Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T02:51:08.284Z Has data issue: false hasContentIssue false

Chapter 35 - Diffusion and perfusion MR imaging in seizure disorders

from Section 5 - Seizure disorders

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

Conventional, anatomical MR imaging (MRI) has been widely used for the detection of brain tissue volume changes caused by chronic seizures, and for diagnosis of brain lesions that result in seizure activity. However, seizures are often not associated with lesions or volume changes visible in conventional MRI. In contrast, diffusion and perfusion MRI are sensitive to the physiological changes that take place in brain tissue ictally, postictally, and interictally. This chapter provides an in-depth discussion of the application of both diffusion and perfusion MRI in seizure disorders. The changes in perfusion (cerebral blood flow [CBF], cerebral blood volume [CBV]) and diffusion (apparent diffusion coefficient [ADC], fractional anisotropy [FA]) that occur in ictogenic regions or globally in the brain are described, and diffusion and perfusion MRI are evaluated as methods to localize seizure focus. Finally, mechanisms that may be responsible for the changes that occur in perfusion and diffusion of brain tissue in seizure disorders are examined.

Perfusion MRI in seizure disorders

The techniques

Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) have been used to identify focal changes in regional CBF in patients with epilepsy.[1,2] However, the low spatial and temporal resolution of PET and SPECT and the ionizing radiation emitted from the nuclear medicine tracers are major concerns. The development of MR perfusion techniques has offered higher spatial and temporal resolution without the use of ionizing radiation.[3,4] Perfusion MRI has been applied in several studies of cerebral ischemia,[5] brain tumors,[6] and functional brain mapping.[7] The techniques are based on exogenous or endogenous tracers. In the method based on exogenous tracers, a paramagnetic agent such as gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) is injected, and the resulting decrease and subsequent recovery of the MR signal is used to estimate perfusion.[8,9] In the method using endogenous tracers, the spins of arterial water are non-invasively labeled using radiofrequency pulses, and the regional accumulation of the label is measured by comparison with an image acquired without labeling (arterial spin-labeling, [ASL]).[10]

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 546 - 560
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Franck, G, Sadzot, B, Salman, E, et al. Regional cerebral blood flow and metabolic rates in human focal epilepsy and status epilepticus. Adv Neurol 1986; 44: 935–948.Google ScholarPubMed
van Paesschen, W, Dupont, P, Sunaert, S, et al. The use of SPECT and PET in routine clinical practice in epilepsy. Curr Opin Neurol 2007; 20: 194–202.CrossRefGoogle ScholarPubMed
Rosen, BR, Belliveau, JW, Vevea, JM, et al. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990; 14: 249–265.CrossRefGoogle ScholarPubMed
Detre, JA, Leigh, JS, Williams, DS, et al. Perfusion imaging. Magn Reson Med 1992; 23: 37–45.CrossRefGoogle ScholarPubMed
Chalela, JA, Alsop, DC, Gonzalez-Atavales, JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000; 31: 680–687.CrossRefGoogle ScholarPubMed
Cha, S, Knopp, EA, Johnson, G, et al. Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 2002; 223: 11–29.CrossRefGoogle ScholarPubMed
Silva, AC, Kim, SG.Perfusion-based functional magnetic resonance imaging. Concept Magn Reson A 2003; 16: 16–27.CrossRefGoogle Scholar
Østergaard, L, Sorensen, AG, Kwong, KK, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 1996; 36: 726–736.CrossRefGoogle ScholarPubMed
Østergaard, L, Weisskoff, RM, Chesler, DA, et al. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 1996; 36: 715–725.CrossRefGoogle ScholarPubMed
Barbier, EL, Lamalle, L, Decorps, M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001; 13: 496–520.CrossRefGoogle ScholarPubMed
Szabo, K, Poepel, A, Pohlmann-Eden, B, et al. Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. Brain 2005; 128: 1369–1376.CrossRefGoogle ScholarPubMed
Fish, DR, Brooks, DJ, Young, IR, et al. Use of magnetic resonance imaging to identify changes in cerebral blood flow in epilepsia partialis continua. Magn Reson Med 1988; 8: 238–240.CrossRefGoogle ScholarPubMed
Warach, S, Levin, JM, Schomer, DL, et al. Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol 1994; 15: 965–968.Google ScholarPubMed
Wu, RH, Bruening, R, Noachtar, S, et al. MR measurement of regional relative cerebral blood volume in epilepsy. J Magn Reson Imaging 1999; 9: 435–440.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
El-Koussy, M, Mathis, J, Lovblad, KO, et al. Focal status epilepticus: follow-up by perfusion- and diffusion MRI. Eur Radiol 2002; 12: 568–574.CrossRefGoogle ScholarPubMed
Flacke, S, Wullner, U, Keller, E, et al. Reversible changes in echo planar perfusion- and diffusion-weighted MRI in status epilepticus. Neuroradiology 2000; 42: 92–95.CrossRefGoogle ScholarPubMed
Toledo, M, Munuera, J, Sueiras, M, et al. MRI findings in aphasic status epilepticus. Epilepsia 2008; 49: 1465–1469.CrossRefGoogle ScholarPubMed
Fabene, PF, Marzola, P, Sbarbati, A, et al. Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage. Neuroimage 2003; 18: 375–389.CrossRefGoogle ScholarPubMed
Leonhardt, G, de Greiff, A, Weber, J, et al. Brain perfusion following single seizures. Epilepsia 2005; 46: 1943–1949.CrossRefGoogle ScholarPubMed
Pollock, JM, Deibler, AR, West, TG, et al. Arterial spin-labeled magnetic resonance imaging in hyperperfused seizure focus: a case report. J Comput Assist Tomogr 2008; 32: 291–292.CrossRefGoogle ScholarPubMed
Wolf, RL, Alsop, DC, Levy-Reis, I, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001; 22: 1334–1341.Google ScholarPubMed
Liu, HL, Kochunov, P, Hou, J, et al. Perfusion-weighted imaging of interictal hypoperfusion in temporal lobe epilepsy using FAIR-HASTE: comparison with H(2)(15)O PET measurements. Magn Reson Med 2001; 45: 431–435.3.0.CO;2-E>CrossRefGoogle Scholar
Heiniger, P, el-Koussy, M, Schindler, K, et al. Diffusion and perfusion MRI for the localisation of epileptogenic foci in drug-resistant epilepsy. Neuroradiology 2002; 44: 475–480.CrossRefGoogle ScholarPubMed
Duncan, R. Epilepsy, cerebral blood flow, and cerebral metabolic rate. Cerebrovasc Brain Metab Rev 1992; 4: 105–121.Google ScholarPubMed
Deibler, AR, Pollock, JM, Kraft, RA, et al. Arterial spin-labeling in routine clinical practice, Part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 2008; 29: 1235–1241.CrossRefGoogle ScholarPubMed
Le Bihan, D. Diffusion NMR imaging. Magn Reson Q 1991; 7: 1–30.Google Scholar
Basser, PJ, Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative diffusion-tensor MRI. J Magn Reson B 1996; 111: 209–219.CrossRefGoogle ScholarPubMed
Le Bihan, D, Mangin, JF, Poupon, C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13: 534–546.CrossRefGoogle ScholarPubMed
Sotak, CH. The role of diffusion tensor imaging in the evaluation of ischemic brain injury: a review. NMR Biomed 2002; 15: 561–569.CrossRefGoogle ScholarPubMed
Rovaris, M, Gass, A, Bammer, R, et al. Diffusion MRI in multiple sclerosis. Neurology 2005; 65: 1526–1532.CrossRefGoogle ScholarPubMed
Arfanakis, K, Haughton, VM, Carew, JD, et al. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 2002; 23: 794–802.Google ScholarPubMed
Kubicki, M, McCarley, R, Westin, CF, et al. A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 2007; 41: 15–30.CrossRefGoogle Scholar
Zhong, J, Petroff, OA, Prichard, JW, et al. Changes in water diffusion and relaxation properties of rat cerebrum during status epilepticus. Magn Reson Med 1993; 30: 241–246.CrossRefGoogle ScholarPubMed
Righini, A, Pierpaoli, C, Alger, JR, et al. Brain parenchyma apparent diffusion coefficient alterations associated with experimental complex partial status epilepticus. Magn Reson Imaging 1994; 12: 865–871.CrossRefGoogle ScholarPubMed
Nakasu, Y, Nakasu, S, Kizuki, H, et al. Changes in water diffusion of rat limbic system during status epilepticus elicited by kainate. Psychiatry Clin Neurosci 1995; 49: S228–S230.CrossRefGoogle ScholarPubMed
Ebisu, T, Rooney, WD, Graham, SH, et al. MR spectroscopic imaging and diffusion-weighted MRI for early detection of kainate-induced status epilepticus in the rat. Magn Reson Med 1996; 36: 821–828.CrossRefGoogle ScholarPubMed
Tokumitsu, T, Mancuso, A, Weinstein, PR, et al. Metabolic and pathological effects of temporal lobe epilepsy in rat brain detected by proton spectroscopy and imaging. Brain Res 1997; 744: 57–67.CrossRefGoogle Scholar
Hasegawa, D, Orima, H, Fujita, M, et al. Diffusion-weighted imaging in kainic acid-induced complex partial status epilepticus in dogs. Brain Res 2003; 983: 115–127.CrossRefGoogle ScholarPubMed
Zhong, J, Petroff, OA, Prichard, JW, et al. Barbiturate-reversible reduction of water diffusion coefficient in flurothyl-induced status epilepticus in rats. Magn Reson Med 1995; 33: 253–256.CrossRefGoogle ScholarPubMed
Wall, CJ, Kendall, EJ, Obenaus, A. Rapid alterations in diffusion-weighted images with anatomic correlates in a rodent model of status epilepticus. AJNR Am J Neuroradiol 2000; 21: 1841–1852.Google Scholar
Slais, K, Vorisek, I, Zoremba, N, et al. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol 2008; 209: 145–154.CrossRefGoogle ScholarPubMed
Engelhorn, T, Weise, J, Hammen, T, et al. Early diffusion-weighted MRI predicts regional neuronal damage in generalized status epilepticus in rats treated with diazepam. Neurosci Lett 2007; 417: 275–280.CrossRefGoogle ScholarPubMed
Engelhorn, T, Hufnagel, A, Weise, J, et al. Monitoring of acute generalized status epilepticus using multilocal diffusion MR imaging: early prediction of regional neuronal damage. AJNR Am J Neuroradiol 2007; 28: 321–327.Google ScholarPubMed
Bhagat, YA, Obenaus, A, Hamilton, MG, et al. Neuroprotection from soman-induced seizures in the rodent: evaluation with diffusion- and T2-weighted magnetic resonance imaging. Neurotoxicology 2005; 26: 1001–1013.CrossRefGoogle ScholarPubMed
Bhagat, YA, Obenaus, A, Hamilton, MG, et al. Magnetic resonance imaging predicts neuropathology from soman-mediated seizures in the rodent. Neuroreport 2001; 12: 1481–1487.CrossRefGoogle ScholarPubMed
Zhong, J, Petroff, OA, Pleban, LA, et al. Reversible, reproducible reduction of brain water apparent diffusion coefficient by cortical electroshocks. Magn Reson Med 1997; 37: 1–6.CrossRefGoogle ScholarPubMed
Sagiuchi, T, Ishii, K, Asano, Y, et al. Transient seizure activity demonstrated by Tc-99 m HMPAO SPECT and diffusion-weighted MR imaging. Ann Nucl Med 2001; 15: 267–270.CrossRefGoogle Scholar
Konermann, S, Marks, S, Ludwig, T, et al. Presurgical evaluation of epilepsy by brain diffusion: MR-detected effects of flumazenil on the epileptogenic focus. Epilepsia 2003; 44: 399–407.CrossRefGoogle ScholarPubMed
Calistri, V, Caramia, F, Bianco, F, et al. Visualization of evolving status epilepticus with diffusion and perfusion MR imaging. AJNR Am J Neuroradiol 2003; 24: 671–673.Google ScholarPubMed
Diehl, B, Najm, I, Ruggieri, P, et al. Postictal diffusion-weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia 2001; 42: 21–28.CrossRefGoogle ScholarPubMed
Kim, JA, Chung, JI, Yoon, PH, et al. Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am J Neuroradiol 2001; 22: 1149–1160.Google ScholarPubMed
Lansberg, MG, O’Brien, MW, Norbash, AM, et al. MRI abnormalities associated with partial status epilepticus. Neurology 1999; 52: 1021–1027.CrossRefGoogle ScholarPubMed
Chu, K, Kang, DW, Kim, JY, et al. Diffusion-weighted magnetic resonance imaging in nonconvulsive status epilepticus. Arch Neurol 2001; 58: 993–998.CrossRefGoogle ScholarPubMed
Salmenpera, TM, Simister, RJ, Bartlett, P, et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 2006; 71: 102–106.CrossRefGoogle ScholarPubMed
Hufnagel, A, Weber, J, Marks, S, et al. Brain diffusion after single seizures. Epilepsia 2003; 44: 54–63.CrossRefGoogle ScholarPubMed
Wieshmann, UC, Symms, MR, Shorvon, SD.Diffusion changes in status epilepticus. Lancet 1997; 350: 493–494.CrossRefGoogle ScholarPubMed
Wieshmann, UC, Clark, CA, Symms, MR, et al. Water diffusion in the human hippocampus in epilepsy. Magn Reson Imaging 1999; 17: 29–36.CrossRefGoogle ScholarPubMed
Gonçalves Pereira, PM, Oliveira, E, Rosado, P. Apparent diffusion coefficient mapping of the hippocampus and the amygdala in pharmaco-resistant temporal lobe epilepsy. AJNR Am J Neuroradiol 2006; 27: 671–683.Google ScholarPubMed
Diehl, B, Symms, MR, Boulby, PA, et al. Postictal diffusion tensor imaging. Epilepsy Res 2005; 65: 137–146.CrossRefGoogle ScholarPubMed
Rugg-Gunn, FJ, Eriksson, SH, Symms, MR, et al. Diffusion tensor imaging in refractory epilepsy. Lancet 2002; 359: 1748–1751.CrossRefGoogle ScholarPubMed
Hugg, JW, Butterworth, EJ, Kuzniecky, RI.Diffusion mapping applied to mesial temporal lobe epilepsy: preliminary observations. Neurology 1999; 53: 173–176.CrossRefGoogle ScholarPubMed
Kantarci, K, Shin, C, Britton, JW, et al. Comparative diagnostic utility of 1H MRS and DWI in evaluation of temporal lobe epilepsy. Neurology 2002; 58: 1745–1753.CrossRefGoogle ScholarPubMed
Leonhardt, G, de Greiff, A, Marks, S, et al. Brain diffusion during hyperventilation: diffusion-weighted MR-monitoring in patients with temporal lobe epilepsy and in healthy volunteers. Epilepsy Res 2002; 51: 269–278.CrossRefGoogle ScholarPubMed
Assaf, BA, Mohamed, FB, Abou-Khaled, KJ, et al. Diffusion tensor imaging of the hippocampal formation in temporal lobe epilepsy. AJNR Am J Neuroradiol 2003; 24: 1857–1862.Google ScholarPubMed
Londoño, A, Castillo, M, Lee, YZ, et al. Apparent diffusion coefficient measurements in the hippocampi in patients with temporal lobe seizures. AJNR Am J Neuroradiol 2003; 24: 1582–1586.Google ScholarPubMed
Kimiwada, T, Juhász, C, Makki, M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia 2006; 47: 167–175.CrossRefGoogle ScholarPubMed
Düzel, E, Kaufmann, J, Guderian, S, et al. Measures of hippocampal volumes, diffusion and 1H MRS metabolic abnormalities in temporal lobe epilepsy provide partially complementary information. Eur J Neurol 2004; 11: 195–205.CrossRefGoogle ScholarPubMed
Flügel, D, Cercignani, M, Symms, MR, et al. Diffusion tensor imaging findings and their correlation with neuropsychological deficits in patients with temporal lobe epilepsy and interictal psychosis. Epilepsia 2006; 47: 941–944.CrossRefGoogle ScholarPubMed
Lui, YW, Nusbaum, AO, Barr, WB, et al. Correlation of apparent diffusion coefficient with neuropsychological testing in temporal lobe epilepsy. AJNR Am J Neuroradiol 2005; 26: 1832–1839.Google ScholarPubMed
Thivard, L, Adam, C, Hasboun, D, et al. Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes. Brain 2006; 129: 375–385.CrossRefGoogle ScholarPubMed
Chandra, PS, Salamon, N, Huang, J, et al. FDG-PET/MRI coregistration and diffusion-tensor imaging distinguish epileptogenic tubers and cortex in patients with tuberous sclerosis complex: a preliminary report. Epilepsia 2006; 47: 1543–1549.CrossRefGoogle ScholarPubMed
Eriksson, SH, Rugg-Gunn, FJ, Symms, MR, et al. Diffusion tensor imaging in patients with epilepsy and malformations of cortical development. Brain 2001; 124: 617–626.CrossRefGoogle ScholarPubMed
Rugg-Gunn, FJ, Eriksson, SH, Symms, MR, et al. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain 2001; 124: 627–636.CrossRefGoogle ScholarPubMed
Arfanakis, K, Hermann, BP, Rogers, BP, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 2002; 20: 511–519.CrossRefGoogle ScholarPubMed
Thivard, L, Lehéricy, S, Krainik, A, et al. Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 2005; 28: 682–690.CrossRefGoogle ScholarPubMed
Gross, DW, Concha, L, Beaulieu, C.Extratemporal white matter abnormalities in mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. Epilepsia 2006; 47: 1360–1363.CrossRefGoogle ScholarPubMed
Guye, M, Ranjeva, JP, Bartolomei, F, et al. What is the significance of interictal water diffusion changes in frontal lobe epilepsies?Neuroimage 2007; 35: 28–37.CrossRefGoogle ScholarPubMed
Salmenpera, TM, Symms, MR, Boulby, PA, et al. Postictal diffusion weighted imaging. Epilepsy Res 2006; 70: 133–143.CrossRefGoogle ScholarPubMed
O’Brien, TJ, David, EP, Kilpatrick, CJ, et al. Contrast-enhanced perfusion and diffusion MRI accurately lateralize temporal lobe epilepsy: a pilot study. J Clin Neurosci 2007; 14: 841–849.CrossRefGoogle ScholarPubMed
Concha, L, Beaulieu, C, Wheatley, BM, et al. Bilateral white matter diffusion changes persist after epilepsy surgery. Epilepsia 2007; 48: 931–940.CrossRefGoogle ScholarPubMed
Thivard, L, Tanguy, ML, Adam, C, et al. Postoperative recovery of hippocampal contralateral diffusivity in medial temporal lobe epilepsy. Epilepsia 2007; 48: 599–604.CrossRefGoogle ScholarPubMed
Concha, L, Beaulieu, C, Gross, DW.Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann Neurol 2005; 57: 188–196.CrossRefGoogle ScholarPubMed
Rodrigo, S, Oppenheim, C, Chassoux, F, et al. Uncinate fasciculus fiber tracking in mesial temporal lobe epilepsy. Initial findings. Eur Radiol 2007; 17: 1663–1668.CrossRefGoogle ScholarPubMed
Yogarajah, M, Powell, HW, Parker, GJ, et al. Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage 2008; 40: 1755–1764.CrossRefGoogle ScholarPubMed
Pipe, JG, Zwart, N.Turboprop: Improved PROPELLER imaging. Magn Reson Med 2006; 55: 380–385.CrossRefGoogle ScholarPubMed
Arfanakis, K, Gui, M, Tamhane, AA, et al. Investigating the medial temporal lobe in Alzheimer’s disease and mild cognitive impairment, with turboprop diffusion tensor imaging, MRI-volumetry, and T2-relaxometry. Brain Imaging Behav 2007; 1: 11–21.CrossRefGoogle Scholar
Maier, SE, Gudbjartsson, H, Patz, S, et al. Line scan diffusion imaging: characterization in healthy subjects and stroke patients. Am J Roentgenol 1998; 171: 85–93.CrossRefGoogle ScholarPubMed
Koch, MA, Glauche, V, Finsterbusch, J, et al. Distortion-free diffusion tensor imaging of cranial nerves and of inferior temporal and orbitofrontal white matter. Neuroimage 2002; 17: 497–506.CrossRefGoogle ScholarPubMed
Lee, SK, Lee, SY, Yun, CH, et al. Ictal SPECT in neocortical epilepsies: clinical usefulness and factors affecting the pattern of hyperperfusion. Neuroradiology 2006; 48: 678–684.CrossRefGoogle ScholarPubMed
Men, S, Lee, DH, Barron, JR, et al. Selective neuronal necrosis associated with status epilepticus: MR findings. AJNR Am J Neuroradiol 2000; 21: 1837–1840.Google ScholarPubMed
Wang, Y, Majors, A, Najm, I, et al. Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by kainic acid. Epilepsia 1996; 37: 1000–1006.CrossRefGoogle ScholarPubMed
McNamara, JO. Cellular and molecular basis of epilepsy. J Neurosci 1994; 14: 3413–3425.CrossRefGoogle ScholarPubMed
Schaefer, PW, Buonanno, FS, Gonzalez, RG, et al. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke 1997; 28: 1082–1085.CrossRefGoogle Scholar
Sevick, RJ, Kanda, F, Mintorovitch, J, et al. Cytotoxic brain edema: assessment with diffusion-weighted MR imaging. Radiology 1992; 185: 687–690.CrossRefGoogle ScholarPubMed
Lux, HD, Heinemann, U, Dietzel, I. Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 1986; 44: 619–639.Google ScholarPubMed
Wasterlain, CG, Fujikawa, DG, Penix, L, et al. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34(Suppl 1): S37–S53.CrossRefGoogle ScholarPubMed
Helpern, JA, Huang, N.Diffusion-weighted imaging in epilepsy. Magn Reson Imaging 1995; 13: 1227–1231.CrossRefGoogle ScholarPubMed
Olney, JW. Excitatory transmitters and epilepsy-related brain damage. Int Rev Neurobiol 1985; 27: 337–362.CrossRefGoogle ScholarPubMed
Choi, DW, Koh, JY, Peters, S. Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 1988; 8: 185–196.CrossRefGoogle ScholarPubMed
Eidt, S, Kendall, EJ, Obenaus, A. Neuronal and glial cell populations in the piriform cortex distinguished by using an approximation of q-space imaging after status epilepticus. AJNR Am J Neuroradiol 2004; 25: 1225–1233.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×