 48: 687–94.CrossRefGoogle ScholarPubMed
Roberts, TC, Storch, GA. Multiplex PCR for diagnosis of AIDS-related central nervous system lymphoma and toxoplasmosis. J Clin Microbiol 1997; 35: 268–9.Google ScholarPubMed
Sadler, M, Brink, NS, Gazzard, BG. Management of intracerebral lesions in patients with HIV: a retrospective study with discussion of diagnostic problems. Q J Med 1998; 91: 205–17.CrossRefGoogle ScholarPubMed
Cingolani, A, De, Luca A, Larocca, LM, Ammassari, A, Scerrati, M, Antinori, A, et al. Minimally invasive diagnosis of acquired immunodeficiency syndrome-related primary central nervous system lymphoma. J Natl Cancer Inst 1998; 90: 364–9.CrossRefGoogle ScholarPubMed
Skiest, DJ, Erdman, W, Chang, WE, Oz, OK, Ware, A, Fleckenstein, J. SPECT thallium-201 combined with Toxoplasma serology for the presumptive diagnosis of focal central nervous system mass lesions in patients with AIDS. J Infect 2000; 40: 274–81.CrossRefGoogle ScholarPubMed
Pomper, MG, Constantinides, CD, Barker, PB, Bizzi, A, Dogan, S, Yokoi, F, et al. Quantitative MR spectroscopic imaging of brain lesions in patients with AIDS: correlation with [11C-methyl]thymidine PET and thallium-201 SPECT. Acad Radiol 2002; 9: 398–409.CrossRefGoogle Scholar
Simone, IL, Federico, F, Tortorella, C, Andreula, CF, Zimatore, GB, Giannini, P, et al. Localised 1H-MR spectroscopy for metabolic characterisation of diffuse and focal brain lesions in patients infected with HIV. J Neurol Neurosurg Psychiatry 1998; 64: 516–23.CrossRefGoogle Scholar
Ferrante, P, Caldarelli-Stefano, R, Omodeo-Zorini, E, Vago, L, Boldorini, R, Costanzi, G. PCR detection of JC virus DNA in brain tissue from patients with and without progressive multifocal leukoencephalopathy. J Med Virol 1995; 47: 219–25.CrossRefGoogle ScholarPubMed
Marzocchetti, A, Sanguinetti, M, Giambenedetto, SD, Cingolani, A, Fadda, G, Cauda, R, et al. Characterization of JC virus in cerebrospinal fluid from HIV-1 infected patients with progressive multifocal leukoencephalopathy: insights into viral pathogenesis and disease prognosis. J Neurovirol 2007; 13: 338–46.CrossRefGoogle ScholarPubMed
Yousry, TA, Major, EO, Ryschkewitsch, C, Fahle, G, Fischer, S, Hou, J, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 2006; 354: 924–33.CrossRefGoogle ScholarPubMed
Einsiedel, RW, Fife, TD, Aksamit, AJ, Cornford, ME, Secor, DL, Tomiyasu, U. Progressive multifocal leukoencephalopathy in AIDS: a clinicopathologic study and review of the literature. J Neurol 1993; 240: 391–406.CrossRefGoogle Scholar
Chang, L, Ernst, T, Tornatore, C, Aronow, H, Melchor, R, Walot, I, et al. Metabolite abnormalities in progressive multifocal leukoencephalopathy by proton magnetic resonance spectroscopy. Neurology 1997; 48: 836–45.CrossRefGoogle ScholarPubMed
Iranzo, A, Moreno, A, Pujol, J, Marti-Fabregas, J, Domingo, P, Molet, J, et al. Proton magnetic resonance spectroscopy pattern of progressive multifocal leukoencephalopathy in AIDS. J Neurol Neurosurg Psychiatry 1999; 66: 520–3.CrossRefGoogle Scholar
Teksam, M, Cakir, B, Agildere, AM. Proton MR spectroscopy in the diagnosis of early-stage subacute sclerosing panencephalitis. Diagn Interv Radiol 2006; 12: 61–3.Google Scholar
Aydin, K, Tatli, B, Ozkan, M, Ciftci, K, Unal, Z, Sani, S, et al. Quantification of neurometabolites in subacute sclerosing panencephalitis by 1H-MRS. Neurology 2006; 67: 911–3.CrossRefGoogle ScholarPubMed
McDonald, WI, Ron, MA. Multiple sclerosis: the disease and its manifestations. Phil Trans R. Soc Lond B Biol Sci 1999; 354: 1615–22.CrossRefGoogle ScholarPubMed
Compston, A, Coles, A. Multiple sclerosis. Lancet 2002; 359: 1221–31.CrossRefGoogle ScholarPubMed
McDonald, WI, Miller, DH, Barnes, D. The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 1992; 18: 319–34.CrossRefGoogle ScholarPubMed
Vukusic, S, Confavreux, C. Natural history of multiple sclerosis: risk factors and prognostic indicators. Curr Opin Neurol 2007; 20: 269–74.CrossRefGoogle ScholarPubMed
McDonald, WI, Compston, A, Edan, G, Goodkin, D, Hartung, HP, Lublin, FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121–7.CrossRefGoogle Scholar
Polman, CH, Reingold, SC, Edan, G, Filippi, M, Hartung, HP, Kappos, L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 2005; 58: 840–6.CrossRefGoogle ScholarPubMed
Filippi, M, Rocca, MA, Comi, G. The use of quantitative magnetic-resonance-based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2003; 2: 337–46.CrossRefGoogle ScholarPubMed
Filippi, M, Rocca, MA. Conventional MRI in multiple sclerosis. J Neuroimaging 2007; 17(Suppl 1): 3S–9S.CrossRefGoogle ScholarPubMed
Waesberghe, JH, Walderveen, MA, Castelijns, JA, Scheltens, P, Nijeholt, GJ, Polman, CH, et al. Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. Am J Neuroradiol 1998; 19: 675–83.Google ScholarPubMed
Katz, D, Taubenberger, JK, Cannella, B, McFarlin, , Raine, CS, McFarland, HF. Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 1993; 34: 661–9.CrossRefGoogle ScholarPubMed
Peterson, JW, Trapp, BD. Neuropathobiology of multiple sclerosis. Neurol Clin 2005; 23: 107–29.CrossRefGoogle ScholarPubMed
Arnold, DL, De, Stefano N, Narayanan, S, Matthews, PM. Proton MR spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 2000; 10: 789–98.Google ScholarPubMed
Filippi, M, Arnold, DL, Comi, G. Magnetic Resonance Spectroscopy in Multiple Sclerosis. Milan: Springer, 2007.Google Scholar
Narayana, PA. Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging 2005; 15: 46S–57S.CrossRefGoogle ScholarPubMed
Davie, CA, Hawkins, CP, Barker, GJ, Brennan, A, Tofts, PS, Miller, DH, et al. Serial proton magnetic resonance spectroscopy in acute multiple sclerosis lesions. Brain 1994; 117: 49–58.CrossRefGoogle ScholarPubMed
Stefano, N, Matthews, PM, Arnold, DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 1995; 34: 721–7.CrossRefGoogle ScholarPubMed
Stefano, N, Matthews, PM, Antel, JP, Preul, M, Francis, G, Arnold, DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995; 38: 901–09.CrossRefGoogle ScholarPubMed
Narayana, PA, Doyle, TJ, Lai, D, Wolinsky, JS. Serial proton magnetic resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 1998; 43: 56–71.CrossRefGoogle ScholarPubMed
Fernando, KT, McLean, MA, Chard, DT, MacManus, DG, Dalton, CM, Miszkiel, KA, et al. Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 2004; 127: 1361–9.CrossRefGoogle ScholarPubMed
Matthews, PM, Stefano, N, Narayanan, S, Francis, GS, Wolinsky, JS, Antel, JP, et al. Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 1998; 18: 327–36.CrossRefGoogle ScholarPubMed
Srinivasan, R, Sailasuta, N, Hurd, R, Nelson, S, Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005; 128: 1016–25.CrossRefGoogle ScholarPubMed
Caramanos, Z, Narayanan, S, Arnold, DL. 1H-MRS quantification of tNA and tCr in patients with multiple sclerosis: a meta-analytic review. Brain 2005; 128: 2483–506.CrossRefGoogle ScholarPubMed
Brex, PA, Parker, GJ, Leary, SM, Molyneux, PD, Barker, GJ, Davie, CA, et al. Lesion heterogeneity in multiple sclerosis: a study of the relations between appearances on T1 weighted images, T1 relaxation times, and metabolite concentrations. J Neurol Neurosurg Psychiatry 2000; 68: 627–32.CrossRefGoogle ScholarPubMed
Kapeller, P, Brex, PA, Chard, D, Dalton, C, Griffin, CM, McLean, MA, et al. Quantitative 1H MRS imaging 14 years after presenting with a clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 2002; 8: 207–10.CrossRefGoogle ScholarPubMed
Helms, G, Stawiarz, L, Kivisakk, P, Link, H. Regression analysis of metabolite concentrations estimated from localized proton MR spectra of active and chronic multiple sclerosis lesions. Magn Reson Med 2000; 43: 102–10.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Brenner, RE, Munro, PM, Williams, SC, Bell, JD, Barker, GJ, Hawkins, CP, et al. The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 1993; 29: 737–45.CrossRefGoogle ScholarPubMed
Arnold, DL, Matthews, PM, Francis, G, Antel, J. Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 1990; 14: 154–9.CrossRefGoogle Scholar
Wolinsky, JS, Narayana, PA, Fenstermacher, MJ. Proton magnetic resonance spectroscopy in multiple sclerosis. Neurology 1990; 40: 1764–9.CrossRefGoogle ScholarPubMed
Husted, CA, Goodin, DS, Hugg, JW, Maudsley, AA, Tsuruda, JS, Bie, SH, et al. Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 1994; 36: 157–65.CrossRefGoogle ScholarPubMed
Narayanan, S, Fu, L, Pioro, E, Stefano, N, Collins, DL, Francis, GS, et al. Imaging of axonal damage in multiple sclerosis: spatial distribution of magnetic resonance imaging lesions. Ann Neurol 1997; 41: 385–91.CrossRefGoogle ScholarPubMed
Davie, CA, Barker, GJ, Thompson, AJ, Tofts, PS, McDonald, WI, Miller, DH. 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 1997; 63: 736–42.CrossRefGoogle ScholarPubMed
Fu, L, Matthews, PM, Stefano, N, Worsley, KJ, Narayanan, S, Francis, GS, et al. Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 1998; 121: 103–13.CrossRefGoogle ScholarPubMed
Sarchielli, P, Presciutti, O, Pelliccioli, GP, Tarducci, R, Gobbi, G, Chiarini, P, et al. Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 1999; 122: 513–21.CrossRefGoogle ScholarPubMed
Matthews, PM, Stefano, N, Narayanan, S, Francis, GS, Wolinsky, JS, Antel, JP, et al. Putting magnetic resonance spectroscopy studies in context: axonal damage and disability in multiple sclerosis. Semin Neurol 1998; 18: 327–36.CrossRefGoogle ScholarPubMed
Stefano, N, Narayanan, S, Francis, GS, Arnaoutelis, R, Tartaglia, MC, Antel, JP, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001; 58: 65–70.CrossRefGoogle ScholarPubMed
Falini, A, Calabrese, G, Filippi, M, Origgi, D, Lipari, S, Colombo, B, et al. Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. Am J Neuroradiol 1998; 19: 223–9.Google ScholarPubMed
Stefano, N, Narayanan, S, Matthews, PM, Francis, GS, Antel, JP, Arnold, DL. In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 1999; 122: 1933–9.CrossRefGoogle ScholarPubMed
Arnold, DL. Changes observed in multiple sclerosis using magnetic resonance imaging reflect a focal pathology distributed along axonal pathways. J Neurol 2005; 252(Suppl 5): v25–v29.CrossRefGoogle ScholarPubMed
Trapp, BD, Peterson, J, Ransohoff, RM, Rudick, R, Mork, S, Bo, L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278–85.CrossRefGoogle ScholarPubMed
Stefano, N, Narayanan, S, Francis, SJ, Smith, S, Mortilla, M, Tartaglia, MC, et al. Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. Arch Neurol 2002; 59: 1565–71.CrossRefGoogle ScholarPubMed
Filippi, M. Multiple sclerosis: a white matter disease with associated gray matter damage. J Neurol Sci 2001; 185: 3–4.CrossRefGoogle ScholarPubMed
Sharma, R, Narayana, PA, Wolinsky, JS. Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 2001; 7: 221–6.CrossRefGoogle ScholarPubMed
Sarchielli, P, Presciutti, O, Tarducci, R, Gobbi, G, Alberti, A, Pelliccioli, GP, et al. Localized (1)H magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J Neurol 2002; 249: 902–10.CrossRefGoogle ScholarPubMed
Filippi, M, Bozzali, M, Rovaris, M, Gonen, O, Kesavadas, C, Ghezzi, A, et al. Evidence for widespread axonal damage at the earliest clinical stage of multiple sclerosis. Brain 2003; 126: 433–7.CrossRefGoogle ScholarPubMed
Adalsteinsson, E, Langer-Gould, A, Homer, RJ, Rao, A, Sullivan, EV, Lima, CA, et al. Gray matter N-acetyl aspartate deficits in secondary progressive but not relapsing-remitting multiple sclerosis. Am J Neuroradiol 2003; 24: 1941–5.Google Scholar
Sastre-Garriga, J, Ingle, GT, Chard, DT, Ramio-Torrenta, L, McLean, MA, Miller, DH, et al. Metabolite changes in normal-appearing gray and white matter are linked with disability in early primary progressive multiple sclerosis. Arch Neurol 2005; 62: 569–73.CrossRefGoogle ScholarPubMed
Wylezinska, M, Cifelli, A, Jezzard, P, Palace, J, Alecci, M, Matthews, PM. Thalamic neurodegeneration in relapsing–remitting multiple sclerosis. Neurology 2003; 60: 1949–54.CrossRefGoogle ScholarPubMed
Inglese, M, Liu, S, Babb, JS, Mannon, LJ, Grossman, RI, Gonen, O. Three-dimensional proton spectroscopy of deep gray matter nuclei in relapsing–remitting MS. Neurology 2004; 63: 170–2.CrossRefGoogle ScholarPubMed
Geurts, JJ, Reuling, IE, Vrenken, H, Uitdehaag, BM, Polman, CH, Castelijns, JA, et al. MR spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn Reson Med 2006; 5: 478–83.CrossRefGoogle Scholar
Cifelli, A, Arridge, M, Jezzard, P, Esiri, MM, Palace, J, Matthews, PM. Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 2002; 52: 650–3.CrossRefGoogle ScholarPubMed
Davie, CA, Barker, GJ, Webb, S, Tofts, PS, Thompson, AJ, Harding, AE, et al. Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 1995; 118: 1583–92.CrossRefGoogle ScholarPubMed
Stefano, N, Matthews, PM, Narayanan, S, Francis, GS, Antel, JP, Arnold, DL. Axonal dysfunction and disability in a relapse of multiple sclerosis: longitudinal study of a patient. Neurology 1997; 49: 1138–41.CrossRefGoogle Scholar
Stefano, N, Matthews, PM, Fu, L, Narayanan, S, Stanley, J, Francis, GS, et al. Axonal damage correlates with disability in patients with relapsing–remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 1998; 121: 1469–77.CrossRefGoogle ScholarPubMed
Vrenken, H, Barkhof, F, Uitdehaag, BM, Castelijns, JA, Polman, CH, Pouwels, PJ. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 2005; 53: 256–66.CrossRefGoogle Scholar
Filippi, M, Falini, A, Arnold, DL, Fazekas, F, Gonen, O, Simon, JH, et al. Magnetic resonance techniques for the in vivo assessment of multiple sclerosis pathology: consensus report of the white matter study group. J Magn Reson Imaging 2005; 21: 669–75.CrossRefGoogle ScholarPubMed
Narayanan, S, Stefano, N, Francis, GS, Arnaoutelis, R, Caramanos, Z, Collins, DL, et al. Axonal metabolic recovery in multiple sclerosis patients treated with interferon beta-1b. J Neurol 2001; 248: 979–86.CrossRefGoogle ScholarPubMed
Schubert, F, Seifert, F, Elster, C, Link, A, Walzel, M, Mientus, S, et al. Serial 1H-MRS in relapsing-remitting multiple sclerosis: effects of interferon-beta therapy on absolute metabolite concentrations. MAGMA 2002; 14: 213–22.CrossRefGoogle ScholarPubMed
Parry, A, Corkill, R, Blamire, AM, Palace, J, Narayanan, S, Arnold, D, et al. Beta-Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J Neurol 2003; 250: 171–8.CrossRefGoogle Scholar
Khan, O, Shen, Y, Caon, C, Bao, F, Ching, W, Reznar, M, et al. Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing–remitting multiple sclerosis. Mult Scler 2005; 11: 646–51.CrossRefGoogle ScholarPubMed
Mostert, JP, Sijens, PE, Oudkerk, M, De, KJ. Fluoxetine increases cerebral white matter NAA/Cr ratio in patients with multiple sclerosis. Neurosci Lett 2006; 402: 22–4.CrossRefGoogle ScholarPubMed
Stefano, N, Filippi, M, Miller, D, Pouwels, PJ, Rovira, A, Gass, A, et al. Guidelines for using proton MR spectroscopy in multicenter clinical MS studies. Neurology 2007; 69: 1942–52.CrossRefGoogle ScholarPubMed
Talbot, PJ, Arnold, D, Antel, JP. Virus-induced autoimmune reactions in the CNS. Curr Top Microbiol Immunol 2001; 253: 247–71.Google ScholarPubMed
Kesselring, J, Miller, DH, Robb, SA, Kendall, BE, Moseley, IF, Kingsley, D, et al. Acute disseminated encephalomyelitis. MRI findings and the distinction from multiple sclerosis. Brain 1990; 113: 291–302.CrossRefGoogle ScholarPubMed
Gabis, LV, Panasci, DJ, Andriola, MR, Huang, W. Acute disseminated encephalomyelitis: an MRI/MRS longitudinal study. Pediatr Neurol 2004; 30: 324–9.CrossRefGoogle ScholarPubMed
Bizzi, A, Ulug, AM, Crawford, TO, Passe, T, Bugiani, M, Bryan, RN, et al. Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. Am J Neuroradiol 2001; 22: 1125–30.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×