Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T21:58:37.967Z Has data issue: false hasContentIssue false

13 - Cenozoic climate changes and the demise of Tethyan laurel forests: lessons for the future from an integrative reconstruction of the past

from Section 3 - Biogeography, migration and ecological niche modelling

Published online by Cambridge University Press:  16 May 2011

F. Rodríguez-Sánchez
Affiliation:
Universidad de Sevilla, Spain
J. Arroyo
Affiliation:
Universidad de Sevilla, Spain
Trevor R. Hodkinson
Affiliation:
Trinity College, Dublin
Michael B. Jones
Affiliation:
Trinity College, Dublin
Stephen Waldren
Affiliation:
Trinity College, Dublin
John A. N. Parnell
Affiliation:
Trinity College, Dublin
Get access

Summary

Abstract

Climate on earth has always been changing. Despite decades of investigation, our limited knowledge of the ecological and evolutionary effects of climate changes often translates into uncertain predictions about the impact of future climates on biodiversity. Integrative biogeographical approaches using palaeobotanical, phylogenetic and niche-based species distribution models, when permitted by data availability, may provide valuable insights to address these key questions. Here we combine palaeobotanical and phylogeographical information with hindcast modelling of species distribution changes to reconstruct past range dynamics and differentiation in the bay laurel (Laurus spp., Lauraceae), an emblematic relict tree from the subtropical laurel forests that thrived in Tethyan realms during most of the Tertiary period. We provide plausible examples of climate-driven migration, extinction and persistence of populations and taxa, and discuss the factors that influence niche conservatism or adaptation to changing environments. Finally, we discuss the likely impacts of the predicted climate change on laurophyllous taxa in the Mediterranean and Macaronesia.

Introduction

The reconstruction of the evolutionary history and distribution of plants has been based primarily on the information supplied by two relatively independent research fields: palaeobotany and phylogenetics. More recently, it has also relied on statistical modelling approaches to hindcast species distributions on geological timescales. Palaeobotany has long relied on the description of fossils, the resolution power of microscopes and fossil sampling in cores. Isotope dating, and other approaches for absolute timing of events, then led to a methodological revolution in this field (Stewart and Rothwell, 1993).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D. D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164, S165-S184.CrossRefGoogle Scholar
Araújo, M. B., Whittaker, R. J., Ladle, R. J. and Erhard, M. (2005). Reducing uncertainty in projections of extinction risk from climate change. Global Ecology and Biogeography, 14, 529–538.CrossRefGoogle Scholar
Arnold, M. L., Buckner, C. M. and Robinson, J. J. (1991). Pollen-mediated introgression and hybrid speciation in Louisiana irises. Proceedings of the National Academy of Sciences of the USA, 88, 1398–1402.CrossRefGoogle ScholarPubMed
Arroyo-García, R., Martínez-Zapater, J. M., Fernández Prieto, J. A. and Álvarez-Arbesu, R. (2001). AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica, 122, 155–164.CrossRefGoogle Scholar
Avise, J. (2000). Phylogeography: the History and Formation of Species. Cambridge, MA: Harvard University Press.Google Scholar
Axelrod, D. I. (1975). Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Annals of the Missouri Botanical Garden, 62, 280–334.CrossRefGoogle Scholar
Barbero, M., Benabid, A., Peyre, C. and Quézel, P. (1981). Sur la presence au Maroc de Laurus azorica (Seub.) Franco. Anales del Jardín Botánico de Madrid, 37, 467–472.Google Scholar
Bond, W. J. and Midgley, J. J. (2001). Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution, 16, 45–51.CrossRefGoogle ScholarPubMed
Brubaker, L. B. (1986). Responses of tree populations to climatic change. Vegetatio, 67, 119–130.CrossRefGoogle Scholar
Chanderbali, A. S., Werff, H. and Renner, S. S. (2001). Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Annals of the Missouri Botanical Garden, 88, 104–134.CrossRefGoogle Scholar
Cheddadi, R., Vendramin, G. G., Litt, T. et al. (2006). Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography, 15, 271–282.CrossRefGoogle Scholar
Christensen, J. H., Hewitson, B., Busuioc, A. et al. (2007). Regional climate projections. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 847–940.Google Scholar
Cleland, C. (2001). Historical science, experimental science, and the scientific method. Geology, 29, 987–990.2.0.CO;2>CrossRefGoogle Scholar
Coiffard, C., Gómez, B. and Thevenard, F. (2007). Early Cretaceous angiosperm invasion of western Europe and major environmental changes. Annals of Botany, 100, 545–553.CrossRefGoogle ScholarPubMed
Collinson, M. and Hooker, J. (2003). Paleogene vegetation of Eurasia: framework for mammalian faunas. Deinsea, 10, 41–83.Google Scholar
Comes, H. P. and Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3, 432–438.CrossRefGoogle Scholar
Cruzan, M. B. and Templeton, A. R. (2000). Paleoecology and coalescence: phylogeographic analysis of hypotheses from the fossil record. Trends in Ecology and Evolution, 15, 491–496.CrossRefGoogle ScholarPubMed
Cubas, P., Pardo, C. and Tahiri, H. (2005). Genetic variation and relationships among Ulex (Fabaceae) species in southern Spain and northern Morocco assessed by chloroplast microsatellite (cpSSR) markers. American Journal of Botany, 92, 2031–2043.CrossRefGoogle ScholarPubMed
Castro, O., Cozzolino, S., Jury, S. L. and Caputo, P. (2002). Molecular relationships in Genista L. sect. Spartocarpus Spach (Fabaceae). Plant Systematics and Evolution, 231, 91–108.CrossRefGoogle Scholar
Mazancourt, C., Johnson, E. and Barraclough, T. G. (2008). Biodiversity inhibits species' evolutionary responses to changing environments. Ecology Letters, 11, 380–388.CrossRefGoogle ScholarPubMed
Denk, T., Grimsson, F. and Kvaček, Z. (2005). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society, 149, 369–417.CrossRefGoogle Scholar
Donoghue, M. J. and Moore, B. R. (2003). Toward an integrative historical biogeography. Integrative and Comparative Biology, 43, 261–270.CrossRefGoogle ScholarPubMed
Ehrendorfer, F., Krendl, F., Habeler, E. and Sauer, W. (1968). Chromosome numbers and evolution in primitive angiosperms. Taxon, 17, 337–353.CrossRefGoogle Scholar
Erdei, B., Hably, L., Kazmer, M., Utescher, T. and Bruch, A. A. (2007). Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 115–140.CrossRefGoogle Scholar
Felsenstein, J. (2004). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.Google Scholar
Ferguson, D. K. (1974). On the taxonomy of recent and fossil species of Laurus (Lauraceae). Botanical Journal of the Linnean Society, 68, 51–72.CrossRefGoogle Scholar
Franco, J. A. (1960). Lauráceas macaronésicas. Anais do Instituto Superior de Agronomia de Lisboa, 23, 89–104.Google Scholar
Franks, S. J., Sim, S. and Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proceedings of the National Academy of Sciences of the USA, 104, 1278–1282.CrossRefGoogle ScholarPubMed
Gandullo, J. M., Bañares, A., Blanco, A. et al. (1992). Estudio Ecológico de la Laurisilva Canaria. Madrid: ICONA.Google Scholar
Giacobbe, A. (1939). Richerche geografiche et ecologiche sul Laurus nobilis L. Archivio Botanico, 15, 33–82.Google Scholar
Giacomini, V. and Zaniboni, A. (1946). Osservazioni sulla variabilitá del ‘Laurus nobilis L.’ nel bacino del Lago di Garda. Archivio Botanico, 22, 1–16.Google Scholar
Givnish, T. J. and Renner, S. S. (2004). Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. International Journal of Plant Sciences, 165, S1-S6.CrossRefGoogle Scholar
González-Rodríguez, A. M., Jiménez, M. S. and Morales, D. (2005). Seasonal and intraspecific variation of frost tolerance in leaves of three Canarian laurel forest tree species. Annals of Forest Science, 62, 423–428.CrossRefGoogle Scholar
Guisan, A. and Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993–1009.CrossRefGoogle Scholar
Guisan, A. and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.CrossRefGoogle Scholar
Guzmán, B. and Vargas, P. (2005). Systematics, character evolution, and biogeography of Cistus L. (Cistaceae) based on ITS, trnL-trnF, and matK sequences. Molecular Phylogenetics and Evolution, 37, 644–660.CrossRefGoogle ScholarPubMed
Haywood, A. M., Sellwood, B. W. and Valdes, P. J. (2000). Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean. Geology, 28, 1063–1066.2.0.CO;2>CrossRefGoogle Scholar
Herrera, C. M. (1992). Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean woody plants. American Naturalist, 140, 421–446.CrossRefGoogle Scholar
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B, 359, 183–195.CrossRefGoogle ScholarPubMed
Hugall, A., Moritz, C., Moussalli, A. and Stanisic, J. (2002). Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy of Sciences of the USA, 99, 6112–6117.CrossRefGoogle Scholar
Huntley, B. and Webb, T. (1989). Migration: species response to climatic variations caused by changes in the earth's orbit. Journal of Biogeography, 16, 5–19.CrossRefGoogle Scholar
Jackson, S. T. and Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194–220.CrossRefGoogle Scholar
Jansson, R. and Dynesius, M. (2002). The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Review of Ecology and Systematics, 33, 741–777.CrossRefGoogle Scholar
Jump, A. S. and Peñuelas, J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020.CrossRefGoogle Scholar
Kidd, D. M. and Liu, X. (2008). GEOPHYLOBUILDER 1.0: an ArcGis extension for creating ‘geophylogenies’. Molecular Ecology Resources, 8, 88–91.CrossRefGoogle Scholar
Konis, E. (1949). The resistance of maquis plants to supramaximal temperatures. Ecology, 30, 425–429.CrossRefGoogle Scholar
Kovar-Eder, J., Kvacek, Z., Martinetto, E. and Roiron, P. (2006). Late Miocene to early Pliocene vegetation of southern Europe (7–4 Ma) as reflected in the megafossil plant record. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 321–339.CrossRefGoogle Scholar
Larcher, W. (2000). Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosystems, 134, 279–295.CrossRefGoogle Scholar
Larcher, W. (2005). Climatic constraints drive the evolution of low temperature resistance in woody plants. Journal of Agricultural Meteorology, 61, 189–202.CrossRefGoogle Scholar
Latham, R. and Ricklefs, R. (1993). Continental comparisons of temperate-zone tree species diversity. In Species Diversity in Ecological Communities: Historical and Geographical Perspectives, ed. Ricklefs, R. E. and Schluter, D., Chicago, IL: University Press, pp. 294–314.Google Scholar
Liu, C., Berry, P. M., Dawson, T. P. and Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385–393.CrossRefGoogle Scholar
López de Heredia, U., Carrión, J. S., Jiménez, P., Collada, C. and Gil, L. (2007). Molecular and palaeoecological evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. Journal of Biogeography, 34, 1505–1517.CrossRefGoogle Scholar
Magri, D., Vendramin, G. G., Comps, B. et al. (2006). A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytologist, 171, 199–221.CrossRefGoogle ScholarPubMed
Mai, D. H. (1989). Development and regional differentiation of the European vegetation during the Tertiary. Plant Systematics and Evolution, 162, 79–91.CrossRefGoogle Scholar
Mai, D. H. (1995). Tertiäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Jena: Fischer.Google Scholar
Marques, A. R. and Sales, F. (1999). Laurus L., um elemento arcaico na flora da Macaronésia. V Jornadas de Taxonomia Botânica, Lisboa.
Martínez-Meyer, E. and Peterson, A. T. (2006). Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-recent transition. Journal of Biogeography, 33, 1779–1789.CrossRefGoogle Scholar
Milne, R. I. and Abbott, R. J. (2002). The origin and evolution of Tertiary relict floras. Advances in Botanical Research, 38, 281–314.CrossRefGoogle Scholar
Mosbrugger, V., Utescher, T. and Dilcher, D. L. (2005). Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the USA, 102, 14964–14969.CrossRefGoogle ScholarPubMed
Mueller, U. G. and Wolfenbarger, L. L. (1999). AFLP genotyping and fingerprinting. Trends in Ecology and Evolution, 14, 389–394.CrossRefGoogle ScholarPubMed
Oosterbroek, P. and Arntzen, J. W. (1992). Area-cladograms of circum-Mediterranean taxa in relation to Mediterranean palaeogeography. Journal of Biogeography, 19, 3–20.CrossRefGoogle Scholar
Pardo, C., Cubas, P. and Tahiri, H. (2004). Molecular phylogeny and systematics of Genista (Leguminosae) and related genera based on nucleotide sequences of nrDNA (ITS region) and cpDNA (trnL-trnF intergenic spacer). Plant Systematics and Evolution, 244, 93–119.CrossRefGoogle Scholar
Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
Parsons, J. J. (1981). Human influences on the pine and laurel forests of the Canary Islands. Geographical Review, 71, 253–271.CrossRefGoogle Scholar
Pearman, P. B., Randin, C. F., Broennimann, O. et al. (2008a). Prediction of plant species distributions across six millennia. Ecology Letters, 11, 357–369.CrossRefGoogle ScholarPubMed
Pearman, P. B., Guisan, A., Broennimann, O. and Randin, C. F. (2008b). Niche dynamics in space and time. Trends in Ecology and Evolution, 23, 149–158.CrossRefGoogle ScholarPubMed
Pearson, R. G. and Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?Global Ecology and Biogeography, 12, 361–371.CrossRefGoogle Scholar
Petit, R. J. and Hampe, A. (2006). Some evolutionary consequences of being a tree. Annual Review of Ecology, Evolution, and Systematics, 37, 187–214.CrossRefGoogle Scholar
Petit, R. J., Brewer, S., Bordacs, S. et al. (2002). Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 156, 49–74.CrossRefGoogle Scholar
Petit, R. J., Hampe, A. and Cheddadi, R. (2005). Climate changes and tree phylogeography in the Mediterranean. Taxon, 54, 877–885.CrossRefGoogle Scholar
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
Posadas, P., Crisci, J. V. and Katinas, L. (2006). Historical biogeography: a review of its basic concepts and critical issues. Journal of Arid Environments, 66, 389–403.CrossRefGoogle Scholar
Pulquerio, M. J. F. and Nichols, R. A. (2007). Dates from the molecular clock: how wrong can we be?Trends in Ecology and Evolution, 22, 180–184.CrossRefGoogle Scholar
Quézel, P. (1985). Definition of the Mediterranean region and the origin of its flora. In Plant Conservation in the Mediterranean Area, ed. Gómez-Campo, C.. Dordrecht: Dr. W. Junk Publishers, pp. 9–24.Google Scholar
Rivas-Martínez, S., Díaz, T. E., Fernández-González, F. et al. (2002). Vascular plant communities of Spain and Portugal: addenda to the syntaxonomical checklist of 2001. Itinera Geobotanica, 15, 5–922.Google Scholar
Rodríguez-Sánchez, F. and Arroyo, J. (2008). Reconstructing the demise of Tethyan plants: climate-driven range dynamics of Laurus since the Pliocene. Global Ecology and Biogeography, 17, 685–695.CrossRefGoogle Scholar
Rodríguez-Sánchez, F., Guzmán, B., Valido, A., Vargas, P. and Arroyo, J. (2009). Late Neogene history of the laurel tree (Laurus L., Lauraceae) based on phylogeographical analyses of Mediterranean and Macaronesian populations. Journal of Biogeography, 36, 1270–1281.CrossRefGoogle Scholar
Rohwer, J. G., Kubitzki, K. and Bittrich, V. (1993). Lauraceae. In The Families and Genera of Vascular Plants, ed. Kubitzki, K.. Berlin: Springer, pp. 366–390.Google Scholar
Santos, A. (1990). Evergreen Forests in the Macaronesian Region. Strasbourg: Council of Europe.Google Scholar
Smith, S. A. and Donoghue, M. J. (2008). Rates of molecular evolution are linked to life history in flowering plants. Science, 322, 86–89.CrossRefGoogle ScholarPubMed
Sperling, F. N., Washington, R. and Whittaker, R. J. (2004). Future climate change of the subtropical North Atlantic: implications for the cloud forests of Tenerife. Climatic Change, 65, 103–123.CrossRefGoogle Scholar
Stewart, W. and Rothwell, G. (1993). Paleobotany and the Evolution of Plants. New York, NY: Cambridge University Press.Google Scholar
Svenning, J. C. (2003). Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters, 6, 646–653.CrossRefGoogle Scholar
Takos, I. A. (2001). Seed dormancy in bay laurel (Laurus nobilis L.). New Forests, 21, 105–114.CrossRefGoogle Scholar
Thompson, J. D. (2005). Plant Evolution in the Mediterranean. Oxford: Oxford University Press.CrossRefGoogle Scholar
Thuiller, W. (2004). Patterns and uncertainties of species' range shifts under climate change. Global Change Biology, 10, 2020–2027.CrossRefGoogle Scholar
Utescher, T. and Mosbrugger, V. (2007). Eocene vegetation patterns reconstructed from plant diversity: a global perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 243–271.CrossRefGoogle Scholar
Utescher, T., Erdei, B., Francois, L. and Mosbrugger, V. (2007). Tree diversity in the Miocene forests of western Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 226–250.CrossRefGoogle Scholar
Veken, S., Hermy, M., Vellend, M., Knapen, A. and Verheyen, K. (2008). Garden plants get a head start on climate change. Frontiers in Ecology and the Environment, 6, 212–216.CrossRefGoogle Scholar
Vargas, P. (2007). Are Macaronesian islands refugia of relict plant lineages? A molecular survey. In Phylogeography in Southern European Refugia: Evolutionary Perspectives on the Origins and Conservation of European Biodiversity, ed. Weiss, S. J. and Ferrand, N.. Berlin: Springer, pp. 297–314.Google Scholar
Vos, P., Hogers, R., Bleeker, M. et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.CrossRefGoogle ScholarPubMed
Walther, G. R. (2003). Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics, 6, 169–185.CrossRefGoogle Scholar
Warren, D. L., Glor, R. E. and Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.CrossRefGoogle ScholarPubMed
Wiens, J. J. and Graham, C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36, 519–539.CrossRefGoogle Scholar
Willis, K. J. and Niklas, K. J. (2004). The role of Quaternary environmental change in plant macroevolution: the exception or the rule?Philosophical Transactions of the Royal Society of London B, 359, 159–172.CrossRefGoogle ScholarPubMed
Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×