Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: April 2011

4 - Carbon cycle trends and vulnerabilities

Summary

‘We are only a tool in the cycle of things … (we) go out into the world and help keep the balance of nature. It's a big cycle of living with the land, and eventually going back to it …’

The Earth's element cycles – nitrogen, carbon, phosphorus, sulphur, silicon and others – are central to the functioning of the climate system, and to life itself. In the context of climate change, the carbon cycle has assumed centre stage, primarily through the rapid rise in human-induced emissions of the important greenhouse gases carbon dioxide (CO2) and methane (CH4). The political debate on responses to the climate change challenge has focused primarily on one aspect of the carbon cycle – reducing the emissions of CO2 to the atmosphere. However, the carbon cycle is very complex and human activities affect other parts of the cycle – for example, the ability of natural processes on the land and in the ocean (carbon ‘sinks’) to take up a significant fraction of the CO2 emitted to the atmosphere. The human imprint also operates indirectly on the carbon cycle via climate change itself, as several important feedback processes are predicted to be activated as the planet warms. For example, pools of carbon in the natural world, such as the CH4 stored in frozen soils in the northern high latitudes, that have hitherto been stable could become an important new source of a powerful greenhouse gas as the planet warms.

References
Barnett, T. P., Pierce, D. W., AchutaRao, K. M.et al. (2005). Penetration of human-induced warming into the world's oceans. Science, 309, 284–87.
Bendtsen, J., Hilligsøe, K. M., Hansen, J. L. S. and Richardson, K. (submitted). Temperature sensitive remineralisation rates of organic matter in the mesopelagic zone.
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. and Frankenberg, C. (2010). Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science, 327, 322–25.
Brown, J., Ferrians, O. J. Jr., Heginbottom, J. A. and Melnikov, E. S. (1998). Circum-Arctic Map of Permafrost and Ground-ice Conditions. Revised February 2001. Boulder, CO: National Snow and Ice Data Center/World Data Center for Glaciology.
Butler, J. (2009). The NOAA Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi.
Canadell, J. G., Quéré, C., Raupach, M. R.et al. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences (USA), 104, 18866–70.
Canadell, J. G., Raupach, M. R. and Houghton, R. A. (2009). Anthropogenic CO2 emissions in Africa. Biogeosciences, 6, 463–68.
ChapinIII, F. S., Randerson, J. T., McGuire, A. D., Foley, J. A. and Field, C. B. (2008). Changing feedbacks in the climate-biosphere system. Frontiers in Ecology and the Environment, 6, 313–20.
Ciais, P., Reichstein, M., Viovy, N.et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437, 529–33.
Cook, K. H. and Vizy, E. K. (2008). Effects of 21st century climate change on the Amazon rainforest. Journal of Climate, 21, 542–60.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–87.
Crutzen, P. J. (2002). Geology of mankind: The Anthropocene. Nature, 415, 23.
Crutzen, P. J. and Stoermer, E. F. (2000). The ‘Anthropocene’. Global Change Newsletter, 41.
Denman, K. L., Chidthaisong, G. B. A., Ciais, P.et al. (2007). Couplings between changes in the climate system and biogeochemistry. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.. Cambridge, UK and New York, NY: Cambridge University Press, pp. 499–587.
Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. and Sarmiento, J. L. (2005). Empirical and mechanistic models for the particle export ratio. Global Biogeochemical Cycles, 19, GB4026.
Eby, M., Zickfeld, K., Montenegro, A.et al. (2009). Lifetime of anthropogenic climate change: Millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate, 22, 2501–11.
Etheridge, D. M., Steele, L. P., Langenfelds, R. L.et al. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research, 101, 4115–28.
Falkowski, P., Scholes, R. J., Boyle, E.et al. (2000). The global carbon cycle: A test of our knowledge of Earth as a system. Science, 290, 291–96.
Field, C. B., Behrenfield, M. J., Randerson, J. T. and Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–40.
Field, C. B., Lobell, D. B., Peters, H. A. and Chiariello, N. R. (2007). Feedbacks of terrestrial ecosystems to climate change. Annual Review of Environment and Resources, 32, 1–29.
Friedlingstein, P., Cox, P., Betts, R.et al. (2006). Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate, 19, 3337–53.
Goodwin, P., Williams, R. G., Ridgwell, A. and Follows, M. J. (2009). Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nature Geoscience, 2, 145–50.
Gruber, N., Friedlingstein, P., Field, C. B.et al. (2004). The vulnerability of the carbon cycle in the 21st century: an assessment of carbon–climate–human interactions. In The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, eds. Field, C. B. and Raupach, M. R.. Washington, D.C.: Island Press, pp. 45–76.
Hilbert, D. W., Canadell, J. G., Metcalfe, D. and Bradford, M. (2009). New observations suggest vulnerability of the carbon sink in tropical rainforests. IOP Conference Series: Earth and Environmental Science, 6, 042003.
Hofmann, M. and Schellnhuber, H.-J. (2009). Ocean acidification affects marine carbon pump and triggers extended marine oxygen holes. Proceedings of the National Academy of Sciences (USA), 106, 3017–22.
Hooijer, A., Page, S., Canadell, J. G.et al. (2009). Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences Discussions, 6, 7207–30.
,IMF (2009). World Economic Outlook: Sustaining the Recovery. Washington, D.C.: International Monetary Fund.
,Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K., Tignor, M. M. B., Miller, H. L. Jr and Chen, Z., Cambridge, UK and New York, NY: Cambridge University Press.
Jaenicke, J., Rieley, J. O., Mott, C., Kimman, P. and Siegert, F. (2008). Determination of the amount of carbon stored in Indonesian peatlands. Geoderma, 147, 151–58.
Keeling, C. D. and Whorf, T. P. (2000). Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.
Khatiwala, S., Primeau, F. and Hall, T. (2009). Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature, 462, 346–49.
Khvorostyanov, D. V., Krinner, G., Ciais, P., Heimann, M. and Zimov, S. A. (2008a). Vulnerability of permafrost carbon to global warming. Part I Model description and role of heat generated by organic matter decomposition. Tellus, 60, 250–64.
Khvorostyanov, D. V., Ciais, P., Krinner, G.et al. (2008b). Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus, 60B, 265–75.
Knorr, W. (2009). Is the airborne fraction of anthropogenic CO2 emissions increasing?Geophysical Research Letters, 36, L21710.
Körner, Ch. (2006). Plant CO2 responses: An issue of definition, time and resource supply. New Phytologist, 172, 393–411.
Krey, V., Canadell, J. G., Nakicenovic, N.et al. (2009). Gas hydrates: entrance to a methane age or climate threat?Environmental Research Letters, 4, 034007.
Kurz, W. A. and Apps, M. J. (1999). A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecological Applications, 9, 526–47.
Kurz, W. A., Dymond, C. C., Stinson, G.et al. (2008a). Mountain pine beetle and forest carbon feedback to climate change. Nature, 452, 987–90.
Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. and Neilson, E. T. (2008b). Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences (USA), 105, 1551–55.
Kwon, E. Y., Primeau, F. and Sarmiento, J. L. (2009). The impact of remineralization depth on the air–sea carbon balance. Nature Geoscience, 2, 630.
Lawrence, D. M. and Slater, A. G. (2005). A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 32, L24401.
Quéré, C., Rodenbeck, C., Buitenhuis, E. T.et al. (2007). Saturation of the Southern Ocean CO2 sink due to recent climate change. Science, 316, 1735–38.
Quéré, C., Raupach, M. R., Canadell, J. G.et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–36.
Lenton, T. M., Held, H., Kriegler, E.et al. (2008). Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences (USA), 105, 1786–93 (supporting information).
Levitus, S., Antonov, J. and Boyer, T. (2005) Warming of the world ocean, 1955–2003. Geophysical Research Letters, 32, L02604.
López-Urrutia, A., San Martin, E., Harris, R. P. and Irigoien, X. (2006). Scaling the metabolic balance of the oceans. Proceedings of the National Academy of Sciences (USA), 103, 8739–44.
Lovenduski, N. S., Gruber, N., Doney, S. C. and Lima, I. D. (2007). Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochemical Cycles, 21, GB2026.
Luo, Y. (2007). Terrestrial carbon-cycle feedback to climate warming. Annual Review of Ecology, Evolution, and Systematics, 38, 683–712.
McConchie, P. (ed.) (2003). Elders: Wisdom from Australia's Indigenous Leaders. Cambridge University Press.
Mooney, H., Canadell, J., Chapin, F. S.et al. (1999). Ecosystem physiology responses to global change. In The Terrestrial Biosphere and Global Change. Implications for Natural and Managed Ecosystems, eds. Walker, B. H., Steffen, W. L., Canadell, J. and Ingram, J. S. I.. Cambridge, UK: Cambridge University Press, pp. 141–89.
Nobre, C. A. and Simone, L. (2009). Tipping points for the Amazon forest. Current Opinion in Environmental Sustainability, 1, 28–36.
Norby, R. J., Warren, J. M., Iversen, C. M.et al. (2009). CO2 enhancement of forest productivity constrained by limited nitrogen availability. Nature Proceedings, http://hdl.handle.net/10101/npre.2009.3747.1.
Page, S. E., Siegert, F., Rieley, J. O.et al. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.
Page, S. E., Wust, R. A. J., Weiss, D.et al. (2004). A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. Journal of Quaternary Science, 19, 625–35.
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–36.
Phillips, O.L., Aragão, L. E. O. C., Lewis, S. L.et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344–47.
Plattner, G.-K. (2009). Long-term commitment of CO2 emissions on the global carbon cycle and climate. IOP Conference Series: Earth and Environmental Science, 6, 042008.
Raupach, M. R., Marland, G., Ciais, P.et al. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences (USA), 104, 10288–93.
Rigby, M., Prinn, R. G., Fraser, P. J.et al. (2008). Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805.
Sabine, C. L. and Tanhua, T. (2010). Estimation of anthropogenic CO2 inventories in the ocean. Annual Review of Marine Science, 2, 175–98.
Sabine, C. L., Feely, R. A., Gruber, N.et al. (2004). The oceanic sink for anthropogenic CO2. Science, 305, 367–71.
Sarmiento, J. L., Orr, J. C. and Siegenthaler, U. (1992). A perturbation simulation of CO2 uptake in an ocean general circulation model. Journal of Geophysical Research, 97, 3621–45.
Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. and Manabe, S. (1998). Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 393, 245–49.
Schneider, B., Bopp, L., Gehlen, M.et al. (2008). Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models. Biogeosciences, 5, 597–614.
Schuster, U. and Watson, A. J. (2007). A variable and decreasing sink for atmospheric CO2 in the North Atlantic. Journal of Geophysical Research, 112, C11006.
Schuur, E. A. G., Bockheim, J., Canadell, J. G.et al. (2008). Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. Bioscience, 58, 701–14.
Schuur, E. A. G., Vogel, J. G., Crummer, K. G.et al. (2009). The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459, 556–59.
Sigman, D. M. and Boyle, E. A. (2000). Glacial/interglacial variations in carbon dioxide: Searching for a cause. Nature, 407, 859–69.
Sitch, S., Huntingford, C., Gedney, N.et al. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14, 2015–39.
Solomon, S., Plattner, G.-K., Knutti, R. and Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences (USA), 106, 1704–09.
Stramma, L., Johnson, G. C., Sprintall, J. and Mohrholz, V. (2008). Expanding oxygen-minimum zones in the tropical oceans. Science, 320, 655–58.
Steffen, W., Crutzen, P. J. and McNeill, J. R. (2007). The Anthropocene: Are humans now overwhelming the great forces of nature?Ambio, 36, 614–21.
Stuiver, M., Quay, P. D. and Ostlund, H. G. (1983). Abyssal water carbon-14 distribution and the age of the world oceans. Science, 219, 849–51.
Takahashi, T., Sutherland, S. C., Feely, R. A. and Wanninkhof, R. (2006). Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. Journal of Geophysical Research, 111, C07S05.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G.et al. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023.
Wallace, D. W. R. (2001). Ocean measurements and models of carbon sources and sinks. Global Biogeochemical Cycles, 15, 3–11.
Wang, Y.-P., Houlton, B. Z. and Field, C. B. (2007). A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles, 21, GB1018.
Wohlers, J., Engel, A., Zöllner, E.et al. (2009). Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences (USA), 106, 7067–72.
Zhuang, Q., Melillo, J. M., Sarofim, M. C.et al. (2006). CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophysical Research Letters, 33, L17403.
Zimov, S. A., Schuur, E. A. G. and Chapin III, F. S. (2006). Permafrost and the global carbon budget. Science, 312, 1612–13.