Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T03:03:32.913Z Has data issue: false hasContentIssue false

15 - Hybridisation, introgression and climate change: a case study of the tree genus Fraxinus (Oleaceae)

from Section 3 - Biogeography, migration and ecological niche modelling

Published online by Cambridge University Press:  16 May 2011

M. Thomasset
Affiliation:
Trinity College Dublin, Teagasc, Dublin, Ireland
J. F. Fernández-Manjarrés
Affiliation:
Université Paris-Sud XI, Orsay, and AgroParisTech, Paris, France
G. C. Douglas
Affiliation:
Kinsealy Research Centre, Teagasc, Dublin, Ireland
N. Frascaria-Lacoste
Affiliation:
Université Paris-Sud XI, Orsay, and AgroParisTech, Paris, France
T. R. Hodkinson
Affiliation:
Trinity College Dublin, Ireland
Trevor R. Hodkinson
Affiliation:
Trinity College, Dublin
Michael B. Jones
Affiliation:
Trinity College, Dublin
Stephen Waldren
Affiliation:
Trinity College, Dublin
John A. N. Parnell
Affiliation:
Trinity College, Dublin
Get access

Summary

Abstract

The distribution of potential hybrid zones depends largely on climate, habitat quality and historical biogeographic factors including dispersal and local extinctions. Global climate change can produce more favourable conditions for certain species to survive in areas that were previously unsuitable for their growth and/or their reproduction, and it may therefore change the potential for their hybridisation with closely related taxa. This chapter discusses general issues of plant hybridisation and invasiveness in the context of global climate change and presents a case study of hybrid ash trees (Fraxinus excelsior × F. angustifolia) that are mostly geographically separated in their natural range by climate but can have large hybrid zones. In general, both species are temporally separated by flowering times, which occur in early winter for F. angustifolia and in early spring for F. excelsior. In Ireland, introduced alien ash (F. angustifolia, F. excelsior × F. angustifolia hybrids, and non-native F. excelsior) can be found growing in sympatry with native F. excelsior populations. It is not known whether alien ash will hybridise with native populations or how climate change, principally in temperature and precipitation, will influence their hybridisation and invasiveness potential. We firstly examine the climate presently associated with known hybrid zones for ash in continental Europe and in Ireland. We then evaluate if a double CO2 global warming scenario (2 × CO2, CCM3 model) would provide improved climatic conditions for hybrids in Ireland and elsewhere.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcamo, J., Floerke, M. and Maerker, M. (2007). Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences, 52, 247–275.CrossRefGoogle Scholar
Allendorf, F. W., Leary, R. F., Spruell, P. and Wenburg, J. K. (2001). The problems with hybrids: setting conservation guidelines. Trends in Ecology and Evolution, 16, 613–622.CrossRefGoogle Scholar
Anderson, E. and Hubricht, L. (1938). Hybridization in Tradescantia. III. The evidence for introgressive hybridization. American Journal of Botany, 25, 396–402.CrossRefGoogle Scholar
Anderson, E. and Stebbins, J. (1954). Hybridization as an evolutionary stimulus. Evolution, 8, 378–388.CrossRefGoogle Scholar
Arnold, M. L. (1997). Natural Hybridization and Evolution. Oxford: Oxford University Press.Google Scholar
Arnold, M. L. (2004). Natural hybridization and the evolution of domesticated, pest and disease organisms. Molecular Ecology, 13, 997–1007.CrossRefGoogle ScholarPubMed
Avise, J. C. (2004). Molecular Markers, Natural History, and Evolution, 2nd edn. Sunderland, MA: Sinauer Associates.Google Scholar
Broeck, A. V., Cox, K., Quataert, P., van Bockstaele, E. and Slycken, J. (2003). Flowering phenology of Populus nigra L., P. nigra cv. italica and P. × canadensis Moench. and the potential for natural hybridisation in Belgium. Silvae Genetica, 52, 280–283.Google Scholar
Buggs, R. J. A. (2007). Empirical study of hybrid zone movement. Heredity, 99, 301–312.CrossRefGoogle ScholarPubMed
Carroll, C. P. and Borrill, M. (1965). Tetraploid hybrids from crosses between diploid and tetraploid Dactylis and their significance. Genetica, 36, 65–82.CrossRefGoogle ScholarPubMed
Chapman, M. A. and Burke, J. M. (2006). Letting the gene out of the bottle: the population genetics of genetically modified crops. New Phytologist, 170, 429–443.CrossRefGoogle ScholarPubMed
Conceição, A. de S., Queiroz, L. and Borba, E. (2008). Natural hybrids in Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae–Caesalpinioideae): genetic and morphological evidence. Plant Systematics and Evolution, 271, 19–27.CrossRefGoogle Scholar
Cottignies, A. (1986). The hydrolysis of starch as related to the interruption of dormancy in the ash bud. Journal of Plant Physiology, 123, 373–380.CrossRefGoogle Scholar
Coyer, J. A., Hoarau, G., Stam, W. T. and Olsen, J. L. (2007). Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus evanescens and F. serratus. Journal of Evolutionary Biology, 20, 2322–2333.CrossRefGoogle Scholar
Coyne, J. A. and Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.Google Scholar
Currat, M., Ruedi, M., Petit, R. J. and Excoffier, L. (2008). The hidden side of invasions: massive introgression by local genes. Evolution, 62, 1908–1920.Google ScholarPubMed
Curtu, A. L., Gailing, O. and Finkeldey, R. (2007). Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BioMed Central Evolutionary Biology, 7, 218–233.Google ScholarPubMed
Dobzhansky, T. (1937). Genetics and the Origin of Species. New York, NY: Cambridge University Press.Google Scholar
Donnelly, A, Salamin, N. and Jones, M. B. (2006). Changes in tree phenology: an indicator of spring warming in Ireland?Biology and Environment, Proceedings of the Royal Irish Academy, 106B, 49–56.CrossRefGoogle Scholar
Duffy, P. B., Govindasamy, B., Lorio, J. P. et al. (2003). High-resolution simulations of global climate, part 1: present climate. Climate Dynamics, 21, 371–390.CrossRefGoogle Scholar
Ebina, T. and Otho, K. (2006). Morphological characters and PCR-RFLP markers in the interspecific hybrids between Bactrocera carambolae and B. papayae of the B. dorsalis species complex (Diptera: Tephritidae). Research Bulletin of the Plant Protection Service, Japan, 42, 23–34.Google Scholar
Ellstrand, N. C. and Schierenbeck, K. A. (2000). Hybridization as a stimulus for the evolution of invasiveness in plants?Euphytica, 148, 35–46.CrossRefGoogle Scholar
Ellstrand, N. C., Prentice, H. C. and Hancock, J. F. (1999). Gene flow and introgression from domesticated plants into their wild relatives. Annual Review of Ecology and Systematics, 30, 539–563.CrossRefGoogle Scholar
Fernández-Manjarrés, J. F., Gerard, P. R., Dufour, J., Raquin, C. and Frascaria-Lacoste, N. (2006). Differential patterns of morphological and molecular hybridization between Fraxinus excelsior L. and Fraxinus angustifolia Vahl (Oleaceae) in eastern and western France. Molecular Ecology, 15, 3245–3257.CrossRefGoogle ScholarPubMed
Fielding, A. H. and Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.CrossRefGoogle Scholar
Fitter, A. H. and Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296, 1689–1691.CrossRefGoogle ScholarPubMed
Foden, W., Midgley, G. F., Hughes, G. O. et al. (2007). A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Diversity Distribution, 13, 645–653.CrossRefGoogle Scholar
Gerard, P. R., Fernández-Manjarrés, J. F. and Frascaria-Lacoste, N. (2006a). Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Molecular Ecology, 15, 3655–3667.CrossRefGoogle Scholar
Gerard, P. R., Klein, E. K., Austerlitz, F., Fernández-Manjarrés, J. F. and Frascaria-Lacoste, N. (2006b). Assortative mating and differential male mating success in an ash hybrid zone population. BMC Evolutionary Biology, 6, 96.CrossRefGoogle Scholar
Gerard, P. R., Fernández-Manjarrés, J. F., Bertolino, P. et al. (2006c). New insights in the recognition of the European ash species Fraxinus excelsior L. and Fraxinus angustifolia Vahl as useful tools for forest management. Annals of Forest Science, 63, 733–738.CrossRefGoogle Scholar
Giorgi, F., Bi, X. and Pal, J. (2004). Mean interannual and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Climate Dynamics, 23, 839–858.CrossRefGoogle Scholar
Harrison, R. G. (1993). Hybrid Zones and the Evolutionary Process. New York, NY: Oxford University Press.Google Scholar
Heuertz, M., Hausman, J. F., Tsvetkov, I., Frascaria-Lacoste, N. and Vekemans, X. (2001). Assessment of genetic structure within and among Bulgarian populations of the common ash (Fraxinus excelsior L.). Molecular Ecology, 10, 1615–1623.CrossRefGoogle Scholar
Heuertz, M., Hausman, J. F., Hardy, O. J. et al. (2004). Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.). Evolution, 58, 976–988.Google Scholar
Heuertz, M., Carnevale, S., Fineschi, S. et al. (2006). Chloroplast DNA phylogeography of European ashes, Fraxinus sp. (Oleaceae): roles of hybridization and life history traits. Molecular Ecology, 15, 2131–2140.CrossRefGoogle ScholarPubMed
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.CrossRefGoogle ScholarPubMed
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
Hodkinson, T. R., Chase, M. W., Takahashi, C. et al. (2002). The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). American Journal of Botany, 89, 279–286.CrossRefGoogle Scholar
Horgan, T., Keane, M., Mccarthy, R., Lally, M. and Thompson, D. (2004). A Guide to Forest Tree Species Selection and Silviculture in Ireland. Dublin: COFORD.Google Scholar
Howard, D. J. (1999). Conspecific sperm and pollen precedence and speciation. Annual Review of Ecology and Systematics, 30, 109–132.CrossRefGoogle Scholar
,Intergovernmental Panel on Climate Change (IPCC) (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Parry, M., Canziani, O., Palutikof, J., Linden, P. and Hanson, C.. Cambridge: Cambridge University Press.Google Scholar
Jato, V., Rodriguez-Rajo, F. J., Dacosta, N. and Aira, M. J. (2004). Heat and chill requirements of Fraxinus flowering in Galicia (NW Spain). Grana, 43, 217–223.CrossRefGoogle Scholar
Jeandroz, S., Frascaria-Lacoste, N. and Bousquet, J. (1996). Molecular recognition of the closely related Fraxinus excelsior and F. oxyphylla (Oleaceae) by RAPD markers. Forest Genetics, 3, 237–242.Google Scholar
Jones, P. D. and Moberg, A. (2003). Hemispheric and large scale surface air temperature variations: an extensive revision and an update to 2001. Journal of Climate, 16, 206–223.2.0.CO;2>CrossRefGoogle Scholar
Jouve, L., Jacques, D., Douglas, G. C., Hoffmann, L. and Hausman, J. F. (2007). Biochemical characterization of early and late bud flushing in common ash (Fraxinus excelsior L.). Plant Science, 172, 962–969.CrossRefGoogle Scholar
Kelleher, C. T., Hodkinson, T. R., Douglas, G. C. and Kelly, D. L. (2005). Species distinction in Irish populations of Quercus petraea and Q. robur: morphological versus molecular analyses. Annals of Botany, 96, 1237–1246.CrossRefGoogle ScholarPubMed
Khasa, D., Pollefeys, P., Navarro-Quezada, A., Perinet, P. and Bousquet, J. (2005). Species-specific microsatellite markers to monitor gene flow between exotic poplars and their natural relatives in eastern North America. Molecular Ecology Notes, 5, 920–923.CrossRefGoogle Scholar
Kuchta, S. R. and Tan, A. M. (2005). Isolation by distance and post-glacial range expansion in the rough-skinned newt, Taricha granulosa. Molecular Ecology, 14, 225–244.CrossRefGoogle ScholarPubMed
Kullman, L. (2008). Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quaternary Science Reviews, 27, 2467–2472.CrossRefGoogle Scholar
Lavergne, S., Molina, J. and Debussche, M. (2006). Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Global Change Biology, 12, 1466–1478.CrossRefGoogle Scholar
Leitch, I. J. and Bennett, M. D. (1997). Polyploidy in angiosperms. Trends in Plant Science, 2, 470–476.CrossRefGoogle Scholar
Lenton, T. M. (2004). The coupled evolution of life and atmospheric oxygen. In Evolution on Planet Earth, ed. Rothschild, L. J. and Lister, A.. London: Academic Press, pp. 35–53.Google Scholar
Levin, D. A. (1978). The origin of isolating mechanisms in flowering plants. Evolutionary Biology, 11, 185–317.
Levin, D. A. (2002). The Role of Chromosomal Change in Plant Evolution. Oxford: Oxford University Press.Google Scholar
Levin, D. A., Francisco-Ortega, J. and Jansen, R. K. (1996). Hybridization and the extinction of rare plant species. Conservation Biology, 10, 10–16.CrossRefGoogle Scholar
Lewis, D. and Crowe, L. K. (1958). Unilateral interspecific incompatibility in flowering plants. Heredity, 12, 233–256.CrossRefGoogle Scholar
Liepelt, S., Cheddadi, R., Beaulieu, J. L. et al. (2009). Postglacial range expansion and its genetic imprints in Abies alba Mill.: a synthesis from palaeobotanic and genetic data. Review of Palaeobotany and Palynology, 153, 139–149.CrossRefGoogle Scholar
Lowe, A., Harris, S. and Ashton, P. (2004). Ecological Genetics: Design, Analysis, and Application. Oxford: Blackwell.Google Scholar
Mahoney, M. J. (2004). Molecular systematics and phylogeography of the Plethodon elongatus species group: combining phylogenetic and population genetic methods to investigate species history. Molecular Ecology, 13, 149–166.CrossRefGoogle ScholarPubMed
Marigo, G., Peltier, J. P., Girel, J. and Pautou, G. (2000). Success in the demographic expansion of Fraxinus excelsior L. Trees, 15, 1–13.CrossRefGoogle Scholar
Mebert, K. (2008). Good species despite massive hybridization: genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Molecular Ecology, 17, 1918–1929.CrossRefGoogle Scholar
Menzel, A. and Fabian, P. (1999). Growing season extended in Europe. Nature, 397, 659.CrossRefGoogle Scholar
Menzel, A., Sparks, T. H., Estrella, N. et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.CrossRefGoogle Scholar
Morand-Prieur, M. E., Brachet, S., Rossignol, P., Dufour, J. and Frascaria-Lacoste, N. (2002). A generalized heterozygote deficiency assessed with microsatellites in French common ash populations. Molecular Ecology, 11, 377–385.CrossRefGoogle Scholar
Oddo, E., Saiano, F., Alonzo, G. and Bellini, E. (2002). An investigation of the seasonal pattern of mannitol content in deciduous and evergreen species of the Oleaceae growing in northern Sicily. Annals of Botany, 90, 239–243.CrossRefGoogle ScholarPubMed
Otto, S. P. and Whitton, J. (2000). Polyploid incidence and evolution. Annual Review of Genetics, 34, 401–437.CrossRefGoogle ScholarPubMed
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle ScholarPubMed
Parmesan, C., Gaines, S., Gonzalez, L. et al. (2005). Empirical perspectives on species borders: from traditional biogeography to global change. Oikos, 108, 58–75.CrossRefGoogle Scholar
Pascarella, J. B. (2007). Mechanisms of prezygotic reproductive isolation between two sympatric species, Gelsemium rankinii and G. sempervirens (Gelsemiaceae), in the southeastern United States. American Journal of Botany, 94, 468–476.CrossRefGoogle Scholar
Patonnier, M. P., Peltier, J. P. and Marigo, G. (1999). Drought-induced increase in xylem malate and mannitol concentrations and closure of Fraxinus excelsior L. stomata. Journal of Experimental Botany, 50, 1223–1229.CrossRefGoogle Scholar
Pauli, H., Gottfried, M., Reiter, K., Klettner, C. and Grabherr, G. (2006). Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13, 147–156.CrossRefGoogle Scholar
Perron, M. and Bousquet, J. (1997). Natural hybridization between black spruce and red spruce. Molecular Ecology, 6, 725–734.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
Picard, J. F. (1983). A propos du frêne oxyphylle, Fraxinus angustifolia Vahl. Forêt-Entreprise, 83, 2–4.Google Scholar
Räisänen, J., Hansson, U., Ullerstig, A. et al. (2004). European climate in the late 21st century: regional simulations with two driving global models and two forcing scenarios. Climate Dynamics, 22, 13–31.CrossRefGoogle Scholar
Rameau, J. C., Mansion, D. and Dumé, G. (1989). Flore forestière Française, guide écologique illustré. Paris: Institut pour le Développement Forestier.Google Scholar
Ramsey, J. and Schemske, D. W. (2002). Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics, 33, 589–639.CrossRefGoogle Scholar
Raquin, C., Jung-Muller, B., Dufour, J. and Frascaria-Lacoste, N. (2002). Rapid seedling obtaining from European ash species Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Annals of Forest Sciences, 59, 219–224.Google Scholar
Rathcke, B. and Lacey, E. P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179–214.CrossRefGoogle Scholar
Raybould, A. F. and Gray, A. J. (1994). Will hybrids of genetically modified crops invade natural communities?Trends in Ecology and Evolution, 9, 85–89.CrossRefGoogle ScholarPubMed
Rhymer, J. M. and Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics, 27, 83–109.CrossRefGoogle Scholar
Rieseberg, L. H. (1997). Hybrid origins of plant species. Annual Review of Ecology and Systematics, 28, 359–389.CrossRefGoogle Scholar
Rieseberg, L. H. (2006). Hybrid speciation in wild sunflowers. Annals of Missouri Botanical Garden, 93, 34–48.CrossRefGoogle Scholar
Rieseberg, L. H. and Burke, J. M. (2001). The biological reality of species: gene flow, selection, and collective evolution. Taxon, 50, 47–67.CrossRefGoogle Scholar
Rieseberg, L. H. and Carney, S. E. (1998). Plant hybridization. New Phytologist, 140, 599–624.CrossRefGoogle Scholar
Rieseberg, L. H. and Willis, J. H. (2007). Plant speciation. Science, 317, 910–914.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Archer, M. A. and Wayne, R. K. (1999). Transgressive segregation, adaptation and speciation. Heredity, 83, 363–372.CrossRefGoogle ScholarPubMed
Rieseberg, L. H., Raymond, O., Rosenthal, D. M. et al. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science, 301, 1211–1216.CrossRefGoogle Scholar
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H. and Rosenzweig, C. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.CrossRefGoogle ScholarPubMed
Root, T. L., Macmynowski, D. P., Mastrandrea, M. D. and Schneider, S. H. (2005). Human-modified temperatures induce species changes: joint attribution. Proceedings of the National Academy of Sciences of the USA, 102, 7465–7469.CrossRefGoogle ScholarPubMed
Ross, C. L. and Harrison, R. G. (2006). Viability selection on overwintering eggs in a field cricket mosaic hybrid zone. Oikos, 115, 53–68.CrossRefGoogle Scholar
Savolainen, O., Pyhajarvi, T. and Knurr, T. (2007). Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution, and Systematics, 38, 595–619.CrossRefGoogle Scholar
Schierenbeck, K. A., Symonds, V. V., Gallagher, K. G. and Bell, J. (2005). Genetic variation and phylogeographic analyses of two species of Carpobrotus and their hybrids in California. Molecular Ecology, 14, 539–547.CrossRefGoogle ScholarPubMed
Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology and Evolution, 16, 372–379.CrossRefGoogle ScholarPubMed
Schönswetter, P., Stehlik, I., Holderegger, R. and Tribsch, A. (2005). Molecular evidence for glacial refugia of mountain plants in the European Alps. Molecular Ecology, 14, 3547–3555.CrossRefGoogle ScholarPubMed
Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology and Evolution, 19, 198–207.CrossRefGoogle ScholarPubMed
Soltis, P. S. and Soltis, D. E. (2009). The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561–588.CrossRefGoogle ScholarPubMed
Sota, T. and Volger, A. P. (2001). Incongruence of mitochondrial and nuclear gene trees in the Carabid beetles Ohomopterus. Systematic Biology, 50, 39–59.CrossRefGoogle ScholarPubMed
Stace, C. A. (1975). Hybridization and the Flora of the British Isles. London: Academic Press.Google Scholar
Taylor, E. B., Boughman, J. W., Groenenboom, M. et al. (2006). Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343–355.CrossRefGoogle ScholarPubMed
Tsukada, M. (1982). Late-Quaternary shift of fagus distribution. Journal of Plant Research, 95, 203–217.Google Scholar
Valbuena-Carabanã, M., Gonzàlez-Martinez, S. C., Sork, V. L. et al. (2005). Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain. Heredity, 95, 457–465.CrossRefGoogle Scholar
Vliet, A. J. H., Groot, R. S., Overeem, A., Jacobs, A. F. G. and Spieksma, F. T. M. (2002). The influence of temperature and climate change on the timing of pollen release in the Netherlands. International Journal of Climatology, 22, 1757–1767.CrossRefGoogle Scholar
Vila, M., Weber, E. and Antonio, C. M. D. (2000). Conservation implications of invasion by plant hybridization. Biological Invasions, 2, 207–217.CrossRefGoogle Scholar
Visser, M. E. and Holleman, L. J. M. (2001). Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London B, 268, 289–294.CrossRefGoogle Scholar
Vitasse, Y., Delzon, S., Dufrêne, E. et al. (2009). Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses?Agricultural and Forest Meteorology, 149, 735–744.CrossRefGoogle Scholar
Wachowiak, W. and Prus-Glowacki, W. (2008). Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann. Plant Systematics and Evolution, 271, 29–40.CrossRefGoogle Scholar
Wagner, W. H. J. (1970). Biosystematics and evolutionary noise. Taxon, 19, 146–151.Google Scholar
Wallander, E. and Albert, V. A. (2000). Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data1. American Journal of Botany, 87, 1827–1841.CrossRefGoogle Scholar
Weis, A. E. and Kossler, T. M. (2004). Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa. American Journal of Botany, 91, 825–836.CrossRefGoogle ScholarPubMed
White, M. A., Brunsell, N. and Schwartz, M. D. (2003). Vegetation phenology in global change studies. In Phenology: an Integrative Environmental Science, ed. Schwartz, M. D.. Dordrecht: Kluwer, pp. 453–466.Google Scholar
Winge, Ö. (1917). The chromosomes: their number and general importance. Comptes Rendues des Travaux du Laboratoire Carlesberg, 13, 131–275.Google Scholar
Young, A., Boyle, T. and Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution, 11, 413–418.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×