Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T21:03:24.507Z Has data issue: false hasContentIssue false

Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

In this chapter, we summarize our current knowledge of the mineralogy, petrography, oxygen-isotope compositions, and trace element abundances of precursors of chondrules and igneous Ca,Al-rich inclusions (CAIs), which provide important constraints on the mechanisms of transient heating events in the protoplanetary disk. We infer that porphyritic chondrules, the dominant textural type of chondrules in most chondrite groups, largely formed by incomplete melting of isotopically diverse solid precursors, including refractory inclusions (CAIs and amoeboid olivine aggregates (AOAs)), fragments of chondrules from earlier generations, and fine-grained matrix-like material during highly-localized transient heating events in dust-rich disk regions characterized by 16O-poor average compositions of dust (Δ17O ~ ‒5‰ to +3‰). These observations preclude formation of the majority of porphyritic chondrules by splashing of differentiated planetesimals; instead, they are consistent with melting of dustballs during localized transient heating events, such as bow shocks and magnetized turbulence in the protoplanetary disk, and, possibly, by collisions between chondritic planetesimals. Like porphyritic chondrules, igneous CAIs formed by incomplete melting of isotopically diverse solid precursors during localized transient heating events. These precursors, however, consisted exclusively of refractory inclusions, and the melting occurred in an 16O-rich gas (Δ17O ~ ‒24‰) of approximately solar composition, most likely near the protosun. The U-corrected Pb–Pb absolute and Al–Mg relative chronologies of igneous CAIs in CV chondrites indicate that these melting events started contemporaneously with condensation of CAI precursors (4567.3 ± 0.16 Ma) and lasted up to 0.3 Ma, providing evidence for the earliest transient heating events capable of melting refractory dustballs in the innermost part of the disk. There is no evidence that chondrules were among the precursors of igneous CAIs, which is consistent with an age gap between CAIs and chondrules. In contrast to typical (non–metal-rich) chondrites, the CB metal-rich carbonaceous chondrites contain exclusively magnesian nonporphyritic chondrules formed during a single-stage event ~5 Ma after CV CAIs, most likely in an impact-generated gas–melt plume. Bulk chemical compositions of CB chondrules and equilibrium thermodynamic calculations suggest that at least one of the colliding bodies was differentiated. The uniformly 16O-depleted igneous CAIs in CB chondrites most likely formed by complete melting of preexisting refractory inclusions that was accompanied by gas–melt interaction in the plume. CH metal-rich carbonaceous chondrites represent a mixture of the CB-like materials (magnesian skeletal olivine and cryptocrystalline chondrules and uniformly 16O-depleted igneous CAIs) formed in an impact plume and the typical chondritic materials (magnesian, ferroan, and Al-rich porphyritic chondrules, uniformly 16O-rich CAIs, and chondritic lithic clasts) that appear to have largely predated the impact plume event. We conclude that there are multiple mechanisms of transient heating events that operated in the protoplanetary disk during its entire lifetime and resulted in formation of chondrules and igneous CAIs.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 9 - 340
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abreu, N., and Brearley, A. J. (2010). Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochim. Cosmochim. Acta, 74, 11461171.CrossRefGoogle Scholar
Aléon, J., El Goresy, A., and Zinner, A. (2007). Oxygen isotope heterogeneities in the earliest protosolar gas recorded in a meteoritic calcium–aluminum-rich inclusion. Earth Planet. Sci. Lett., 263, 114127.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci., 47, 11571175.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett., 308, 369379.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). The age of CV chondrites from component specific Hf–W systematics. Earth Planet. Sci. Lett., 432, 472482.CrossRefGoogle Scholar
Bigolski, J. N., Weisberg, M. K., Connolly, H. C., and Ebel, D. S. (2016). Microchondrules in three unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 51, 235260.CrossRefGoogle Scholar
Bischoff, A., and Keil, K. (1983a). Ca-Al-rich chondrules and inclusions in ordinary chondrites. Nature, 303, 588592.CrossRefGoogle Scholar
Bischoff, A., and Keil, K. (1983b). Catalog of Al-Rich Chondrules, Inclusions, and Fragments in Ordinary Chondrites. Albuquerque, NM: Department of Geology and Institute of Meteoritics, University of New Mexico.Google Scholar
Bischoff, A., and Keil, K. (1984). Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta, 48, 693709.CrossRefGoogle Scholar
Bischoff, A., Palme, H., and Spettel, B. (1989). Al-rich chondrules from the Ybbsitz H4-chondrite: Evidence for formation by collision and splashing. Earth Planet. Sci. Lett., 93, 170180.CrossRefGoogle Scholar
Bischoff, A., Palme, H., Schultz, L., et al. (1993). Acfer 182 and paired samples, an iron-rich carbonaceous chondrite: Similarities with ALH85085 and relationship to CR chondrites. Geochim. Cosmochim. Acta, 57, 26312648.CrossRefGoogle Scholar
Bischoff, A., Wurm, G., Chaussidon, M., et al. (2017). The Allende multicompound chondrule (ACC) – Chondrule formation in a local super-dense region of the early solar system. Meteorit. Planet. Sci., 52, 906924.CrossRefGoogle Scholar
Bizzarro, M., Wiellandt, D., Haugbølle, T., Nordlund, Å., and Connelly, J. N. (2017). Nucleosynthetic diversity of chondrules – tracking disk mass transport and the formation of large-scale Solar System reservoirs. 27 th Goldschmidt Conf., abstract.Google Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Nat. Acad. Sci., 102, 1375513760.CrossRefGoogle ScholarPubMed
Bodénan, J.- D., Starkey, N. A., Russell, S. S., Wright, I. P., and Franchi, I. A. (2014). An oxygen isotope study of Wark-Lovering rims on Type A CAIs in primitive carbonaceous chondrites. Earth Planet. Sci. Lett., 401, 327336.CrossRefGoogle Scholar
Bollard, J., Connelly, J., and Bizzarro, M. (2015). Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteorit. Planet. Sci., 50, 11971216.CrossRefGoogle ScholarPubMed
Brearley, A. J. (1996). Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 137151. Cambridge, UK: Cambridge University Press.Google Scholar
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early solar system: The record from chondritic meteorites. In Harlov, D. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock – Lecture Notes in Earth System Sciences, 659789. New York, NY: Springer.Google Scholar
Brownlee, D., Tsou, P., Aléon, J., et al. (2006). Comet 81P/Wild 2 under a microscope. Science, 314, 17111716.CrossRefGoogle ScholarPubMed
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Nat. Acad. Sci., 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Kleine, T., Kruijer, T. S., et al. (2016b). Isotopic complementarity of chondrules and matrix. 26 th Goldschmidt Conference, abstract #2316.Google Scholar
Bullock, E. S., MacPherson, G. J., Nagashima, K., et al. (2012). Forsterite-bearing type B refractory inclusions from CV3 chondrites: From aggregates to volatilized melt droplets. Meteorit. Planet. Sci., 47, 21282147.CrossRefGoogle Scholar
Bunch, T. E., Keil, K., and Snetsinger, K. G. (1967). Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochim. Cosmochim. Acta, 31, 15691582.CrossRefGoogle Scholar
Campbell, A. J., Humayun, M., Meibom, A., Krot, A. N., and Keil, K. (2001). Origin of zoned metal in the QUE 94411 chondrite. Geochim. Cosmochim. Acta, 65, 163180.CrossRefGoogle Scholar
Campbell, A. J., Humayun, M., and Weisberg, M. K. (2002). Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford and Gujba. Geochim. Cosmochim. Acta, 66, 647660.CrossRefGoogle Scholar
Cohen, B. A., Hewins, R. H., and Alexander, C. M. O’D. (2004). The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta, 68, 16611675.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C. Jr., and Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. J. Geophys. Res.: Planets, 121, 18851899.CrossRefGoogle Scholar
Ciesla, F. J. (2010). The distributions and ages of refractory objects in the solar nebula. Icarus, 208, 455467.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K., Olsen, E. J., and Goswami, J. N. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 23172337.CrossRefGoogle Scholar
Cuzzi, J. N., and Alexander, C. M. O’D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometers across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Desch, S. J., Ciesla, F. J., Hood, L. L., and Nakamoto, T. (2005) Heating of chondritic materials in Solar nebula shocks. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 849872. ASP Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Dobrica, E., and Brearley, A. J. (2016). Microchondrules in two unequilibrated ordinary chondrites: Evidence for formation by splattering from chondrules during stochastic collisions in the solar nebula. Meteorit. Planet. Sci., 51, 884905.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochim. Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Ebert, S., and Bischoff, A. (2016). Genetic relationship between Na-rich chondrules and Ca, Al-rich inclusions? – Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula. Geochim. Cosmochim. Acta, 177, 182204.CrossRefGoogle Scholar
Fedkin, A. V., Grossman, L., Humayun, M., Simon, S. B., and Campbell, A. J. (2015). Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites. Geochim. Cosmochim. Acta, 164, 236261.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochim. Cosmochim. Acta, 173, 198209.CrossRefGoogle Scholar
Georges, P., Libourel, G., and Deloule, E. (2000). Experimental constraints on alkali condensation in chondrule formation. Meteorit. Planet. Sci., 35, 11831188.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. Astrophys. J., 841, L17.CrossRefGoogle Scholar
Goldberg, A. Z., Jacquet, E., and Owen, J. E. (2016). Chondrule transport in the early solar system. 79 th Ann. Meteorit. Soc. Meet., abstract #6012.Google Scholar
Gounelle, M., Krot, A. N., Nagashima, K., and Kearsley, A. (2009). Extreme 16O-enrichment in refractory inclusions from the Isheyevo meteorite: Implication for oxygen isotope composition of the Sun. Astrophys. J., 698, L18L22.CrossRefGoogle Scholar
Greshake, A. (1997). The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochim. Cosmochim. Acta, 61, 437452.CrossRefGoogle ScholarPubMed
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci., 40, 87122.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988). Properties of chondrules. In Kerridge, J. and Matthews, M. (Eds.), Meteorites and the Early Solar System, 619660. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, L., Fedkin, A. V., and Simon, S. B. (2012). Formation of the first oxidized iron in the solar system. Meteorit. Planet. Sci., 75, 21602169.CrossRefGoogle Scholar
Han, J., Keller, L. P., Needham, A. W., Messenger, S., and Simon, J. I. (2015). Microstructural investigation of a Wark-Lovering rim on a Vigarano CAI. 78 th Ann. Meteorit. Soc. Meet., abstract #5243.Google Scholar
Herbst, W., and Greenwood, J. P. (2016). A new mechanism for chondrule formation: Radiative heating by hot planetesimals. Icarus, 267, 364367.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2007). The conditions of chondrule formation, Part I: Closed system. Geochim. Cosmochim. Acta, 71, 40924107.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth Planet. Sci. Lett., 265, 716725.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule-matrix complementarity. Earth Planet. Sci. Lett., 294, 8593.CrossRefGoogle Scholar
Hezel, D. C., Russell, S. S., Ross, A. J., and Kearsley, A. T. (2008). Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteorit. Planet. Sci., 43, 18791894.CrossRefGoogle Scholar
Hewins, R. H. (1997). Chondrules. Ann. Rev. Earth Planet. Sci., 25, 6183.CrossRefGoogle Scholar
Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteorit. Planet. Sci., 47, 11201138.CrossRefGoogle Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochim. Cosmochim. Acta, 78, 117.CrossRefGoogle Scholar
Imae, N., and Isobe, H. (2017). An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates. Earth Planet. Sci. Lett., 473, 256268.CrossRefGoogle Scholar
Itoh, S., and Yurimoto, H. (2003). Contemporaneous formation of chondrules and refractory inclusions in the early solar system. Nature, 423, 728731.CrossRefGoogle ScholarPubMed
Ivanova, M. A., Kononkova, N. N., Greenwood, R. C., et al. (2008). The Isheyevo meteorite: Mineralogy, petrography, bulk chemistry, oxygen, nitrogen, carbon isotopic compositions and Ar-Ar ages. Meteorit. Planet. Sci., 43, 915941.CrossRefGoogle Scholar
Ivanova, M. A., Nagashima, K., Krot, A. N., and MacPherson, G. J. (2012). Calcium-aluminum-rich inclusions with relict ultra-refractory inclusions rich in Zr, Y and Sc from Efremovka and North West Africa 3118 CV3 carbonaceous chondrites: Evidence for multistage formation in oxygen isotopic reservoirs of variable composition. Meteorit. Planet. Sci., 47, 21072127.CrossRefGoogle Scholar
Ivanova, M. A., Lorenz, C. A., Shuvalov, V. V., et al. (2014). Plastically-deformed igneous calcium-aluminum-rich inclusions from CV carbonaceous chondrites: Clues to a nature of CAI melting events. LPSC #45, abstract #2166.Google Scholar
Ivanova, M. A., Lorenz, C. A., Krot, A. N., and MacPherson, G. J. (2015). A compound Ca-, Al-rich inclusion from CV3 chondrite North West Africa 3118: Implications for understanding processes during CAI formation. Meteorit. Planet. Sci., 50, 15121528.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008). 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett., 272, 353364.CrossRefGoogle Scholar
Jacquet, E. (2014). Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes rendus – Geoscience, 346, 312.CrossRefGoogle Scholar
Jacquet, E., Froman, S., and Gounelle, M. (2011). Radial transport of refractory inclusions and their preservation in the dead zone. Astron. Astrophys., 526, L8.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2012). Chondrule trace element geochemistry at the mineral scale. Meteorit. Planet. Sci., 47, 16951714.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy. Geochim. Cosmochim. Acta, 155, 4767.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2014). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle Scholar
Jones, R. H. (1996). Relict grains in chondrules: Evidence for chondrule recycling. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 163172. Cambridge, UK: Cambridge University Press.Google Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteorit. Planet. Sci., 47, 11761190.CrossRefGoogle Scholar
Jones, R. H., and Danielson, L. R. (1997). A chondrule origin of dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci., 32, 753760.CrossRefGoogle Scholar
Jones, R. H., Leshin, L. A., Guan, Y., et al. (2004). Oxygen isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite. Geochim. Cosmochim. Acta, 68, 34232106.CrossRefGoogle Scholar
Jones, R. H., Grossman, J. N., and Rubin, A. E. (2005). Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 251286. ASP Conf. Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Keil, K., Zucolotto, M. E., Krot, A. N., et al. (2015). The Vicência meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) LL chondrite. Meteorit. Planet. Sci., 50, 10891111.CrossRefGoogle Scholar
Kimura, M., El Goresy, A., Palme, H., and Zinner, E. (1993). Ca-Al-rich inclusions in the unique chondrite ALH 85085 − Petrology, chemistry and isotopic compositions. Geochim. Cosmochim. Acta, 57, 23292359.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta, 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci., 47, 11081119.CrossRefGoogle Scholar
Kita, N. T., Yin, Q.- Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci., 48, 13831400.CrossRefGoogle Scholar
Krot, A. N., and Rubin, A. E. (1993). Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting. Lunar Planet. Sci., 24, 827829.Google Scholar
Krot, A. N., and Rubin, A. E. (1994). Glass-rich chondrules in ordinary chondrites. Meteorit. Planet. Sci., 29, 697707.Google Scholar
Krot, A. N., and Wasson, J. T. (1995). Igneous rims on FeO-rich and FeO-poor chondrules in ordinary chondrites. Geochim. Cosmochim. Acta, 59, 49514966.CrossRefGoogle Scholar
Krot, A. N., and Rubin, A. E. (1996). Microchondrule-bearing chondrule rims: Constraints on chondrule formation. In Hewins, R., Jones, R., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 181184. Cambridge, UK: Cambridge University Press.Google Scholar
Krot, A. N., Ivanova, M. A., and Wasson, J. T. (1993). The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions. Earth Planet. Sci. Letters, 119, 569584.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Russell, S. S., et al. (2001a). Refractory Ca, Al-rich inclusions and Al-diopside-rich chondrules in the metal-rich chondrites Hammadah al Hamra 237 and QUE 94411. Meteorit. Planet. Sci., 36, 11891217.CrossRefGoogle Scholar
Krot, A. N., Meibom, A., Russell, S. S., et al. (2001b). A new astrophysical setting for chondrule formation. Science, 291, 17761779.CrossRefGoogle ScholarPubMed
Krot, A. N., Meibom, A., Weisberg, M. K., and Keil, K. (2002). The CR chondrite clan: Implications for early solar system processes. Meteorit. Planet. Sci., 37, 14511490.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Russell, S. S., et al. (2004a). Amoeboid olivine aggregates in carbonaceous chondrites: Records of nebular and asteroidal processes. Chem. Erde, 64, 185239.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. (2004b). Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for fractional condensation during chondrule formation. Meteorit. Planet. Sci., 39, 19311955.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005a). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., Hutcheon, I. D., and MacPherson, G. J. (2005b). Relative chronology of CAI and chondrule formation: Evidence from chondrule-bearing igneous CAIs. Nature, 434, 9981001.CrossRefGoogle Scholar
Krot, A. N., Fagan, T. J., Yurimoto, H., and Petaev, M. I. (2005c). Origin of low-Ca pyroxene in amoeboid olivine aggregates: Evidence from oxygen isotopic compositions. Geochim. Cosmochim. Acta, 69, 18731881.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., and Chaussidon, M. (2006a). Oxygen isotope compositions of chondrules in CR chondrites. Geochim. Cosmochim. Acta, 70, 767779.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Huss, G. R., et al. (2006b). Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophys. J., 629, 12271237.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Bizzarro, M., et al. (2008). Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. Astrophys. J., 672, 713721.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Yoshitake, M., and Yurimoto, H. (2010). Oxygen isotope compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC 02675 (CBb) and QUE 94627 (CBb). Geochim. Cosmochim. Acta, 74, 21902211.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., and Petaev, M. I. (2012). Isotopically uniform, 16O-depleted calcium, aluminum-rich inclusions in CH and CB carbonaceous chondrites. Geochim. Cosmochim. Acta, 83, 159178.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Goodrich, C., Weisberg, M. K., and Scott, E. R. D. (2014). Classification of meteorites. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 163. Oxford, UK: Elsevier.Google Scholar
Krot, A. N., Nagashima, K., Ma, C., and Wasserburg, G. J. (2015). Forsterite-bearing Type B CAI with a relict eringaite-bearing ultra-refractory CAI. 78 th Ann. Meteorit. Soc. Meet., abstract #5308.Google Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017a). Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 185223.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017b). High-temperature rims around calcium-aluminum-rich inclusions from the CR, CB and CH carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 155184.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T. (2004). Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. Geochim. Cosmochim. Acta, 68, 35993606.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., and Wasson, J. T. (2005). Oxygen-isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochim. Cosmochim. Acta, 69, 38313840.CrossRefGoogle Scholar
Larsen, K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium-isotope heterogeneity in the solar protoplanetary disk. Astrophys. J., 735, L37L40.CrossRefGoogle Scholar
Leitch, C., and Smith, J. (1982). Petrography, mineral chemistry and origin of Type I enstatite chondrites. Geochim. Cosmochim. Acta, 46, 20832097.CrossRefGoogle Scholar
Leroux, H., Libourel, G., Lemelle, L., and Guyot, F. (2003). Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction. Meteorit. Planet. Sci., 38, 8194.CrossRefGoogle Scholar
Leshin, L. A., Rubin, A. E., and McKeegan, K. D. (1997). The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim. Cosmochim. Acta, 61, 835845.CrossRefGoogle Scholar
Libourel, G., and Krot, A. N. (2006). Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth Planet. Sci. Lett., 254, 18.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas-melt interaction during chondrule formation. Earth Planet. Sci. Lett., 251, 232240.CrossRefGoogle Scholar
Libourel, G., Michel, P., Delbo, M., et al. (2017). Primitive matter in the solar system. Icarus, 282, 375379.CrossRefGoogle Scholar
Liffman, K., Cuello, N., and Paterson, D. A. (2016). A unified framework for producing CAI melting, Wark-Lovering rims and bowl-shaped CAIs. Monthly Notices of the Royal Astronomical Society, 462, 11371163.CrossRefGoogle Scholar
MacPherson, G. J. (2014). Calcium-aluminum-rich inclusions in chondritic meteorites. In Davis, A. M. (Ed.), Meteorites, Comets and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 139179. Oxford, UK: Elsevier.Google Scholar
MacPherson, G. J., and Huss, G. R. (2005). Petrogenesis of Al-rich chondrules: Evidence from bulk compositions and phase equilibria. Geochim. Cosmochim. Acta, 69, 30993127.CrossRefGoogle Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S., and Davis, A. M. (2012). Well-resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett., 331, 4354.CrossRefGoogle Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2009). Oxygen − and magnesium-isotope compositions of calcium−aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta, 73, 50185051.CrossRefGoogle Scholar
Maruyama, S., and Yurimoto, H. (2003). Relationship among O, Mg isotopes and the petrography of two spinel-bearing compound chondrules. Geochim. Cosmochim. Acta, 67, 39433957.CrossRefGoogle Scholar
Mathieu, R. (2009). Solubilite du sodium dans les silicates fondues. PhD thesis, INPL-CRPG Nancy.Google Scholar
Mathieu, R., Libourel, G., Deloule, E., et al. (2011). Na2O-solubility in molten CaO–MgO–SiO2 system. Geochim. Cosmochim. Acta, 75, 608628.CrossRefGoogle Scholar
Matzel, J. E. P., Simon, J. I., Hutcheon, I. D., et al. (2013). Oxygen isotope measurements of a rare Murchison Type A CAI and its rim. LPSC #44, abstract #2632.Google Scholar
McKeegan, K. D., Chaussidon, M., and Robert, F. (2000). Incorporation of short-lived 10Be in a calcium–aluminum-rich inclusion from the Allende meteorite. Science, 289, 13341337.CrossRefGoogle Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011). The oxygen isotopic composition of the Sun inferred from captured solar wind. Science, 332, 15281532.CrossRefGoogle ScholarPubMed
McNally, C. P., Hubbard, A., Mac Low, M.- M., et al. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. Lett., 767, L2.CrossRefGoogle Scholar
Mendybaev, R. A., Richter, F. M., and Davis, A. M. (2006). Crystallization of melilite from CMAS-liquids and the formation of the melilite mantle of Type B1 CAIs: Experimental simulations. Geochim. Cosmochim. Acta, 70, 26222642.CrossRefGoogle Scholar
Misawa, K. A., and Fujita, T. (1994). A relict refractory inclusion in a ferromagnesian chondrule from the Allende meteorite. Nature, 369, 163165.CrossRefGoogle Scholar
Meibom, A., Desch, S. J., Krot, A. N., et al. (2000). Large scale thermal events in the solar nebula: Evidence from FeNi metal grains in primitive meteorites. Science, 288, 839841.CrossRefGoogle Scholar
Miller, K. E., Lauretta, D. S., Connolly, H. C., et al. (2017). Formation of unequilibrated R chondrite chondrules and opaque phases. Geochim. Cosmochim. Acta, 209, 2450.CrossRefGoogle Scholar
Misawa, K., and Nakamura, N. (1988). Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite. Nature, 334, 4750.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. Astrophys. J. Lett., 752, L27.CrossRefGoogle Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015). New insight into the Solar System’s transition disk phase provided by the metal-rich carbonaceous chondrite Isheyevo. Astrophys. J. Lett., 801, L22.CrossRefGoogle ScholarPubMed
Nagashima, K., Kunihiro, T., Takayanagi, I., et al. (2001). Output characteristics of stacked CMOS type pixel sensor for charged particles. Surf. Interface Anal., 31, 131137.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., Libourel, G., and Huss, G. R. (2013). Magnesian porphyritic chondrules surrounded by ferroan igneous rims from CR chondrite GRA 95229. LPSC #44, abstract #1780.Google Scholar
Nagashima, K., Krot, A. N., and Libourel, G. (2014). Type I chondrules with ferroan igneous rims from Yamato 81020 CO3 and Acfer 094 ungrouped type 3 carbonaceous chondrites. 77 th Ann. Meet. Meteorit. Soc., abstract #5424.Google Scholar
Nagashima, K., Krot, A. N., and Park, C. (2015a). An amoeboid olivine aggregate surrounded by an igneous ferroan olivine-rich rim from CO3.0 chondrite DOM 08006. LPSC #46, abstract #2477.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2015b). Oxygen-isotope compositions of chondrule silicates and matrix grains in Kakangari K-grouplet chondrite. Geochim. Cosmochim. Acta, 151, 4967.CrossRefGoogle Scholar
Nagashima, K., Krot, A., Libourel, G., and Schrader, D. (2016). 16O-rich olivine abundances in FeO-rich chondrules and their igneous rims from CR chondrites. 26 th Goldschmidt Conference, abstract #2210.Google Scholar
Oulton, J., Humayun, M., Fedkin, A., and Grossman, L. (2016). Chemical evidence for differentiation, evaporation and recondensation from silicate clasts in Gujba. Geochim. Cosmochim. Acta, 177, 254274.CrossRefGoogle Scholar
Palme, H., Spettel, B., and Hezel, D. C. (2014). Siderophile elements in chondrules of CV chondrites. Chem. Erde – Geochemistry, 74, 507516.CrossRefGoogle Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth Planet. Sci. Lett., 411, 1119.CrossRefGoogle Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature, 293, 558561.CrossRefGoogle Scholar
Rambaldi, E. R., and Wasson, J. T. (1982). Fine, nickel-poor Fe-Ni grains in the olivine of unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 46, 929939.CrossRefGoogle Scholar
Rambaldi, E. R., Rajan, R. S., Wang, D., and Housley, R. M. (1983). Evidence for relict grains in chondrules of Qingzhen, an E3 type enstatite chondrite. Earth Planet. Sci. Lett., 66, 1124.CrossRefGoogle Scholar
Ramdohr, P. (1967). Chromite and chromite chondrules in meteorites. Geochim. Cosmochim. Acta, 31, 19611967.CrossRefGoogle Scholar
Rubin, A. E. (2003). Chromite-plagioclase assemblages as a new shock indicator: Implications for the shock and thermal histories of ordinary chondrites. Geochim. Cosmochim. Acta, 67, 26952709.CrossRefGoogle Scholar
Rubin, A. E. (2010). Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochim. Cosmochim. Acta, 74, 48074828.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987). Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite – Origin, interrelationships and possible precursor components. Geochim. Cosmochim. Acta, 51, 19231937.CrossRefGoogle Scholar
Rubin, A. E., and Krot, A. N. (1996). Multiple heating of chondrules. In Hewins, R. H., Jones, R. H., and Scott, E. (Eds.), Chondrules and the Protoplanetary Disk, 173180. Cambridge, UK: Cambridge University Press.Google Scholar
Russell, S. S., MacPherson, G. J., Leshin, L. A., and McKeegan, K. D (2000). 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet. Sci. Lett., 184, 5774.CrossRefGoogle Scholar
Russell, S. S., Krot, A. N., MacPherson, G. J., et al. (2005). Genetic relationship between refractory inclusions and chondrules. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 317353. ASP Conf. Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Ruzicka, A. (2012). Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals. Meteorit. Planet. Sci., 47, 22182236.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2013). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci., 47, 21702192.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim. Cosmochim. Acta, 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., Ogliore, R. C., and Hellebrand, E. (2014). Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites. Geochim. Cosmochim. Acta, 132, 5074.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Oxford, UK: Elsevier.Google Scholar
Simon, S. B., Sutton, S. R., and Grossman, L. (2016). The valence and coordination of titanium in ordinary and enstatite chondrites. Geochim. Cosmochim. Acta, 189, 377390.CrossRefGoogle Scholar
Snetsinger, K. G., and Keil, K. (1969). Ilmenite in ordinary chondrites. Amer. Mineral., 54, 780786.Google Scholar
Sokol, A. K., Bischoff, A., Marhas, K. K., Mezger, K., and Zinner, E. (2007). Late accretion and lithification of chondritic parent bodies: Mg isotope studies on fragments from primitive chondrites and chondritic breccias. Meteorit. Planet. Sci., 42, 12911308.CrossRefGoogle Scholar
Sossi, P. A., Moynier, F., Chaussidon, M., et al. (2017). Early Solar System irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nature Astronomy, 1, id. 0055.CrossRefGoogle Scholar
Soulié, C., Libourel, G., Tissandier, L., and Hiver, J.- M. (2012). Kinetics of olivine dissolution in chondrule melts: An experimental study. LPSC #43, abstract #1840.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: Applications to chondrule formation. Meteorit. Planet. Sci., 52, 225250.CrossRefGoogle Scholar
Steele, I. M. (1988). Primitive materials surviving in chondrites: Mineral grains. In Kerridge, J. and Matthews, M. (Eds.), Meteorites and the Early Solar System, 808818. Tucson, AZ: University of Arizona Press.Google Scholar
Stolper, E. (1982). Crystallization sequence of Ca-Al-rich inclusions from Allende: An experimental study. Geochim. Cosmochim. Acta, 46, 21592180.CrossRefGoogle Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta, 102, 226245.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta, 148, 228250.CrossRefGoogle Scholar
Testi, L., Birnstiel, T., Ricci, L., et al. (2014). Dust evolution in protoplanetary disks. In Beuther, H., Klessen, R., Dullemond, C., and Henning, T. (Eds.), Protostars and Planets VI, 339361. Tucson, AZ: University of Arizona Press.Google Scholar
Tomeoka, K., and Itoh, D. (2004). Sodium-metasomatism in chondrules in CO3 chondrites: Relationship to parent body thermal metamorphism. Meteorit. Planet. Sci., 39, 13591373.CrossRefGoogle Scholar
Toppani, A., Paque, J. M., Burnett, D. S., et al. (2006). Wark-Lovering rims at the nanometer scale: A transmission electron microscopy study. LPSC #37, abstract #2030.Google Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta, 90, 242264.CrossRefGoogle Scholar
Vacher, L. G., Marrocchi, Y., Verdier-Paoletti, M. J., Villeneuve, J., and Gounelle, M. (2016). Inward radial mixing of interstellar water Ices in the solar protoplanetary disk. Astrophys. J. Lett., 827, L1.CrossRefGoogle Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Nat. Acad. Sci., 113, 20112016.CrossRefGoogle ScholarPubMed
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochim. Cosmochim. Acta., 160, 277305.CrossRefGoogle Scholar
Wakaki, S., Itoh, S., Tanaki, T., and Yurimoto, H. (2013). Petrology, trace element abundances and oxygen isotopic compositions of a compound CAI-chondrule object from Allende. Geochim. Cosmochim. Acta., 102, 261279.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature, 475, 206209.CrossRefGoogle ScholarPubMed
Wasson, J. T., and Kallemeyn, G. W. (1990). Allan Hills 85085 – A subchondritic meteorite of mixed nebular and regolithic heritage. Earth Planet. Sci. Lett., 101, 148161.CrossRefGoogle Scholar
Wasson, J. T., Krot, A. N., Lee, M. S., and Rubin, A. E. (1994). Compound chondrules in ordinary chondrites: Evidence for multiple heating events and for large-scale heterogenieties in the nebula. Geochim. Cosmochim. Acta, 59, 18471869.CrossRefGoogle Scholar
Wasson, J. T., and Rubin, A. E. (2009). Composition of matrix in the CR chondrite LAP 02342. Geochim. Cosmochim. Acta, 73, 14361460.CrossRefGoogle Scholar
Weber, D., and Bischoff, A. (1994). The occurrence of grossite (CaAl4O7) in chondrites. Geochim. Cosmochim. Acta, 18, 38553877.CrossRefGoogle Scholar
Weber, D., Zinner, E., and Bischoff, A. (1995). Trace element abundances and magnesium, calcium, and titanium isotopic compositions of grossite-containing inclusions from the carbonaceous chondrite Acfer 182. Geochim. Cosmochim. Acta, 59, 803823.CrossRefGoogle Scholar
Weidenschilling, S., Marzari, F., and Hood, L. (1998). The origin of chondrules at jovian resonances. Science, 279, 681684.CrossRefGoogle ScholarPubMed
Weinbruch, S., Palme, H., and Spettel, B. (2000). Refractory forsterite in primitive meteorites: Condensates from the solar nebula? Meteorit. Planet. Sci., 35, 161171.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., and Fogel, R. A. (1994). The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene. Meteoritics, 29, 362373.CrossRefGoogle Scholar
Weisberg, M. K., Ebel, D. S., Nakashima, D., Kita, N. T., and Humayun, M. (2015). Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochim. Cosmochim. Acta., 167, 269285.CrossRefGoogle Scholar
Westphal, A. J., Fakra, S. C., Gainsforth, Z., et al. (2009). Mixing fraction of inner solar system material in Comet 81P/Wild2. Astrophys. J., 694, 18.CrossRefGoogle Scholar
Whattam, S. A., Hewins, R. H., Cohen, B. A., Seaton, N. C., and Prior, D. J. (2008). Granoblastic olivine aggregates in magnesian chondrules: Planetesimal fragments or thermally annealed solar nebula condensates? Earth Planet. Sci. Lett., 269, 200211.CrossRefGoogle Scholar
Wlotzka, F. (2005). Cr-spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. Meteorit. Planet. Sci., 40, 16731702.CrossRefGoogle Scholar
Yurimoto, H., and Wasson, J. T. (2002). Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess. Geochim. Cosmochim. Acta., 66, 43554363.CrossRefGoogle Scholar
Yurimoto, H., Krot, A. N., Choi, B. -G., et al. (2008). Oxygen isotopes of chondritic components. Rev. Mineral. Geochem., 68, 141187.CrossRefGoogle Scholar
Zanda, B., Humayun, M., and Hewins, R. H. (2012). Chemical composition of matrix and chondrules in carbonaceous chondrites: Implications for disk transport. LPSC #43, abstract #2413.Google Scholar
Zhang, A. -C., Itoh, S., Sakamoto, N., Wang, R. -C., and Yurimoto, H. (2014). Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim. Cosmochim. Acta., 130, 7892.CrossRefGoogle Scholar

References

Albarède, F., and Bottinga, Y. (1972). Kinetic disequilibrium in trace element partitioning between phenocrysts and host lava. Geochimica et Cosmochimica Acta, 36, 141156.CrossRefGoogle Scholar
Alexander, C. M. O’D. (1994). Trace element distributions within ordinary chondrite chondrules: Implications for chondrule formation conditions and precursors. Geochimica et Cosmochimica Acta, 58, 34513467.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Ashworth, J. R. (1980). Chondrite thermal histories: Clues from electron microscopy of orthopyroxene. Earth and Planetary Science Letters, 46, 167177.CrossRefGoogle Scholar
Avramov, I., Zanotto, E. D., and Prado, M. O. (2003). Glass-forming ability versus stability of silicate glasses. II. Theoretical demonstration. Journal of Non-Crystalline Solids, 320, 920.CrossRefGoogle Scholar
Baecker, B., Rubin, A. E., and Wasson, J. T. (2017). Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et Cosmochimica Acta, 211, 256279.CrossRefGoogle Scholar
Béjina, F., Sautter, V., and Jaoul, O. (2009). Cooling rate of chondrules in ordinary chondrites revisited by a new geospeedometer based on the compensation rule. Physics of the Earth and Planetary Interiors, 172, 512.CrossRefGoogle Scholar
Blum, J. D., Wasserburg, G. J., Hutcheon, I. D., Beckett, J. R., and Stolper, E. M. (1989). Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes. Geochimica et Cosmochimica Acta, 53, 543556.CrossRefGoogle Scholar
Brearley, A. J., and Jones, R. H. (1993). Chondrite thermal histories from low-Ca pyroxene microstructures: Autometamorphism versus prograde metamorphism revisited. Lunar and Planetary Science Conference, 24, 185186.Google Scholar
Brearley, A. J., and Jones, R. H. (1998). Chondritic meteorites. Reviews in Mineralogy and Geochemistry, 36, 3-13-398.Google Scholar
Cabral, A. A., Cardoso, A. A. D., and Zanotto, E. D. (2003). Glass-forming ability versus stability of silicate glasses. I. Experimental test. Journal of Non-Crystalline Solids, 320, 18.CrossRefGoogle Scholar
Chakraborty, S. (2010). Diffusion coefficients in olivine, wadsleyite and ringwoodite. Reviews in Mineralogy and Geochemistry, 72, 603639.CrossRefGoogle Scholar
Chaumard, N., Humayun, M., Zanda, B. and Hewins, R. H. (2015). Cooling rates of type I chondrules from the Renazzo CR2 chondrite: Implications for chondrule formation. Lunar and Planetary Science Conference #46, Abstract #1907.Google Scholar
Connolly, H. C. Jr., and Desch, S. J. (2004). On the origin of the “kleine Kügelchen” called chondrules. Chemie der Erde, 64, 95125.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Hewins, R. H. (1991). The influence of bulk composition and dynamic melting conditions on olivine chondrule textures. Geochimica et Cosmochimica Acta, 55, 29432950.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Hewins, R. H. (1995). Chondrules as products of dust collisions with totally molten droplets within dust-rich nebular environment: An experimental investigation. Geochimica et Cosmochimica Acta, 59, 32313246.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Huss, G. R. (2010). Compositional evolution of the protoplanetary disk: Oxygen isotopes of type-II chondrules from CR2 chondrites. Geochimica et Cosmochimica Acta, 74, 24732483.CrossRefGoogle Scholar
Connolly, H. C. Jr., Jones, B. D., and Hewins, R. H. (1998). The flash melting of chondrules: An experimental investigation into the melting history and physical nature of chondrule precursors Geochimica et Cosmochimica Acta, 62, 27252735.CrossRefGoogle Scholar
Coogan, L. A., Hain, A., Stahl, S., and Chakraborty, S. (2005). Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1500 °C. Geochimica et Cosmochimica Acta, 69, 36833694.CrossRefGoogle Scholar
Davidson, J., Schrader, D. L., Lauretta, D. S., et al. (2014). Petrology, geochemistry, stable isotopes, Raman spectroscopy, and presolar components of RBT 04133: A reduced CV3 carbonaceous chondrite. Meteoritics and Planetary Science 49, 21332151.CrossRefGoogle Scholar
DeHart, J. M., and Lofgren, G. E. (1996). Experimental studies of group A1 chondrules. Geochimica et Cosmochimica Acta, 60, 22332242.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. Jr. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rate of chondrules. Meteoritics and Planetary Science, 37, 183207.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C. Jr., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteoritics and Planetary Science, 47, 11391156.CrossRefGoogle Scholar
Dohmen, R., and Chakraborty, S. (2007). Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficient in natural olivine. Physics and Chemistry of Minerals, 34, 409430.CrossRefGoogle Scholar
Dullemond, C. P., Stammler, S. M., and Johansen, A. (2014). Forming chondrules in impact splashes. I. Radiative cooling model. The Astrophysical Journal, 794, 91.CrossRefGoogle Scholar
Dullemond, C. P., Harsono, D., Stammler, S. M., and Johansen, A. (2016). Forming chondrules in impact splashes. II. Volatile retention. The Astrophysical Journal, 832, 91.CrossRefGoogle Scholar
Faure, F., Trolliard, G., and Soulestin, B. (2003). TEM investigation of forsterite dendrites. American Mineralogist, 88, 12411250.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 226250.CrossRefGoogle Scholar
Fedkin, A. V., Grossman, L., Ciesla, F. J., and Simon, S. B. (2012). Mineralogical and isotopic constraints on chondrule formation from shock wave thermal histories. Geochimica et Cosmochimica Acta, 87, 81116.CrossRefGoogle Scholar
Greeney, S., and Ruzicka, A. (2004). Relict forsterite in chondrules: Implications for cooling rates. Lunar and Planetary Science Conference #35, Abstract #1426.Google Scholar
Hevey, P. J., and Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics and Planetary Science, 41, 95106.CrossRefGoogle Scholar
Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteoritics and Planetary Science, 47, 11201138.CrossRefGoogle Scholar
Hewins, R. H., Klein, L. C., and Fasano, B. V. (1981). Conditions of formation of pyroxene excentroradial chondrules. Proceedings of the 12th Lunar and Planetary Science Conference, 448450. Houston, TX: Lunar and Planetary Institute.Google Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 286316. ASP Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., Ganguly, J., and Mariani, E. (2009). Diffusion modeling of cooling rates of relict olivine in Semarkona chondrules. Lunar and Planetary Science Conference #40, Abstract #1513.Google Scholar
Humayun, M. (2012). Chondrule cooling rates inferred from diffusive profiles in metal lumps from the Acfer 097 CR2 chondrite, Meteoritics and Planetary Science, 47, 11911208.CrossRefGoogle Scholar
Iezzi, G., Mollo, S., and Ventura, G. (2009). Solidification behaviour of natural silicate melts and volcanological implications. In Lewis, N. and Moretti, A. (Eds.), New Research on Volcanoes: Formation, Eruptions and Modeling, 127151. Hauppauge, NY: Nova Science Publishers, Inc..Google Scholar
Ito, M., and Ganguly, J. (2006). Diffusion kinetics of Cr in olivine and 53Mn–53Cr thermochronology of early solar system objects. Geochimica et Cosmochimica Acta, 70, 799809.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2012). Chondrule trace element geochemistry at the mineral scale. Meteoritics and Planetary Science, 47, 16951714.CrossRefGoogle Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). Trace element geochemistry of ordinary chondrite chondrules: The type I/type II chondrule dichotomy. Geochimica et Cosmochimica Acta, 155, 4767.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle ScholarPubMed
Jones, R. H. (1990). Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochimica et Cosmochimica Acta, 54, 17851802.CrossRefGoogle Scholar
Jones, R. H. (1992). On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochimica et Cosmochimica Acta, 56, 467482.CrossRefGoogle Scholar
Jones, R. H. (1996a). FeO-rich, porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochimica et Cosmochimica Acta, 60, 31153138.CrossRefGoogle Scholar
Jones, R. H. (1996b). Relict grains in chondrules: Evidence for chondrule recycling. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 163172. Cambridge, UK: Cambridge University Press.Google Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics and Planetary Science, 47, 11761190.CrossRefGoogle Scholar
Jones, R. H., and Carey, E. R. (2006). Identification of relict forsterite grains in forsterite-rich chondrules from the Mokoia CV3 carbonaceous chondrite. American Mineralogist, 91, 16641674.CrossRefGoogle Scholar
Jones, R. H., and Layne, G. D. (1997). Trace element partitioning between pyroxene and melt in rapidly cooled chondrules. American Mineralogist, 82, 534545.CrossRefGoogle Scholar
Jones, R. H., and Lofgren, G. E. (1993). A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues. Meteoritics, 28, 213221.CrossRefGoogle Scholar
Jones, R. H., and Scott, E. R. D. (1989). Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. Proceedings of the 19th Lunar and Planetary Science Conference, 523536. Houston, TX: Lunar and Planetary Institute.Google Scholar
Jones, R. H., Saxton, J. M., Lyon, I. C., and Turner, G. (2000). Oxygen isotopic compositions of chondrule olivine and isolated olivine grains in the CO3 chondrite, ALHA77307. Meteoritics and Planetary Science, 35, 849857.CrossRefGoogle Scholar
Jurewicz, A. J. G., and Watson, E. B. (1988). Cations in olivine, Part 2: Diffusion in olivine xenocrysts, with applications to petrology and mineral physics. Contributions to Mineralogy and Petrology, 99, 186201.CrossRefGoogle Scholar
Kennedy, A. K., Lofgren, G. E., and Wasserburg, G. J. (1993). An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: Equilibrium values and kinetic effects. Earth and Planetary Science Letters, 115, 177195.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta, 74, 66106635.CrossRefGoogle Scholar
Kitamura, M., Yasuda, M., Watanabe, S., and Morimoto, N. (1983). Cooling history of pyroxene chondrules in the Yamato-74191 chondrite (L3) – an electron microscopic study. Earth and Planetary Science Letters, 63, 189201.CrossRefGoogle Scholar
Kitamura, M., Watanabe, S., and Morimoto, N. (1986). Pyroxene crystallization in chondrules–Autometamorphic evolution of chondrites. In Antarctic Meteorites XI, Papers presented to the 11th Symposium on Antarctic Meteorites, NIPR, Vol. 11, pp. 71–73.Google Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K., and Wasson, J. T. (2004). Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. Geochimica et Cosmochimica Acta, 68, 35993606.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., and Wasson, J. T. (2005). Oxygen isotopic compositions of low-FeO relicts in high-FeO host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochimica et Cosmochimica Acta, 69, 38313840.CrossRefGoogle Scholar
Lauretta, D. S., Kremser, D. T., and Fegley, B. Jr. (1996). The rate of iron sulphide formation in the solar nebula. Icarus, 122, 288315.CrossRefGoogle Scholar
Lauretta, D. S., Lodders, K., and Fegley, B. Jr. (1997). Experimental simulations of sulphide formation in the solar nebula. Science, 277, 358360.CrossRefGoogle ScholarPubMed
Libourel, G., and Chaussidon, M. (2011). Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth and Planetary Science Letters, 301, 921.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophysical Journal, 591, 12201247.CrossRefGoogle Scholar
Lofgren, G. E. (1989). Dynamic crystallization of chondrule melts of porphyritic olivine composition: Textures experimental and natural. Geochimica et Cosmochimica Acta, 53, 461470.CrossRefGoogle Scholar
Lofgren, G. E. (1996). A dynamic crystallization model for chondrule melts. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 187196. Cambridge, UK: Cambridge University Press.Google Scholar
Lofgren, G. E., and Lanier, A. B. (1990). Dynamic crystallization study of barred olivine chondrules. Geochimica et Cosmochimica Acta, 54, 35373551.CrossRefGoogle Scholar
Lofgren, G. E., and Le, L. (1998). Partial melting of type 1 chondrule precursor aggregates: An experimental and petrographic study. Lunar and Planetary Science Conference #29, contribution #1441.Google Scholar
Lofgren, G. E., and Russell, W. J. (1986). Dynamic crystallization of chondrule melts of porphyritic and radial pyroxene composition. Geochimica et Cosmochimica Acta, 50, 17151726.CrossRefGoogle Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochimica et Cosmochimica Acta, 119, 117136.CrossRefGoogle Scholar
Marrocchi, Y., Chaussidon, M., Piani, L., and Libourel, G. (2016). Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules. Science Advances 2, e1601001.CrossRefGoogle ScholarPubMed
McCanta, M. C., Beckett, J. R., and Stolper, E. M. (2008). Zonation of phosphorus in olivine: Dynamic crystallization experiments and a study of chondrule olivine in unequilibrated ordinary chondrites. Lunar and Planetary Science Conference #39, Abstract #1807.Google Scholar
McCanta, M. C., Beckett, J. R., and Stolper, E. M. (2016). Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona. Meteoritics and Planetary Science, 51, 520546.CrossRefGoogle Scholar
Milman-Barris, M. S., Beckett, J. R., Baker, M. B., et al. (2008). Zoning of phosphorus in igneous olivine. Contributions to Mineralogy and Petrology, 155, 739765.CrossRefGoogle Scholar
Miyamoto, M., McKay, D. S., McKay, G. A., and Duke, M. B. (1986). Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules. Journal of Geophysical Research, 91, 1280412816.CrossRefGoogle Scholar
Miyamoto, M., Mikouchi, T., and Jones, R. H. (2009). Cooling rates of porphyritic olivine chondrules in the Semarkona (LL3.00) ordinary chondrite: A model for diffusional equilibration of olivine during fractional crystallization. Meteoritics and Planetary Science, 44, 521530.CrossRefGoogle Scholar
Mori, M., Tachibana, S., Piani, L., et al. (2016). Cooling Experiments of Fe-Fes Melts: A Cooling Speedometer of Chondrules. Goldschmidt Abstracts, 2016, 2147.Google Scholar
Morris, M. A., and Desch, S. J. (2010). Thermal histories of chondrules in solar nebular shocks. Astrophysical Journal, 722, 14741494.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. Astrophysical Journal, 752, 2744.CrossRefGoogle Scholar
Morris, M. A., Weidenschilling, S. J., and Desch, S. J. (2016). The effect of multiple particle sizes on cooling rates of chondrules produced in large-scale shocks in the solar nebula. Meteoritics and Planetary Science, 51, 870883.CrossRefGoogle Scholar
Müller, W. F., Weinbruch, S., Walter, R., and Muller-Beneke, G. (1995). Transmission electron microscopy of chondrule minerals in the Allende meteorite: Constraints on the thermal and deformational history of granular olivine-pyroxene chondrules. Planetary and Space Science, 43, 469483.CrossRefGoogle Scholar
Nagahara, H. (1981). Evidence for secondary origin of chondrules. Nature, 292, 135136.CrossRefGoogle Scholar
Nettles, J. W., Lofgren, G. E., Carlson, W. D., and McSween, H. Y. (2006). Extent of chondrule melting: Evaluation of experimental textures, nominal grain size, and convolution index. Meteoritics and Planetary Science, 41, 10591071.CrossRefGoogle Scholar
Petry, C., Chakraborty, S., and Palme, H. (2004). Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochimica et Cosmochimica Acta, 68, 41794188.CrossRefGoogle Scholar
Piani, L., Marrocchi, Y., Libourel, G., and Tissandier, L. (2016). Magmatic sulphides in the porphyritic chondrules of EH enstatite chondrites. Geochimica et Cosmochimica Acta, 195, 8499.CrossRefGoogle Scholar
Radomsky, P. M., and Hewins, R. H. (1990). Formation conditions of pyroxene-olivine and magnesian olivine chondrules. Geochimica et Cosmochimica Acta, 54, 34753490.CrossRefGoogle Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature, 293, 558561.CrossRefGoogle Scholar
Righter, K., Campbell, A. J., and Humayun, M. (2005). Diffusion of trace elements in FeNi metal: Applications to zoned metal grains in chondrites. Geochimica et Cosmochimica Acta, 69, 31453158.CrossRefGoogle Scholar
Rocha, S. E., and Jones, R. H. (2012). An experimental study of the conditions of type II chondrule formation in ordinary chondrites. Lunar and Planetary Science Conference #43, Abstract #2595.Google Scholar
Roeder, P. L., and Emslie, R. F. (1970). Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275289.CrossRefGoogle Scholar
Rubin, A. E. (2010). Physical properties of chondrules in different chondrite groups: implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta, 74, 48074828.CrossRefGoogle Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 63, 22812298.CrossRefGoogle Scholar
Rubin, A. E., Baecker, B., and Wasson, J. T. (2015). Overgrowth layers on olivine phenocrysts in high-FeO Semarkona chondrules revealed by P, Fe, and Cr X-ray maps: Evidence for multiple melting of chondrules. 78th Annual Meeting of the Meteoritical Society, Abstract #5033.Google Scholar
Rudraswami, N. G., Ushikubo, T., Nakashima, D., and Kita, N. T. (2011). Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochimica et Cosmochimica Acta, 75, 75967611.CrossRefGoogle Scholar
Ruzicka, A. (2012). Chondrule formation by repeated evaporative melting and condensation in collisional debris clouds around planetesimals. Meteoritics and Planetary Science, 47, 22182236.CrossRefGoogle Scholar
Ruzicka, A., Hiyagon, H., Hutson, M., and Floss, C. (2007). Relict olivine, chondrule recycling, and the evolution of nebular oxygen reservoirs. Earth and Planetary Science Letters, 257, 274289.CrossRefGoogle Scholar
Ruzicka, A., Floss, C., and Hutson, M. (2008). Relict olivine grains, chondrule recycling, and implications for the chemical, thermal, and mechanical processing of nebular materials. Geochimica et Cosmochimica Acta, 72, 55305557.CrossRefGoogle Scholar
Ruzicka, A., Floss, C., and Hutson, M. (2012). Agglomeratic olivine (AO) objects and type II chondrules in ordinary chondrites: Accretion and melting of dust to form ferroan chondrules. Geochimica et Cosmochimica Acta, 76, 103124.CrossRefGoogle Scholar
Sanders, I. S., and Taylor, G. J. (2005). Implications of 26Al in nebular dust: Formation of chondrules by disruption of molten planetesimals. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 915932. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics and Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Schrader, D. L., and Lauretta, D. S. (2010). High-temperature experimental analogs of primitive meteoric metal-sulfide-oxide assemblages. Geochimica et Cosmochimica Acta, 74, 17191733.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochimica et Cosmochimica Acta, 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules. Meteoritics and Planetary Science, 50, 1550.CrossRefGoogle Scholar
Schrader, D. L., Davidson, J., and McCoy, T. J. (2016a). Widespread evidence for high temperature formation of pentlandite in chondrites. Geochimica et Cosmochimica Acta, 189, 359376.CrossRefGoogle Scholar
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016b). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, subsilicate solidus chondrule cooling rates. Lunar and Planetary Science Conference #47, Abstract #1180.Google Scholar
Smyth, J. R. (1974). Experimental study on the polymorphism of enstatite. American Mineralogist, 59, 345352.Google Scholar
Sorby, H. (1877). On the structure and origin of meteorites. Nature, 15, 495498.Google Scholar
Soulié, C. (2014). Formation des chondres et relation avec leurs auréoles de matrice à grains fins. PhD thesis, Université de Lorraine.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteoritics and Planetary Science, 52, 225250.CrossRefGoogle Scholar
Symes, S. J., and Lofgren, G. E. (1999). Distribution of FeO and MgO between olivine and melt in natural and experimental chondrules. Lunar and Planetary Science Conference #30, Abstract #1869.Google Scholar
Tachibana, S., and Huss, G. R. (2005). Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochimica et Cosmochimica Acta, 69, 30753097.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., and Mizuno, K. (2006). Constraints on cooling rates of chondrule from metal-troilite assemblages. Lunar and Planetary Science Conference #37, Abstract #2263.Google Scholar
Tachibana, S., Tamada, S., Kawasaki, H., Ozawa, K. and Nagahara, H. (2013). Interdiffusion of Mg-Fe in olivine at 1400–1600 °C and 1 atm total pressure. Physics and Chemistry of Minerals, 40, 511519.CrossRefGoogle Scholar
Taylor, L. A., and Cirlin, E. H. (1986). Olivine/melt Fe/Mg KD’s <0.3: Rapid cooling of olivine-rich chondrules. Lunar and Planetary Science, XVII, 1938.Google Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochimica et Cosmochimica Acta, 102, 226245.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta, 148, 228250.CrossRefGoogle Scholar
Tronche, E. J., Hewins, R. H., and MacPherson, G. J. (2007). Formation conditions of aluminum-rich chondrules. Geochimica et Cosmochimica Acta, 71, 33613381.CrossRefGoogle Scholar
Tsuchiyama, A., Osada, Y., Nakano, T., and Uesugi, K. (2004). Experimental reproduction of classic barred olivine chondrules: Open-system behavior of chondrule formation. Geochimica et Cosmochimica Acta, 68, 653672.CrossRefGoogle Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 76, 242263.CrossRefGoogle Scholar
Ushikubo, T., Nakashima, D., Kimura, M., Tenner, T. J., and Kita, N. T. (2013). Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs. Geochimica et Cosmochimica Acta, 109, 280295.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationship between type I and type II chondrules: Implications on chondrule formation processes, Geochimica et Cosmochimica Acta, 160, 277305.CrossRefGoogle Scholar
Wasson, J. T., and Rubin, A. E. (2003). Ubiquitous low-FeO relict grains in type II chondrules and limited overgrowths on phenocrysts following the final melting event. Geochimica et Cosmochimica Acta, 67, 22392250.CrossRefGoogle Scholar
Wasson, J. T., Baecker, B., and Rubin, A. E. (2014). Multiple, hierarchical heating of chondrules and implications for cooling rates. Lunar and Planetary Science Conference #45, Abstract #2883.Google Scholar
Watanabe, S., Kitamura, M., and Morimoto, N. (1985). A transmission electron microscope study of pyroxene chondrules in equilibrated L-group chondrites. Earth and Planetary Science Letters, 72, 8798.CrossRefGoogle Scholar
Watanabe, S., Kitamura, M., and Morimoto, N. (1986). Oscillatory zoning of pyroxenes in ALH-77214 (L3). Papers Presented to the Eleventh Symposium on Antarctic Meteorites, 74–75.Google Scholar
Weinbruch, S., and Müller, W. F. (1995). Constraints on the cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase. Geochimica et Cosmochimica Acta, 59, 32213230.CrossRefGoogle Scholar
Weinbruch, S., Müller, W. F., and Hewins, R. H. (2001). A transmission electron microscope study of exsolution and coarsening in iron-bearing clinopyroxene from synthetic analogues of chondrules. Meteoritics and Planetary Science, 36, 12371248.CrossRefGoogle Scholar
Weisberg, M. K., and Prinz, M. (1996). Agglomeratic chondrules, chondrule precursors, and incomplete melting. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 119127. Cambridge, UK: Cambridge University Press.Google Scholar
Welsch, B., Faure, F., Famin, V., Baronnet, A., and Bachèlery, P. (2013). Dendritic crystallization: A single process for all the textures of olivine in basalts? Journal of Petrology, 54, 539574.CrossRefGoogle Scholar
Wick, M., and Jones, R. H. (2012). Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochimica et Cosmochimica Acta, 98, 140159.CrossRefGoogle Scholar
Yasuda, M., Kitamura, M., and Morimoto, N. (1983). Electron microscopy of clinoenstatite from a boninite and a chondrite. Physics and Chemistry of Minerals, 9, 192196.CrossRefGoogle Scholar
Yurimoto, H., and Wasson, J. T. (2002). Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very O-16-rich olivine and a Mg-26-excess. Geochimica et Cosmochimica Acta, 66, 43554363.CrossRefGoogle Scholar

References

Abreu, N. M., and Brearley, A. J. (2010). Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochimica et Cosmochimica Acta, 74, 11461171.CrossRefGoogle Scholar
Abreu, N. M., and Brearley, A. J. (2011). Deciphering the nebular and asteroidal record of silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano. Meteoritics & Planetary Science, 46, 252274.CrossRefGoogle Scholar
Ahrens, L. H. (1965). Observations on the Fe-Si-Mg relationship in chondrites. Geochimica et Cosmochimica Acta, 29, 801806.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Grossman, J. N. (2005). Alkali elemental and potassium isotopic compositions of Semarkona chondrules. Meteoritics & Planetary Science, 40, 541556.Google Scholar
Alexander, C. M. O’D., Hutchison, R., and Barber, D. J. (1989b). Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites. Earth and Planetary Science Letters, 95, 187207.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Wang, J., et al. (2000). The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteoritics & Planetary Science, 35, 859868.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Amsellem, E., Moynier, F., Pringle, E. A., et al. (2017). Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes. Earth and Planetary Science Letters, 469, 7583.CrossRefGoogle Scholar
Anders, E. (1964). Origin, age and composition of meteorites. Space Science Reviews, 3, 583714.CrossRefGoogle Scholar
Asphaug, E., and Jutzi, M. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Baecker, B., Rubin, A. E., and Wasson, J. T. (2017). Secondary melting events in Semarkona chondrules revealed by compositional zoning in low-Ca pyroxene. Geochimica et Cosmochimica Acta, 211, 256279CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). The age of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 432, 472482.CrossRefGoogle Scholar
Berg, T., Maul, J., Schönhense, G., et al. (2009). Direct evidence for condensation in the early solar system and implications for nebular cooling rates. The Astrophysical Journal, 702, L172–176.CrossRefGoogle Scholar
Bigolski, J. N., Weisberg, M. K., Connolly, H. C., and Ebel, D. S. (2016). Microchondrules in three unequilibrated ordinary chondrites. Meteoritics & Planetary Science, 51, 235260.CrossRefGoogle Scholar
Bischoff, A., Geiger, T., Palme, H., et al. (1993). Mineralogy, chemistry, and noble gas contents of Adzhi-Bogdo—an LL3–6 chondritic breccia with L- chondritic and granitoidal clasts. Meteoritics, 28, 570578.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., and Haack, H. (2004). Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.CrossRefGoogle ScholarPubMed
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences, 102, 1375513760.CrossRefGoogle ScholarPubMed
Bland, P. A., Stadermann, F. J., Floss, C., et al. (2007). A cornucopia of presolar and early solar system materials at the micrometer size range in primitive chondrite matrix. Meteoritics & Planetary Science, 42, 14171427.CrossRefGoogle Scholar
Bland, P. A., Jackson, M. D, Coker, R. F., et al. (2009). Why aqueous alteration in asteroids was isochemical: High porosity ≠ high permeability. Earth and Planetary Science Letters, 287, 559–68.CrossRefGoogle Scholar
Bouvier, A., and Wadhwa, M. (2010). The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nature Geoscience, 3, 637641.CrossRefGoogle Scholar
Bouvier, A., Wadhwa, M., Simon, S. B., and Grossman, L. (2013). Magnesium isotopic fractionation in chondrules from the Murchison and Murray CM2 carbonaceous chondrites. Meteoritics & Planetary Science, 48, 339–53.CrossRefGoogle Scholar
Brearley, A. J. (2014). Nebular Versus Parent Body Processing. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 309334. Oxford, UK: Elsevier.Google Scholar
Brearley, A. J. (1993). Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA 77307: Origins and evidence for diverse, primitive nebular dust components. Geochimica et Cosmochimica Acta, 57, 15211550.CrossRefGoogle Scholar
Brearley, A. J., and Krot, A. N. (2013). Metasomatism in the early solar system: The record from chondritic meteorites. In Harlov, D. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock, 659789. Lecture Notes in Earth System Sciences. Berlin and Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Brennecka, G. A., Budde, G., and Kleine, T. (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteoritics & Planetary Science, 50, 19952002.CrossRefGoogle Scholar
Bridges, J. C., Franchi, I. A., Hutchinson, R., et al. (1995). Cristobalite-and tridymite-bearing clasts in Parnallee (LL3) and Farmington (L5). Meteoritics, 30, 715727.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Science, 113, 28862891.CrossRefGoogle ScholarPubMed
Chaussidon, M., and Robert, F. (1998). 7Li/6Li and 11B/10B variations in chondrules from the Semarkona unequilibrated chondrite. Earth and Planetary Science Letters, 164, 577589.CrossRefGoogle Scholar
Clarke, R. S., Jarosewich, E., Mason, B., et al. (1971). The Allende, Mexico, meteorite shower. Smithsonian Contributions to the Earth Sciences, 5, 153.Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 23172337.CrossRefGoogle Scholar
Connelly, J., Bizzarro, M., Krot, A., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., and Ciesla, F. J. (2005). Nebula evolution of thermally processed solids: Reconciling models and meteorites. In Krot, A. N., Scott, E. R. D., & Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk., 732773. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Cuzzi, J. N., and Alexander, C. M. O’.D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., Paque, J. M., and Dobrovolskis, A. R. (2001). Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. The Astrophysical Journal, 546, 496508.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Daly, L., Bland, P. A., Dyl, K. A., et al. (2017a). In situ analysis of refractory metal nuggets in carbonaceous chondrites. Geochimica et Cosmochimica Acta (in press)CrossRefGoogle Scholar
Daly, L., Bland, P. A., Dyl, K. A., et al. (2017b). Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach. Geochimica et Cosmochimica Acta (in press)CrossRefGoogle Scholar
Das, J. P., and Murty, S. V. S. (2008). Nitrogen isotopes in chondrules: Signatures of precursors and formation processes. Current Science, 94, 485489.Google Scholar
Desch, S. J., and Connolly, H. C. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteoritics & Planetary Science, 37, 183207.CrossRefGoogle Scholar
Dobrică, E., and Brearley, A. J. (2016). Microchondrules in two unequilibrated ordinary chondrites: Evidence for formation by splattering from chondrules during stochastic collisions in the solar nebula. Meteoritics & Planetary Science, 51, 884905.CrossRefGoogle Scholar
Ebel, D. S., Weisberg, M. K., Hertz, J., and Campbell, A. J. (2008). Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) Chondrite. Meteoritics & Planetary Science, 43, 1725–40.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochimica et Cosmochimica Acta, 172, 322–56.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 226–50.CrossRefGoogle Scholar
Friedrich, J. M., Weisberg, M. K., Ebel, D. S., et al. (2015). Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups. Chemie Der Erde – Geochemistry, 75, 419–43.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochimica et Cosmochimica Acta, 173, 198209.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., Barrat, J.-A., et al. (2017). Composition, petrology and chondrule-matrix complementarity of the recently discovered Jbilet Winselwan CM2 chondrite. Meteoritics & Planetary Science (in revisions).Google Scholar
Friend, P., Hezel, D. C., Palme, H., Bischoff, A., and Gelissen, M. (2018). Complementary element relationships between chondrules and matrix in Rumuruti chondrites. Earth and Planetary Science Letters, 480, 8796.CrossRefGoogle Scholar
Galy, A., Young, E. D., Ash, R. D., and O’Nions, R. K. (2000). The Formation of chondrules at high gas pressures in the solar nebula. Science, 290, 17511753.CrossRefGoogle ScholarPubMed
Gammie, C. F. (1996). Layered accretion in T Tauri disks. The Astrophysical Journal, 457, 355362.CrossRefGoogle Scholar
Gerber, M. (2012). Chondrule formation in the early Solar System: A combined ICP-MS, ICP-OES and petrological study. PhD thesis, University of Münster.Google Scholar
Goldberg, A. Z., Owen, J. E., and Jacquet, E. (2015). Chondrule transport in protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 452, 40544069.CrossRefGoogle Scholar
Gordon, S. G. (2009). The composition of components in primitive meteorites. PhD thesis, Imperial College, London.Google Scholar
Greshake, A. (1997). The primitive matrix components of the unique carbonaceous chondrite Acfer 094: A TEM study. Geochimica et Cosmochimica Acta, 61, 437452CrossRefGoogle ScholarPubMed
Grossman, J. N., and Wasson, J. T. (1984). The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta, 49, 925939.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteoritics & Planetary Science, 40, 87122.CrossRefGoogle Scholar
Harju, E. R., Rubin, A. E., Ahn, I., et al. (2014). Progressive aqueous alteration of CR carbonaceous chondrites. Geochimica et Cosmochimica Acta, 139, 267292.CrossRefGoogle Scholar
Hewins, R. (1997). Chondrules. Annual Review of Earth and Planetary Science, 25, 6183.CrossRefGoogle Scholar
Hewins, R. H., Bourot-Denise, M., Zanda, B., et al. (2014). The Paris meteorite, the least altered CM chondrite so far. Geochimica et Cosmochimica Acta, 124, 190222.CrossRefGoogle Scholar
Hezel, D. C., Harak, M., and Libourel, G. (2018a). What we know about elemental bulk chondrule and matrix compositions: Presenting the ChondriteDB database. Chemie der Erde – Geochemistry. doi:10.1016/j.chemer.2017.05.003CrossRefGoogle Scholar
Hezel, D. C., Needham, A. W., Armytage, R., et al. (2010). A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 296, 423433.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2007). The conditions of chondrule formation, Part I: Closed system. Geochimica et Cosmochimica Acta, 71, 40924107.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca-Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters, 265, 716725.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule-matrix complementarity. Earth and Planetary Science Letters, 294, 8593.CrossRefGoogle Scholar
Hezel, D.C., Palme, H., Brenker, F.E., and Nasdala, L. (2003). Evidence for fractional condensation and reprocessing at high temperatures in CH-chondrites. Meteoritics & Planetary Science, 38, 11991216.CrossRefGoogle Scholar
Hezel, D. C., Palme, H., Nasdala, L., and Brenker, F. E. (2006). Origin of SiO2-rich components in ordinary chondrites. Geochimica et Cosmochimica Acta, 70, 15481564.CrossRefGoogle Scholar
Hezel, D. C., Poole, G., Hoyes, J., et al. (2015). Fe and O isotope composition of meteorite fusion crusts: Possible natural analogues to chondrule formation? Meteoritics & Planetary Science, 50, 229242.CrossRefGoogle Scholar
Hezel, D. C., Russell, S. S., Ross, A. J., and Kearsley, A. T. (2008). Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteoritics & Planetary Science, 43, 18791894.CrossRefGoogle Scholar
Hezel, D. C., Wilden, J. S., Becker, D., et al. (2018b). Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity. Earth & Planetary Science Letters, 490, 31–39.CrossRefGoogle Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015). Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochimica et Cosmochimica Acta, 149, 206222.CrossRefGoogle Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. (2009). Modal mineralogy of CM2 chondrites by PSD-XRD, Part 1: Total phyllosilicate abundance and the degree of aqueous alteration. Geochimica et Cosmochimica Acta, 73, 45794589.CrossRefGoogle Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. (2010). Modal mineralogy of CV3 chondrites by PSD-XRD. Geochimica et Cosmochimica Acta, 74, 50845097.CrossRefGoogle Scholar
Howard, K. T., Benedix, G. K., Bland, P. A., and Cressey, G. (2011). Modal mineralogy of CM chondrites by PSD-XRD, Part 2: Degree, nature and settings of aqueous alteration. Geochimica et Cosmochimica Acta, 75, 27352751.CrossRefGoogle Scholar
Hubbard, A. (2016a). Ferromagnetism and particle collisions: Applications to protoplanetary disks and the meteoritical record. The Astrophysical Journal, 826, 152.CrossRefGoogle Scholar
Hubbard, A. (2016b). Partitioning tungsten between matrix precursors and chondrule precursors through relative settling. The Astrophysical Journal, 826, 151.CrossRefGoogle Scholar
Huss, G. R., Alexander, C. M. O’D., Palme, H., Bland, P. A., and Wasson, J. T. (2005). Genetic relationships between chondrules, fine-grained rims, and interchondrule matrix. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 701731. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hutchison, R., Williams, C. T., Din, V. K., and Clayton, R. N. (1988). A planetary, H-group pebble in the Barwell, L6, unshocked chondritic meteorite. Earth and Planetary Science Letters, 90, 105–18.CrossRefGoogle Scholar
Jacquet, E. (2014). The quasi-universality of chondrule size as a constraint for chondrule formation models. Icarus, 223, 176186.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162173.CrossRefGoogle Scholar
Jacquet, E., Paulhiac-Pison, M., Alard, O., Kearsley, A. T., and Gounelle, M. (2013). Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science, 48, 19811999.CrossRefGoogle Scholar
Jacquet, E., Barrat, J. -A., Beck, P., et al. (2016). Northwest Africa 5958: A weakly altered CM-related ungrouped chondrite, not a CI3. Meteoritics & Planetary Science, 51, 851869.CrossRefGoogle Scholar
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorites. Meteoritics, 25, 323337.CrossRefGoogle Scholar
Jones, R. H. (1992). On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochimica et Cosmochimica Acta, 56, 467482.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics & Planetary Science, 47, 1176–90.CrossRefGoogle Scholar
Jones, R. H., and Schilk, A. J. (2009). Chemistry, petrology and bulk oxygen isotope compositions of chondrules from the Mokoia CV3 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 73, 58545883.CrossRefGoogle Scholar
King, A. J., Schofield, P. F., Howard, K. T., and Russell, S. S. (2015). Modal mineralogy of CI and CI-like chondrites by X-ray diffraction. Geochimica et Cosmochimica Acta, 165, 148160.CrossRefGoogle Scholar
Klerner, S. (2001). Materie im frühen Sonnensystem: Die Entstehung von Chondren, Matrix und refraktären Forsteriten. PhD Thesis, Universität zu Köln.Google Scholar
Klerner, S., and Palme, H. (1999a). Origin of chondrules and matrix in carbonaceous chondrites. 30th Lunar and Planetary Science Conference, abstract 1272.Google Scholar
Klerner, S., and Palme, H. (1999b). Origin of chondrules and matrix in the Renazzo Meteorite (abstract). Meteoritics & Planetary Science, 34, (Supplement), A64.Google Scholar
Klerner, S., and Palme, H. (2000). Large titanium/aluminium fractionation between chondrules and matrix in Renazzo and other carbonaceous chondrites (abstract). Meteoritics & Planetary Science, 35, 89.Google Scholar
Krot, A. N., and Wasson, J. T. (1995). Igneous rims on low-FeO and high-FeO chondrules in ordinary chondrites. Geochimica et Cosmochimica Acta, 59, 49514966.CrossRefGoogle Scholar
Krot, A. N., Scott, E. R. D., and Zolensky, M. E. (1997a). Origin of fayalitic olivine rims and lath-shaped matrix olivine in the CV3 chondrite Allende and its dark inclusions. Meteoritics, 32, 3149.CrossRefGoogle Scholar
Krot, A. N., Wasson, J. T., Rubin, A. E., Scott, E. R. D., and Keil, K. (1997b). Microchondrules in ordinary chondrites: Implications for chondrule formation. Geochimica et Cosmochimica Acta, 61, 463475.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., Goodrich, C., and Petaev, M. I. (2004). Silica-igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for fractional condensation during chondrule formation. Meteoritics & Planetary Science, 39, 19311955.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., McKeegan, K. D., et al. (2006). Oxygen isotopic compositions of chondrules: Implications for evolution of oxygen isotopic reservoirs in the inner solar nebula. Chemie Der Erde – Geochemistry, 66, 249276.CrossRefGoogle Scholar
Leroux, H., Cuvillier, P., Zanda, B., and Hewins, R. H. (2015). GEMS-like material in the matrix of the Paris meteorite and the early stages of alteration of CM chondrites. Geochimica et Cosmochimica Acta, 170, 247265.CrossRefGoogle Scholar
Libourel, G., and Krot, A. N. (2007). Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin. Earth and Planetary Science Letters, 254, 18.CrossRefGoogle Scholar
Libourel, G., Krot, A., and Tissandier, L. (2006). Role of gas–melt interaction during chondrule formation. Earth and Planetary Science Letters, 251, 232240.CrossRefGoogle Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009). Abundances of the elements in the solar system. In Trümper, J. E. (Ed.), Landolt-Börnstein, New Series, vol.VI/4B, 560598. Berlin, Germany: Springer.Google Scholar
Luck, J. -M., Othman, D. B., and Albarède, F. (2005). Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochimica et Cosmochimica Acta, 69, 53515363.CrossRefGoogle Scholar
MacPherson, G. J., Simon, S. B., Davis, A. M., Grossman, L., and Krot, A. N. (2005). Calcium-aluminum-rich inclusions: Major unanswered questions. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 225250. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Mason, B., and Wiik, H. B. (1962). The Renazzo meteorite. American Museum Novitates, 2106, 111.Google Scholar
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. The Astrophysical Journal, 767, L2L7.CrossRefGoogle Scholar
Molini-Velsko, C., Mayeda, T. K., and Clayton, R. N. (1986). Isotopic composition of silicon in meteorites. Geochimica et Cosmochimica Acta, 50, 27192726.CrossRefGoogle Scholar
Moynier, F., Agranier, A., Hezel, D. C., and Bouvier, A. (2010). Sr stable isotope composition of Earth, the Moon, Mars, Vesta and meteorites. Earth and Planetary Science Letters, 300, 359366.CrossRefGoogle Scholar
Morris, M. A., and Desch, S. J. (2010). Thermal histories of chondrules in solar nebula shocks. The Astrophysical Journal, 722, 14741494.CrossRefGoogle Scholar
Mullane, E., Russell, S. S., and Gounelle, M. (2005). Nebular and asteroidal modification of the iron isotope composition of chondritic components. Earth and Planetary Science Letters, 239, 203218.CrossRefGoogle Scholar
Murakami, T., and Ikeda, Y. (1994). Petrology and mineralogy of the Yamato-86751 CV3 chondrite. Meteoritics, 29, 397409.CrossRefGoogle Scholar
Nelson, V. E., and Rubin, A. E. (2002). Frequency distributions of chondrules and chondrule fragments in LL3 chondrites: Implications for parent-body fragmentation of chondrules. Meteoritics & Planetary Science, 37, 13611376.CrossRefGoogle Scholar
Nguyen, A., and Zinner, E. (2004). Discover of ancient silicate stardust in a meteorite. Science, 303, 14961499.CrossRefGoogle Scholar
Niemeyer, S. (1988). Titanium isotopic anomalies in chondrules from carbonaceous chondrites. Geochimica et Cosmochimica Acta, 52, 309318.CrossRefGoogle Scholar
Nuth, J. A. III, Brearley, A. J., and Scott, E. R. D. (2005). Microcrystals and amorphous material in comets and primitive meteorites: Keys to understanding processes in the early Solar System. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 675700. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – insights into early disk processes. Geochimica et Cosmochimica Acta, 191, 118–38.CrossRefGoogle ScholarPubMed
Pack, A., Shelley, M. G., and Palme, H. (2004). Chondrules with peculiar REE patterns: Implications for solar nebular condensation at high C/O. Science, 303, 9971000.CrossRefGoogle ScholarPubMed
Palme, H., Larimer, J. W., and Lipschutz, M. E. (1988). Moderately volatile elements. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 436461. Tucson, AZ: University of Arizona Press.Google Scholar
Palme, H., Spettel, B., Kurat, G., and Zinner, E. (1992). Origin of Allende chondrules. 23 rd Lunar and Planetary Science Conference, abstract 1021.Google Scholar
Palme, H., Lodders, K., and Jones, A. (2014a). Solar system abundances of the elements. In Davis, A. M. (Ed.), Planets, Asteroids, Comets and the Solar System. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 2, 1536. Oxford, UK: Elsevier.Google Scholar
Palme, H., Spettel, B., and Hezel, D. C. (2014b). Siderophile elements in chondrules of CV-chondrites. Chemie der Erde, 74, 507516.CrossRefGoogle Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: constraints from matrix composition and matrix-chondrule complementarity. Earth and Planetary Science Letters, 411, 1119.CrossRefGoogle Scholar
Pringle, E. A., Moynier, F., Beck, P., Paniello, R., and Hezel, D. C. (2017). The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth and Planetary Science Letters, 468, 6271.CrossRefGoogle Scholar
Patchett, P. J. (1980). Sr isotopic fractionation in Allende chondrules: A reflection of solar nebular processes. Earth and Planetary Science Letters, 50, 181–88.CrossRefGoogle Scholar
Rai, V. K., and Thiemens, M. H. (2007). Mass independently fractionated sulfur components in chondrites. Geochimica et Cosmochimica Acta, 71, 1341–54.CrossRefGoogle Scholar
Rubin, A. E. (1984). Coarse-grained chondrule rims in type 3 chondrites. Geochimica et Cosmochimica Acta, 48, 17791789.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1987). Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite: Origin, interrelationships and possible precursor components. Geochimica et Cosmochimica Acta, 51, 19231937.CrossRefGoogle Scholar
Ruzicka, A., and Boynton, W. V. (1992). A distinctive silica-rich, sodium-poor igneous clast in the Bovedy (L3) chondrite. Meteoritics, 27, 283.Google Scholar
Sanders, I. S, and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Seitz, H. -M., Zipfel, J., Brey, G. P., and Ott, U. (2012). Lithium isotope compositions of chondrules, CAI and a dark inclusion from Allende and ordinary chondrites. Earth and Planetary Science Letters, 329, 5159.CrossRefGoogle Scholar
Shakura, N. I., and Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance. Astronomy & Astrophysics, 24, 337355.Google Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Stracke, A., Palme, H., Gellissen, M., et al. (2012) Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochimica et Cosmochimica Acta, 85, 114141.CrossRefGoogle Scholar
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas–melt interactions and their bearing on chondrule formation. Meteoritics & Planetary Science, 37, 13771389.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374–76.CrossRefGoogle ScholarPubMed
Trinquier, A., Birck, J. L., and Allègre, C. J. (2007). Widespread 54Cr heterogeneity in the inner solar system. The Astrophysical Journal, 655, 11791185.CrossRefGoogle Scholar
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-Rich carbonaceous chondrites. Proceedings of the National Academy of Sciences, 113, 2011–16.CrossRefGoogle ScholarPubMed
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of aluminum-26 in the solar system from the magnesium isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle ScholarPubMed
Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Philosopical Transactions of the Royal Society, London A, 325, 535544Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1993). The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochimica et Cosmochimica Acta, 57, 15671586.CrossRefGoogle Scholar
Wiik, H. B. (1956). The chemical composition of some stony meteorites. Geochimica et Cosmochimica Acta, 9, 279289.CrossRefGoogle Scholar
Wolf, D., and Palme, H. (2001). The solar system abundances of P and Ti and the nebular volatility of P. Meteoritics & Planetary Science, 36, 559572.CrossRefGoogle Scholar
Wombacher, F., Rehkaemper, M., Mezger, K., Bischoff, A., and Muenker, C. (2008). Cadmium stable isotope cosmochemistry. Geochimica et Cosmochimica Acta, 72, 646667.CrossRefGoogle Scholar
Wood, J. A. (1963). On the origin of chondrules and chondrites. Icarus, 2, 152180.CrossRefGoogle Scholar
Wood, J. A. (1967). Olivine and pyroxene compositions in Type II carbonaceous chondrites. Geochimica et Cosmochimica Acta, 31, 20952108.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Black, D. C. and Matthews, M. S. (Eds.), Protostars and Planets II, 687702. Tucson, AZ: University of Arizona Press.Google Scholar
Zanda, B., Hewins, R. H., Bourot-Denise, M., Bland, P. A., and Albarède, F. (2006). Formation of solar nebula reservoirs by mixing chondritic components. Earth and Planetary Science Letters, 248, 650660.CrossRefGoogle Scholar

References

Abreu, N. M., and Brearley, A. J. (2010). Early solar system processes recorded in the matrices of two highly pristine CR3 carbonaceous chondrites, MET 00426 and QUE 99177. Geochim. Cosmochim. Acta, 74(3), 11461171.CrossRefGoogle Scholar
Alexander, C. M. O’D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteorit. Planet. Sci., 40(7), 943965.CrossRefGoogle Scholar
Allègre, C., Manhès, G., and Lewin, É. (2001). Chemical composition of the Earth and the volatility control on planetary genetics. Earth and Planet. Sci. Lett., 185, 4969.CrossRefGoogle Scholar
Anders, E. (1964). Origin, age, and composition of meteorites. Space Sci. Rev., 3(5–6), 583714.CrossRefGoogle Scholar
Anders, E., and Ebihara, M. (1982). Solar-system abundances of the elements. Geochim. Cosmochim. Acta, 46, 23632380.CrossRefGoogle Scholar
Anders, E., and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197214.CrossRefGoogle Scholar
Barrat, J. A., Zanda, B., Moynier, F., et al. (2012). Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta, 83, 7992.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G.K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Nat. Acad. Sci., 102(39), 1375513760.CrossRefGoogle ScholarPubMed
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006). Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta, 70(7), 18491863.CrossRefGoogle Scholar
Bourot-Denise, M., Zanda, B., Marrocchi, Y., et al. (2010). Paris: The Slightly Altered, Slightly Metamorphosed CM that Bridges the Gap Between CMs and COs. In Lunar Planet. Sci. XLI, LPI Contribution No. 1533, p. 1683.Google Scholar
Brearley, A. J. (1993). Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components. Geochim. Cosmochim. Acta, 57(7), 15211550.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Nat. Acad. Sci., 113(13), 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016b). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett., 454, 293303.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Oberli, F., et al. (2011). Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth Planet. Sci. Lett., 312(3–4), 390400.CrossRefGoogle Scholar
Burkhardt, C., and Schönbächler, M. (2015). Intrinsic W nucleosynthetic isotop variations in carbonaceous chondrites: Implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials. Geochim. Cosmochim. Acta, 165, 361375.CrossRefGoogle Scholar
Cameron, A. G. W. (1982). Elemental and nuclidic abundances in the solar system. In Barnes, C. A., Clamon, D. D., and Schramm, D. N. (Eds.), Essays in Nuclear Astrophysics, 2343. New York, NY: Cambridge University Press.Google Scholar
Campbell, A. J., Simon, S. B., Humayun, M., Grossman, L. (2003). Chemical evolution of metal in refractory inclusions in CV3 chondrites. Geochim. Cosmochim. Acta, 67, 31193134.CrossRefGoogle Scholar
Diakonova, M. I., Kharitonova, V. I., and Iavnel, A. A. (1979). The Chemical Composition of Meteorites. (Book in Russian) Moscow; Russia: Izdatel’stvo Nauka, 68 p.Google Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites, Geochim. et Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Frank, D., Zolensky, M., Martinez, J., et al. (2011). A CAI in the Ivuna CI1 Chondrite. In Lunar Planet. Sci. XLI, LPI Contribution No. 1608, p. 2785.Google Scholar
Friedheim, C. (1888). Über die chemische Zusammensetzung der Meteoriten von Alfianello und Concepcion. Sitzber. Kgl. Preuss. Akad. Wiss. z. Berlin, 1, 345367.Google Scholar
Goswami, J. N., and Macdougall, J. D. (1983). Nuclear track and compositional studies of olivines in CI and CM chondrites. In LPSC XIII Part 2, A755–A764.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci., 40(1), 87122.CrossRefGoogle Scholar
Grossman, J. N., and Wasson, J. T. (1985). The origin and history of the metal and sulfide components of chondrules. Geochim. Cosmochim. Acta, 49(4), 925939.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., Simon, S. B., et al. (2000). Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochim. Cosmochim. Acta, 64(16), 28792894.CrossRefGoogle Scholar
Haramura, H., Kushiro, I., and Yanai, K. (1983). Chemical compositions of Antarctic meteorites I. Memoirs of NIPR, Special issue 30, 109121.Google Scholar
Hezel, D.C., and Palme, H. (2008). Constraints for chondrule formation from Ca–Al distribution in carbonaceous chondrites. Earth Planet. Sci. Lett., 265(3–4), 716725.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett., 294(1–2), 8593.CrossRefGoogle Scholar
Hezel, D. C., Russell, S. S., Ross, A. J., and Kearsley, A. T. (2008). Modal abundances of CAIs: Implications for bulk chondrite element abundances and fractionations. Meteorit. Planet. Sci., 43(11), 18791894.CrossRefGoogle Scholar
Humayun, M., and Cassen, P. (2000). Processes determining the volatile abundances of the meteorites and terrestrial planets. In Canup, R.M. and Righter, K. (Eds.), Origin of the Earth and Moon, 323. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Humayun, M., Simon, S. B., and Grossman, L. (2007). Tungsten and hafnium distribution in calcium-aluminum inclusions (CAIs) from Allende and Efremovka. Geochim. Cosmochim. Acta, 71, 46094627.CrossRefGoogle Scholar
Jarosewich, E. (1990). Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses. Meteorit. Planet. Sci., 25(4), 323337.Google Scholar
Jarosewich, E. (2006). Chemical analyses of meteorites at the Smithsonian Institution: An update. Meteorit. Planet. Sci., 41(9), pp. 13811382.CrossRefGoogle Scholar
Jones, R. H., and Schilk, A. J. (2009). Chemistry, petrology and bulk oxygen isotope compositions of chondrules from the Mokoia CV3 carbonaceous chondrite. Geochim. Cosmochim. Acta, 73(19), 58545883.CrossRefGoogle Scholar
Jones, R. H, and Scott, E.R.D (1989). Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite. In Proc. 19th Lunar Planet. Sci. Conf., pp. 523–536.Google Scholar
Kimura, M., and Ikeda, Y. (1998). Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteorit. Planet. Sci., 33(5), 11391146.CrossRefGoogle Scholar
Kong, P., and Palme, H. (1999). Compositional and genetic relationship between chondrules, chondrule rims, metal, and matrix in the Renazzo chondrite. Geochim. Cosmochim. Acta, 63(21), 36733682.CrossRefGoogle Scholar
Klerner, S. (2001). Materie im frühen Sonnensystem: Die entstehung von chondren, matrix, und refraktären forsteriten. Ph.D. thesis, Universität zu Köln.Google Scholar
Krot, A. N., Hutcheon, I. D., Brearley, A. J., et al. (2006). Timescales and Settings for Alteration of Chondritic Meteorites. In Lauretta, D. S. and McSween, H. Y. Jr., Meteorites and the Early Solar System II, 525553. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., and Bland, P. A. (2004). Multiple formation mechanisms of ferrous olivine in CV3 carbonaceous chondrites during fluid-assisted metamorphism. Antarct. Meteorite Res., 17, 154172.Google Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci., 33, 10651085.CrossRefGoogle Scholar
Larimer, J. W., and Wasson, J. T. (1988). Siderophile element fractionation. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 416435. Tucson, AZ: University of Arizona Press.Google Scholar
Leshin, L. A., Rubin, A. E., and McKeegan, K. D. (1997). The oxygen isotopic composition of olivine and pyroxene from CI chondrites. Geochim. Cosmochim. Acta, 61, 835845.CrossRefGoogle Scholar
Lodders, K. (2003). Solar System Abundances and Condensation Temperatures of the Elements. Astrophys. J., 591(2), 12201247.CrossRefGoogle Scholar
Lodders, K., and Palme, H. (2009). Solar System Elemental Abundances in 2009. Suppl. to Meteorit. Planet. Sci., 44, A5154Google Scholar
Lodders, K., Palme, H., and Gail, H. -P. (2009). Abundances of the Elements in the Solar System. In Trümper, J. E. (Ed.), Landolt-Börnstein, New Series, Group VI/4B, 560630. Berlin, Germany: Springer-Verlag.Google Scholar
Lux, G., Keil, K., and Taylor, G. J. (1980). Metamorphism of the H-group chondrites - Implications from compositional and textural trends in chondrules. Geochim. Cosmochim. Acta, 44, 841855.CrossRefGoogle Scholar
Mason, B. M., and Wiik, H. B. (1962). The Renazzo Meteorite, Novitates, 2106, 111.Google Scholar
McSween, H. Y. Jr. (1977a). Carbonaceous chondrites of the Ornans type – A metamorphic sequence. Geochim. Cosmochim. Acta, 41, 477491.CrossRefGoogle Scholar
McSween, H. Y. Jr. (1977b). Petrographic variations among carbonaceous chondrites of the Vigarano type Geochim. Cosmochim. Acta, 41, 17771790.CrossRefGoogle Scholar
McSween, H. Y. Jr. (1979). Alteration in CM carbonaceous chondrites inferred from modal and chemical variations in matrix. Geochim. Cosmochim. Acta, 43, 17611770.CrossRefGoogle Scholar
McSween, H. Y. Jr., and Richardson, S. M. (1977). The composition of carbonaceous chondrite matrix. Geochim. Cosmochim. Acta, 41, 11451161.CrossRefGoogle Scholar
Palme, H. (2000). Are there chemical gradients in the inner Solar System? Space Sci. Rev., 92(1–2), 237262.CrossRefGoogle Scholar
Palme, H. (2001). Chemical and isotopic heterogeneity in protosolar matter in Origin and early evolution of solid matter in the Solar System. Roy. Soc. of London Phil. Trans A, 359(1787), 20612075.CrossRefGoogle Scholar
Palme, H., and Beer, H. (1993). The composition of chondritic meteorites. In Voigt, H. H. (Ed.), Landolt-Börnstein - Group VI/3A, 196221. Berlin, Germany: Springer-Verlag.Google Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth Planet. Sci. Lett., 411, 1119CrossRefGoogle Scholar
Palme, H., Hutcheon, I. D., and Spettel, B. (1994). Composition and origin of refractory-metal-rich assemblages in a Ca,Al-rich Allende inclusion. Geochim. Cosmochim. Acta, 58, 495513.CrossRefGoogle Scholar
Palme, H., Larimer, J. W., and Lipschutz, M. E. (1988). Siderophile element fractionation. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 436461. Tucson, AZ: University of Arizona Press.Google Scholar
Palme, H., and Lodders, K. (2009). Metal-silicate fractionation in carbonaceous chondrites. Suppl. to Meteorit. Planet. Sci., 44, A165.Google Scholar
Palme, H., Lodders, K., and Jones, A. (2014). Solar System Abundances of the Elements. In Davis, A. M. (Ed.), Planets, Asteroids, Comets and the Solar System. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 2, 1536. Oxford, UK: Elsevier.Google Scholar
Palme, H., Spettel, B., Kurat, G., and Zinner, E. (1992). Origin of Allende chondrules. In Lunar and Planet. Sci. XXIII, pp. 1021–1022.Google Scholar
Rambaldi, E. R., and Wasson, J. T. (1981). Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite. Geochim. Cosmochim. Acta, 45(7), 10011015.CrossRefGoogle Scholar
Rambaldi, E. R., and Wasson, J. T. (1984). Metal and associated phases in Krymka and Chainpur: Nebular formational processes. Geochim. Cosmochim. Acta, 48(10), 18851897.CrossRefGoogle Scholar
Reid, A. M., Bass, M. N., Fujita, H., Kerridge, J. F., and Fredriksson, K. (1970). Olivine and pyroxene in the Orgueil meteorite. Geochim. Cosmochim. Acta, 34,12631255.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (1988). Chondrules and matrix in the Ornans CO3 meteorite: Possible precursor components. Geochim. Cosmochim. Acta, 52(2), 425432.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Oxford, UK: Elsevier.Google Scholar
Sears, D. W. G., and Dodd, R. T. (1988). Overview and classification of meteorites. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 331. Tucson, AZ: University of Arizona Press.Google Scholar
Shu, F. H., Shang, H. and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271(5255), 15451552.CrossRefGoogle Scholar
Wai, C. M., and Wasson, J. T. (1977). Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett., 36, 113.CrossRefGoogle Scholar
Warren, P. H. (1997). The unequal host-phase density effect in electron probe defocused beam analysis: an easily correctable problem. In Lunar Planet. Sci. XXVIII, p. 1406.Google Scholar
Wasson, J. T., and Chou, C. -L. (1974). Fractionation of moderately volatile elements in ordinary chondrites. Meteoritics, 9, 6984.CrossRefGoogle Scholar
Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Phil. Trans. Royal Society of London, Series A, Mathematical and Physical Sciences, 325(1587), 535544.Google Scholar
Wasson, J. T., and Rubin, A. E. (2009). Composition of matrix in the CR chondrite LAP 02342. Geochim. Cosmochim. Acta, 73(5), 14361460.CrossRefGoogle Scholar
Wasson, J. T., and Rubin, A. E. (2010). Matrix and whole-rock fractionations in the Acfer 094 type 3.0 ungrouped carbonaceous chondrite. Meteorit. Planet. Sci., 45(1), 7390.Google Scholar
Wiik, H. B. (1956). The chemical composition of some stony meteorites. Geochim. Cosmochim. Acta, 9(5), 279289.CrossRefGoogle Scholar
Wolf, D., and Palme, H. (2001). The solar system abundances of phosphorus and titanium and the nebular volatility of phosphorus. Meteorit. Planet. Sci., 36(4), 559571.CrossRefGoogle Scholar
Wood, J. A. (1963). On the origin of chondrules and chondrites. Icarus, 2, 152180.CrossRefGoogle Scholar
Wood, J. A. (1985). Meteoritic constraints on processes in the solar nebula. In Black, D. C. and Matthews, M. S. (Eds.), Protostars and Planets II, 687702. Tucson, AZ: University of Arizona Press.Google Scholar
Yokoyama, T., Alexander, C. M. O’D., and Walker, R. J. (2011). Assessment of nebular versus parent body processes on presolar components present in chondrites: Evidence from osmium isotopes. Earth Planet. Sci. Lett., 305(1–2), 115123.CrossRefGoogle Scholar
Zanda, B., Hewins, R. H., Bourot-Denise, M., Bland, P. A., and Albarède, F. (2006). Formation of solar nebula reservoirs by mixing chondritic components. Earth Planet. Sci. Lett., 248, 650660.CrossRefGoogle Scholar
Zanda, B., Humayun, M., Barrat, J. -A., Bourot-Denise, M., and Hewins, R. H. (2011a). Bulk and matrix composition of the Paris CM: Inferences on parent-body alteration and the origin of matrix-chondrule complementarity. In Lunar Planet. Sci. XLII, LPI Contribution No. 1608, p. 2040.Google Scholar
Zanda, B., Humayun, M., Barrat, J. -A., Bourot-Denise, M., and Hewins, R. H. (2011b). Chemistry of carbonaceous chondrites matrices: Parent-body alteration and chondrule-matrix complementarity. 74th Annual Meeting of the Meteoritical Society, London. Suppl. to Meteoritics Planet. Sci., 46, A5358.Google Scholar
Zanda, B., Humayun, M., and Hewins, R.H. (2012). Chemical composition of matrix and chondrules in carbonaceous chondrites: Implications for disk transport. In Lunar Planet. Sci. XLIII, LPI Contribution No. 1659, p. 2413.Google Scholar
Zanda, B., Le Guillou, C., and Hewins, R. H. (2009). The relationship between chondrules and matrix in chondrites. Suppl. to Meteorit. Planet. Sci., 44, A5280.Google Scholar
Zanetta, P.-M., Leroux, H., Le Guillou, C., et al. (2017). A new method for modal abundance, chemistry and density determination of fine grained matrices of primitive chondrites. Suppl. to Meteorit. Planet. Sci., 52, A6274.Google Scholar
Zolensky, M., Barrett, R., and Browning, L. (1993). Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites. Geochim. Cosmochim. Acta, 57(13), 31233148.CrossRefGoogle Scholar

References

Alexander, C. M. O’D. (2004). Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions. Geochim. Cosmochim. Acta, 68, 39433969.CrossRefGoogle Scholar
Alexander, C. M. O’D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteorit. Planet. Sci., 40, 943965.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci., 47, 11571175.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Grossman, J. N. (2005). Alkali elemental and potassium isotopic compositions of Semarkona chondrules. Meteorit. Planet. Sci. 40, 541556.Google Scholar
Alexander, C. M. O’D., and Wang, J. (2001). Iron isotopes in chondrules: Implications for the role of evaporation during chondrule formation. Meteorit. Planet. Sci. 36: 419428.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Wang, J., et al. (2000). The lack of potassium-isotopic fractionation in Bishunpur chondrules. Meteorit. Planet. Sci. 35, 859868.CrossRefGoogle Scholar
Alexander, C. M. O’D., Taylor, S., Delaney, J. S., Ma, P., and Herzog, G. F. (2002). Mass-dependent fractionation of Mg, Si, and Fe isotopes in five stony cosmic spherules. Geochim. Cosmochim. Acta, 66, 173183.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Anders, E. (1964). Origin, age and composition of meteorites. Space Sci. Rev., 3, 583714.CrossRefGoogle Scholar
Anders, E. (1977). Critique of “Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites” by Chien M. Wai and John T. Wasson. Earth Planet. Sci. Lett., 36, 1420.CrossRefGoogle Scholar
Armytage, R. M. G. (2011). The Silicon Isotopic Composition of Inner Solar System Materials. Ph.D. Dissertation. University of Oxford, 230pp.Google Scholar
Barrat, J. A., Zanda, B., Moynier, F., et al. (2012). Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta, 83, 7992.CrossRefGoogle Scholar
Bayron, J. M., Erb, I. R., Ebel, D. S., Wallace, S., and Connolly, H. C. Jr. (2014). Modal abundances and chemistry of clasts in the Renazzo (CR2) chondrite by x-ray map analysis. LPSC #45, abstract 1225.Google Scholar
Berlin, J. (2010). Mineralogy and Bulk Chemistry of Chondrules and Matrix in Petrologic Type 3 Chondrites: Implications for Early Solar System Processes. Ph.D. Dissertation. Free University, Berlin, 233pp.Google Scholar
Bischoff, A., Wurm, G., Chaussidon, M., et al. (2017). The Allende multicompound chondrule (ACC) – Chondrule formation in a local super-dense region of the early solar system. Meteorit. Planet. Sci., 52, 906924.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proc. Natl. Acad. Sci., 102, 1375513760.CrossRefGoogle ScholarPubMed
Borisov, A., Pack, A., Kropf, A., and Palme, H. (2008). Partitioning of Na between olivine and melt: An experimental study with application to the formation of meteoritic Na2O-rich chondrule glass and refractory forsterite grains. Geochim. Cosmochim. Acta, 72, 55585573.CrossRefGoogle Scholar
Bouvier, A., Wadhwa, M., Simon, S. B., and Grossman, L. (2013). Magnesium isotopic fractionation in chondrules from the Murchison and Murray CM2 carbonaceous chondrites. Meteorit. Planet. Sci., 48, 339353.CrossRefGoogle Scholar
Chaussidon, M., Libourel, G., and Krot, A. N. (2008). Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System. Geochim. Cosmochim. Acta, 72, 192419382.CrossRefGoogle Scholar
Ciesla, F. J., Lauretta, D. S., and Hood, L. L. (2004). The frequency of compound chondrules and implications for chondrule formation. Meteorit. Planet. Sci., 39, 531544.CrossRefGoogle Scholar
Campbell, A. J., Zanda, B., Perron, C., Meibom, A., and Petaev, M. I. (2005). Origin and thermal history of Fe-Ni metal in primitive chondrites. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 407431. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta, 55, 23172337.CrossRefGoogle Scholar
Connolly, H. C. Jr., Huss, G. R., and Wasserburg, G. J. (2001). On the formation of Fe-Ni metal in Renazzo-like carbonaceous chondrites. Geochim. Cosmochim. Acta, 65, 45674588.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Jones, R. H. (2016). Chondrules: The canonical and noncanonical views. J. Geophys. Res. Planets, 121, 18851899.CrossRefGoogle Scholar
Cuzzi, J. N., and Alexander, C. M. O‘D. (2006). Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across. Nature, 441, 483485.CrossRefGoogle ScholarPubMed
Cuzzi, J. N., Hogan, R. C., and Shariff, K. (2008). Toward planetesimals: Dense chondrule clumps in the protoplanetary nebula. Astrophys. J., 687, 14321447.CrossRefGoogle Scholar
D’Alessio, P., Calvet, N., and Woolum, D. S. (2005). Thermal structure of protoplanetary disks. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 353372. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.,Google Scholar
Davidson, J., Busemann, H., Nittler, L. R., et al. (2014). Abundances of presolar silicon carbide grains in primitive meteorites determined by NanoSIMS. Geochim. Cosmochim. Acta, 139, 248266.CrossRefGoogle Scholar
Davis, A. M., Hashimoto, A., Clayton, R. N., and Mayeda, T. K. (1990). Isotope mass fractionation during evaporation of Mg2SiO4. Nature, 347, 655658.CrossRefGoogle Scholar
Davis, A. M., Alexander, C. M. O‘D., Nagahara, H., and Richter, F. M. (2005). Evaporation and condensation during CAI and chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 432455. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Davis, A. M., and Richter, F. M. (2014). Condensation and evaporation of solar system materials. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. (Eds.), Treatise on Geochemistry (Second Edition)., 1, 335360. Oxford, UK: Elsevier.Google Scholar
Day, J. M., and Moynier, F. (2014). Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Phil. Trans. Roy. Soc. London A., 372, 20130259.Google ScholarPubMed
Deng, Z., Ebel, D. S., Gemma, M., Moynier, F., and Chaussidon, M. (2017). Contrasting Mg isotopic signatures in Leoville (CV3r) chondrules. Meteorit. Planet. Sci. Suppl. 52, abstract 6403.Google Scholar
Ebel, D. S. (2006). Condensaton of rocky material in astrophysical environments. In Lauretta, D. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 253277. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Ebel, D. S., and Alexander, C. M. O’D. (2011). Equilibrium condensation from chondritic porous IDP enriched vapor: Implications for mercury and enstatite chondrite origins. Planet. Space. Sci., 59, 18881894.CrossRefGoogle Scholar
Ebel, D.S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta, 64, 339366.CrossRefGoogle Scholar
Ebel, D. S., and Sack, R. O. (2013). Djerfisherite: Nebular source of refractory potassium. Contrib. Mineral. Petrol., 166, 923934.CrossRefGoogle Scholar
Ebel, D. S., Weisberg, M. K., Hertz, J., and Campbell, A. J. (2008). Shape, metal abundance, chemistry and origin of chondrules in the Renazzo (CR) chondrite.Meteorit. Planet. Sci., 43: 17251740.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Leftwich, K., et al. (2016). Abundance, composition and size of inclusions and matrix in CV and CO chondrites. Geochim. Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Esat, T. M., and Taylor, S. R. (1990). Mg isotopic composition of chondrules from the unequilibrated ordinary chondrite Semarkona. Lunar Planet. Sci., 21, 333334.Google Scholar
Fedkin, A. V., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochim. Cosmochim. Acta, 112, 226250.CrossRefGoogle Scholar
Fitoussi, C., Bourdon, B., Kleine, T., Oberli, F., and Reynolds, B. C. (2009). Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet. Sci. Lett., 287, 7785.CrossRefGoogle Scholar
Florentin, L., Faure., F., Deloule, E., et al. (2017). Origin of Na in glass inclusions hosted in olivine from Allende CV3 and Jbilet Winselwan CM2: Implications for chondrule formation. Earth Planet. Sci. Lett., 474, 160171.CrossRefGoogle Scholar
Floss, C., El Goresy, A., Zinner, E., et al. (1996). Elemental and isotopic fractionations produced through evaporation of the Allende CV chondrite: Implications for the origin of the HAL-type hibonite inclusions. Geochim. Cosmochim. Acta, 60, 19751998.CrossRefGoogle Scholar
Friedrich, J. M., Wang, M. -S., and Lipschutz, M. E. (2003). Chemical studies of L chondrites. V: Compositional patterns for forty-nine trace elements in fourteen L4–6 and seven LL4–6 falls. Geochim. Cosmochim. Acta, 67, 24672479.CrossRefGoogle Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochim. Cosmochim. Acta, 173, 198209.CrossRefGoogle Scholar
Galy, A., Young, E. D., Ash, R. D., and O’Nions, R. K. (2000). The formation of chondrules at high gas pressures in the solar nebula. Science, 290, 17511754.CrossRefGoogle ScholarPubMed
Georg, R. B., Halliday, A. N., Schauble, E. A., and Reynolds, B. C. (2007). Silicon in the Earth’s core. Nature, 447, 11021106.CrossRefGoogle ScholarPubMed
Grossman, J. N. (1988). Formation of chondrules. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 680696. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, J. N. (1996). Chemical fractionations of chondrites: Signatures of events before chondrule formation. In Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 243253. Cambridge, UK: Cambridge University Press.Google Scholar
Grossman, J. N., Alexander, C. M. O’D., Wang, J., and Brearley, A. J. (2002). Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing. Meteorit. Planet. Sci., 37, 4974.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., Simon, S. B., et al. (2000). Major element chemical and isotopic compositions of refractory inclusions in C3 chondrites: The separate roles of condensation and evaporation. Geochim. Cosmochim. Acta, 64, 28792894.CrossRefGoogle Scholar
Grossman, L., Ebel, D. S., and Simon, S. B. (2002). Formation of refractory inclusions by evaporation of condensate precursors. Geochim. Cosmochim. Acta 66: 145161.CrossRefGoogle Scholar
Hashimoto, A. (1983). Evaporation metamorphism in the early solar nebula – Evaporation experiments on the melt FeO-MgO-SiO2-CaO-Al2O3 and chemical fractionations of primitive materials. Geochem. J., 17, 111145.CrossRefGoogle Scholar
Harju, E. R., Kohl, I. E., Rubin, A. E., and Young, E. D. (2015). Silicon isotope condensation in type IAB chondrules at near equilibrium conditions. LPSC #46, abstract 2658.Google Scholar
Hewins, R. H., and Radomsky, P. M. (1990). Temperature conditions for chondrule formation. Meteoritics, 25, 309318.CrossRefGoogle Scholar
Hewins, R. H., and Zanda, B. (2012). Chondrules: Precursors and interactions with the nebular gas. Meteorit. Planet. Sci., 47, 11201138.CrossRefGoogle Scholar
Hewins, R. H., Yu, Y., Zanda, B., and Bourot-Denise, M. (1997). Do nebular fractionations, evaporative losses, or both, influence chondrule compositions? Proc. NIPR Symp. Ant. Meteorit., 10, 275298.Google Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the protoplanetary disk, 286316. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., Zanda, B., and Bendersky, C. (2012). Evaporation and recondensation of sodium in Semarkona Type II chondrules. Geochim. Cosmochim. Acta, 78, 117.CrossRefGoogle Scholar
Hezel, D. C., Palme, H., Nasdala, L., and Brenker, F. E. (2006). Origin of SiO2-rich components in ordinary chondrites. Geochim. Cosmochim. Acta, 70, 15481564.CrossRefGoogle Scholar
Hezel, D. C., Needham, A. W., Armytage, R., et al. (2010). A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth Planet. Sci. Lett., 296, 423433.CrossRefGoogle Scholar
Hobart, K. K., Crapster-Pregont, E. J., and Ebel, D. S. (2015). Decoding the history of a layered chondrule through olivine grain orientation measurements using EBSD. LPSC #46, abstract 1978.Google Scholar
Hubbard, A., and Ebel, D. S. (2015). Semarkona: Lessons for chondrule and chondrite formation. Icarus, 245, 3237.CrossRefGoogle Scholar
Humayun, M., and Clayton, R. N. (1995). Potassium isotope cosmochemistry: Genetic implications of volatile element depletion. Geochim. Cosmochim. Acta, 59, 21312148.CrossRefGoogle Scholar
Humayun, M., Campbell, A. J., Zanda, B., and Bourot-Denise, M. (2002). Formation of Renazzo chondrule metal inferred from siderophile elements. LPSC #33, abstract 1965.Google Scholar
Humayun, M., Connolly, H. C. Jr., Rubin, A. E., and Wasson, J. T. (2010). Elemental distribution in metal from the CR chondrites Acfer 059 and PCA 91082. LPSC #41, abstract 1840.Google Scholar
Huss, G. R. (1990). Ubiquitous interstellar diamond and SiC in primitive chondrites: Abundances reflect metamorphism. Nature, 347, 159162.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1995). Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta, 59, 115160.CrossRefGoogle Scholar
Huss, G. R., Alexander, C. M. O’D., Palme, P., Bland, P. A., and Wasson, J. T. (2005). Genetic relationships between chondrules, fine-grained rims, and interchondrule matrix. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 701731. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Imae, N., and Isobe, H. (2017). An experimental study of chondrule formation from chondritic precursors via evaporation and condensation in Knudsen cell: Shock heating model of dust aggregates. Earth Planet. Sci. Lett., 473, 256268.CrossRefGoogle Scholar
Jarosewich, E., Clarke, R. S., and Barrows, J. N. (1987). The Allende meteorite reference sample. Smithson. Contrib. Earth Sci., 27, 49 pp.Google Scholar
Jones, R. H. (1990). Petrology and mineralogy of type II, FeO-rich chondrules in Semarkona (LL3.0): Origin by closed-system fractional crystallization, with evidence for supercooling. Geochim. Cosmochim. Acta, 54, 17851802.CrossRefGoogle Scholar
Jones, R. H. (1996). FeO-rich porphyritic pyroxene chondrules in unequilibrated ordinary chondrites. Geochim. Cosmochim. Acta, 60, 31153138.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteorit. Planet. Sci., 47, 11761190.CrossRefGoogle Scholar
Jones, R. H., Grossman, J. N., and Rubin, A. E. (2005). Chemical, mineralogical and isotopic properties of chondrules: Clues to their origin. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 251285. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Kehm, K., Hauri, E. H., Alexander, C. M. O’D., and Carlson, R. W. (2003). High precision iron isotope measurements of meteoritic material by cold plasma ICP-MS, Geochim. Cosmochim. Acta, 67, 28792891.CrossRefGoogle Scholar
Kong, P., Ebihara, M., and Palme, H. (1999). Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation. Geochim. Cosmochim. Acta, 63, 26372652.CrossRefGoogle Scholar
Kropf, A., and Libourel, G. (2011). Gas-melt interaction experiments at high temperature and high SiO(g) partial pressure – Implication of melt composition to chondrule formation. LPSC #42, abstract 1160.Google Scholar
Kropf, A., and Pack, A. (2008). Closed system behavior of chondrules – New constraints for the chondrule forming process. LPSC #39, abstract 2222.Google Scholar
Kropf, A., Huss, G. R., Krot, A. N., and Pack, A. (2009). Closed system behavior of alkalis in type-1 chondrules – Understanding chondrules as igneous systems. LPSC #40, abstract 2464.Google Scholar
Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. (2004). Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for condensation origin from fractionated nebular gas. Meteorit. Planet. Sci., 39, 19311955.CrossRefGoogle Scholar
Kühne, P., Kadlag, Y., Tatzel, M., Frick, D. A., and Becker, H. (2017). Constraints on chondrule-matrix complementarity from silicon isotope compositions of components of the Allende CV3 meteorite. 80th Annual Meeting of the Meteoritical Society, abstract 6245.Google Scholar
Kuroda, D., and Hashimoto, A. (2002). The reaction of forsterite with hydrogen – its apparent and real temperature dependence. Antarctic Meteorit. Res., 15, 152164.Google Scholar
Lauretta, D. S., Lodders, K., Fegley, B., and Kremser, D. T. (1997). The origin of sulfide-rimmed metal grains in ordinary chondrites. Earth Planet. Sci. Lett., 151, 289301.CrossRefGoogle Scholar
Lehner, S. W., Petaev, M. I., Zolotov, M. Y., and Buseck, P. R. (2013). Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites. Geochim. Cosmochim. Acta, 101, 3456.CrossRefGoogle Scholar
Lewis, R. D., Lofgren, G. E., Franzen, H. F., and Windom, K. E. (1993). The effect of Na vapor on the Na content of chondrules. Meteoritics, 28, 622628.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2003). Evidence for high temperature condensation of moderately-volatile elements during chondrule formation. LPSC #34, abstract 1558.Google Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas–melt interaction during chondrule formation. Earth Planet. Sci. Lett., 251, 232240.CrossRefGoogle Scholar
Lobo, A., Wallace, S., and Ebel, D. S. (2014). Modal abundances, chemistry, and sizes of clasts in the Semarkona (LL3.0) chondrite by x-ray map analysis. LPSC #45, abstract 1423.Google Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J., 591, 12201247.CrossRefGoogle Scholar
Lodders, K., and Fegley, B. Jr. (1998). The Planetary Scientist’s Companion. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Lodders, K., Palme, H., and Gail, H. P. (2009). Abundances of the elements in the solar system. In Trümper, J. E. (Ed.), Landolt-Börnstein, New Series, Vol. VI/4B, 560630. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
Love, S. G., and Brownlee, D. E. (1991). Heating and thermal transformation of micrometeoroids entering the Earth’s atmosphere. Icarus, 89, 2643.CrossRefGoogle Scholar
Luck, J. -M., Ben Othman, D., and Albarède, F. (2005). Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim. Acta, 69, 53515363.CrossRefGoogle Scholar
Makishima, A., and Nakamura, E. (2006). Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope dilution-internal standardisation (ID-IS) and multi-stage internal standardisation. Geostand. Geoanalytical Res., 30, 245271.CrossRefGoogle Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochim. Cosmochim. Acta, 119, 117136.CrossRefGoogle Scholar
Mathieu, R., Khedim, H., Libourel, G., et al. (2008). Control of alkali-metal oxide activity in molten silicates. J. Non-Cryst. Solids 354, 50795083.CrossRefGoogle Scholar
Mathieu, R., Libourel, G., Deloule, E., et al. (2011). Na2O solublity in CaO-MgO-SiO2 melts. Geochim. Cosmochim. Acta, 57, 608628.CrossRefGoogle Scholar
Matsunami, S., Ninagawa, K., Nishimura, S., et al. (1993). Thermoluminescence and compositional zoning in the mesostasis of a Semarkona group A1 chondrule and new insights into the chondrule-forming process. Geochim. Cosmochim. Acta., 57, 21012110.CrossRefGoogle Scholar
McDonough, W. F. (2014). Compositional model for the Earth’s core. In Carlson, R. W. (Ed.), The Mantle and Core. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 3, 559577. Oxford, UK: Elsevier.Google Scholar
Metzler, K. (2012). Ultrarapid chondrite formation by hot chondrule accretion? Evidence from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 47, 21932217.CrossRefGoogle Scholar
Metzler, K., and Pack, A. (2016). Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites. Meteorit. Planet. Sci., 51, 276302.CrossRefGoogle Scholar
Molini-Velsko, C., Mayeda, T. K., and Clayton, R. N. (1986). Isotopic composition of silicon in meteorites. Geochim. Cosmochim. Acta, 50, 27192726.CrossRefGoogle Scholar
Moynier, F., Dauphas, N., and Podosek, F. A. (2009). Search for 70Zn anomalies in meteorites. Astrophys. J. Lett., 700, L92L95.CrossRefGoogle Scholar
Moynier, F., Vance, D., Fujii, T., and Savage, P. S. (2017). The isotope geochemistry of zinc and copper. Reviews in Mineralogy and Geochemistry, 82, 543600. Washington, DC: Mineralogical Society of America.Google Scholar
Mullane, E., Russell, S. S., and Gounelle, M. (2005). Nebular and asteroidal modification of the iron isotope composition of chondritic components. Earth Planet. Sci. Lett., 239, 203218.CrossRefGoogle Scholar
Nagahara, H., and Ozawa, Z. (1996). Evaporation of forsterite in H2 gas. Geochim. Cosmochim. Acta, 60, 14451459.CrossRefGoogle Scholar
Needham, A. W., Porcelli, D., and Russell, S. S. (2009). An Fe isotope study of ordinary chondrites. Geochim. Cosmochim. Acta, 73, 73997413.CrossRefGoogle Scholar
Palme, H., Larimer, J. W., and Lipschutz, M. E. (1988). Moderately volatile elements. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 436461. Tucson, AZ: University of Arizona Press.Google Scholar
Palme, H., Hezel, D. C., and Ebel, D. S. (2014). Matrix chondrule relationship and the origin of chondrules. Earth Planet. Sci. Lett., 411: 1119.CrossRefGoogle Scholar
Piani, L., Marrocchi, Y., Libourel, G., and Tissandier, L. (2016). Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites. Geochim. Cosmochim. Acta, 195, 8499.CrossRefGoogle Scholar
Poitrasson, F., Levasseur, S., and Teutsch, N. (2005). Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet. Sci. Lett., 234, 151164.CrossRefGoogle Scholar
Pringle, E. A., Moynier, F., Beck, P., Paniello, R., and Hezel, D. C. (2017). The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth Planet. Sci. Lett., 468, 6271.CrossRefGoogle Scholar
Richter, F. M., Davis, A. M., Ebel, D. S., and Hashimoto, A. (2002). Elemental and isotopic fractionation of Type B calcium-, aluminum-rich inclusions: Experiments, theoretical considerations, and constraints on their evolution. Geochim. Cosmochim. Acta, 66, 521540.CrossRefGoogle Scholar
Richter, F. M., Janney, P. E., Mendybaev, R. A., Davis, A. M., and Wadhwa, M. (2007). Elemental and isotopic fractionation of Type B CAI-like liquids by evaporation. Geochim. Cosmochim. Acta, 71, 55445564CrossRefGoogle Scholar
Richter, F. M., Mendybaev, R. A., Christensen, J. N., Ebel, D., and Gaffney, A. (2011). Laboratory experiments bearing on the origin and evolution of olivine-rich chondrules. Meteorit. Planet. Sci., 46, 11521178.CrossRefGoogle Scholar
Rubin, A. E., and Wasson, J. T. (2005). Non-spherical lobate chondrules in CO3.0 Y-81020: General implications for the formation of low-FeO porphyritic chondrules in CO chondrites. Geochim. Cosmochim. Acta, 69, 211220.CrossRefGoogle Scholar
Rubin, A. E., Sailer, A. L., and Wasson, J. T. (1999). Troilite in the chondrules of type-3 ordinary chondrites: Implications for chondrule formation. Geochim. Cosmochim. Acta, 63, 22812298.CrossRefGoogle Scholar
Russell, S., Zhu, X., Guo, Y., et al. (2003). Copper and zinc isotope composition of Cr, CB and CH-like meteorites. EGS-AGU-EUG Joint Assembly, abstract #11331.Google Scholar
Scott, E. R. D., and Taylor, G. J. (1983). Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins. Proc. Lunar Planet. Sci., 14, J. Geophys. Res. Suppl., 88, B275B286.Google Scholar
Sears, D. W. G., Huang, S., and Benoit, P. H. (1996). Open-system behaviour during chondrule formation. In Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 221232. Cambridge, UK: Cambridge University Press.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteorit. Planet. Sci., 46, 126.Google Scholar
Stolper, E. (1982). Crystallization sequences of Ca-Al-rich inclusions from Allende: An experimental study. Geochim. Cosmochim. Acta, 52, 225250.Google Scholar
Stolper, E., and Paque, J. (1986). Crystallization sequences of Ca-Al-rich inclusions from Allende: The effects of cooling rate and maximum temperature. Geochim. Cosmochim. Acta, 50, 17851806.CrossRefGoogle Scholar
Stracke, A., Palme, H., Gellissen, M., et al. (2012). Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochim. Cosmochim. Acta, 85, 114141.CrossRefGoogle Scholar
Tachibana, S., and Huss, G. R. (2005). Sulfur isotope composition of putative primary troilite in chondrules from Bishunpur and Semarkona. Geochim. Cosmochim. Acta, 69, 30753097.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Ozawa, K., et al. (2015). Kinetic condensation and evaporation of metallic iron and implications for metallic iron dust formation. Astrophys. J., 736, 1624.CrossRefGoogle Scholar
Taylor, G. J., Scott, E. R. D., and Keil, K. (1983). Cosmic setting for chondrule formation. In King, E. A. (Ed.), Chondrules and their Origins, 262278. Houston, TX: Lunar and Planetary Institute.Google Scholar
Taylor, S., Alexander, C. M. O‘D., Delaney, J. S., et al. (2005). Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules: Implications for heating histories and sources. Geochim. Cosmochim. Acta, 69, 26472662.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta, 148, 228250.CrossRefGoogle Scholar
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas-melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci., 37, 13771389.CrossRefGoogle Scholar
Villeneuve, J., Libourel, G., and Soulié, C. (2015). Relationships between type I and type II chondrules: Implications on chondrule formation processes. Geochim. Cosmochim. Acta, 160, 277305.CrossRefGoogle Scholar
Walsh, T. M., and Lipschutz, M. E. (1982). Chemical studies of L chondrites–II. Shock-induced trace element mobilization. Geochim. Cosmochim. Acta, 46, 24912500.CrossRefGoogle Scholar
Wai, C. M., and Wasson, J. T. (1977). Nebular condensation of moderately volatile elements and their abundances in ordinary chondrites. Earth Planet. Sci. Lett., 36, 113.CrossRefGoogle Scholar
Wang, K. (2013). Iron Isotope Cosmochemistry. PhD Dissertation. Washington University, Saint Louis, 254pp.Google Scholar
Wang, J., Davis, A. M., Clayton, R. N., Mayeda, T. K., and Hashimoto, A. (2001). Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO2-CaO-Al2O3-TiO2 rare earth element melt system. Geochim. Cosmochim. Acta, 65, 479494.CrossRefGoogle Scholar
Wasson, J. T. (1977). Reply to Edward Anders: A discussion of alternative models for explaining the distribution of moderately volatile elements in ordinary chondrites. Earth Planet. Sci. Lett., 36, 2128.CrossRefGoogle Scholar
Wasson, J. T., and Kallemeyn, G. W. (1988). Composition of chondrites. Phil. Trans. Roy. Soc. London A, 325, 535544.Google Scholar
Wasson, J. T., and Rubin, A. E. (2002). Ubiquitous relict grains in type-II chondrules, narrow overgrowths, and chondrule cooling rates following the last melting event. LPSC #33, abstract 1141.Google Scholar
Weisberg, M. K., McCoy, T. J., and Krot, A. N. (2006). Systematics and evaluation of meteorite classification. In Lauretta, D. and McSween, H. Y. Jr. (Eds.), Meteorites and the Early Solar System II, 1952. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Wombacher, F., Rehkämper, M., Mezger, K., and Münker, C. (2003). Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochim. Cosmochim. Acta, 67, 46394654.CrossRefGoogle Scholar
Wombacher, F., Rehkämper, M., Mezger, K., Bischoff, A., and Münker, C. (2008). Cadmium stable isotope cosmochemistry. Geochim. Cosmochim. Acta, 72, 646667.CrossRefGoogle Scholar
Wood, J. A. (1996). Unresolved issues in the formation of chondrules and chondrites. In Hewins, R., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 5570. Cambridge, UK: Cambridge University Press.Google Scholar
Wood, J.A. (2001). Chondrites: Tight-lipped witnesses to the beginning. unpublished Mazursky Lecture, 12 pp.Google Scholar
Young, E. D., and Galy, A. (2004). The isotope geochemistry and cosmochemistry of magnesium. Reviews in Mineralogy and Geochemistry, 55, 197230. Washington, DC: Mineralogical Society of America.Google Scholar
Young, E. D., Ash, R. D., Galy, A., and Belshaw, N. S. (2002). Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O isotopes. Geochim. Cosmochim. Acta, 66, 683698.CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., Alexander, C. M. O‘D., and Wang, J. (2003). Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta, 67, 773786.CrossRefGoogle Scholar
Zanda, B. (2004). Chondrules. Earth Planet. Sci. Lett., 224, 117.CrossRefGoogle Scholar
Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R. H. (1994). Origin and metamorphic redistribution of silicon, chromium and phosphorus in the metal of chondrites. Science, 265, 18461849.CrossRefGoogle ScholarPubMed
Zhu, X. K., Guo, Y., O’Nions, R. K., Young, E. D., and Ash, R. D. (2001). Isotopic homogeneity of iron in the early solar nebula. Nature, 412, 311312.CrossRefGoogle ScholarPubMed

References

Baedecker, P. A., and Wasson, J. T. (1975). Elemental fractionations among enstatite chondrites. Geochimica et Cosmochimica Acta, 39, 735765.CrossRefGoogle Scholar
Barrat, J. A., Zanda, B., Jambon, A., and Bollinger, C. (2014). The lithophile trace elements in enstatite chondrites. Geochimica et Cosmochimica Acta, 128, 7194.CrossRefGoogle Scholar
Birck, J. (2004). An overview of isotopic anomalies in extraterrestrial materials and their nucleosynthetic heritage. Reviews in Mineralogy and Geochemistry, 55, 2564. Washington, D.C.: Mineralogical Society of America.Google Scholar
Blander, M. (1971). The constrained equilibrium theory: Sulphide phases in meteorites. Geochimica et Cosmochimica Acta, 35, 6176.CrossRefGoogle Scholar
Blander, M., Pelton, A. D., and Jung, I. -H. (2009). A condensation model for the formation of chondrules in enstatite chondrites. Meteoritics and Planetary Science 44, 531543.CrossRefGoogle Scholar
Brearley, A. J., and Jones, R. H. (1998). Chondritic meteorites. In Papike, J. J. (Ed.), Planetary Materials. Reviews in Mineralogy and Geochemistry, 36, 3-1–3-398. Washington, D.C.: Mineralogical Society of America.Google Scholar
Burkhardt, C., Dauphas, N., Tang, H., et al. (2017). In search of the Earth-forming reservoir: Mineralogical, chemical and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites. Meteoritics and Planetary Science, 52, 807826.CrossRefGoogle Scholar
Campbell, A. J., Zanda, B., Perron, C., Meibom, A., and Petaev, M. I. (2005). Origin and Thermal History of Fe-Ni Metal in Primitive Chondrites. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 407431. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Ciesla, F. J., and Cuzzi, J. N. (2006). The evolution of the water distribution in a viscous protoplanetary disk. Icarus, 181, 178204.CrossRefGoogle Scholar
Connelly, J., Bizzarro, M., Krot, A., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651.CrossRefGoogle ScholarPubMed
Crozaz, G., and Lundberg, L. L. (1995). The origin of oldhamite in unequilibrated enstatite chondrites. Geochimica et Cosmochimica Acta, 59, 38173831.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M., and Dobrovolskis, A. R. (2001). Size-selective Concentration of Chondrules and Other Small Particles in Protoplanetary Nebula Turbulence. The Astrophysical Journal, 546, 496508.CrossRefGoogle Scholar
Dauphas, N., Burkhardt, C., Warren, P. H. , and Teng, F. -Z. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Philosophical Transactions of the Royal Society A, 372(2024). 20130244.Google ScholarPubMed
DeMeo, F. E., and Carry, B. (2014). Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.CrossRefGoogle ScholarPubMed
Dickinson, T. L., and McCoy, T. J. (1997). Experimental REE partitioning in oldhamite: Implications for the igneous origin of aubritic oldhamite. Meteoritics and Planetary Science, 32, 395412.CrossRefGoogle Scholar
Ebel, D. S., and Alexander, C. M. O’D. (2005). Condensation from cluster-IDP enriched vapor inside the snow line: Implications for mercury, asteroids, and enstatite chondrites. In Mackwell, S. and Stansbery, E. (Eds.), 36th Lunar and Planetary Science Conference, #1797.Google Scholar
Ebel, D. S., Boyet, M., Hammouda, T., et al. (2015). Complementary rare earth element abundances in enstatite and oldhamite in EH3 chondrites. In 46 th Lunar and Planetary Science Conference, #1832.Google Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 64, 339366.CrossRefGoogle Scholar
Ebert, S., and Bischoff, A. (2016). Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? – Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula. Geochimica et Cosmochimica Acta, 177, 182204.CrossRefGoogle Scholar
El Goresy, A., Lin, Y., Miyahara, M., et al. (2017). Origin of EL3 chondrites: Evidence for variable C/O ratios during their course of formation–A state of the art scrutiny. Meteoritics and Planetary Science, 52, 781806.CrossRefGoogle Scholar
El Goresy, A., Yabuki, H., Ehlers, K., Woolum, D., and Pernicka, E. (1988). Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Antarctic Meteorite Research, 1, 65.Google Scholar
Estrada, P. R., Cuzzi, J. N., and Morgan, D. A. (2016). Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. methodology and typical results. The Astrophysical Journal, 818, 200.CrossRefGoogle Scholar
Fagan, T. J., McKeegan, K. D., Krot, A. N., and Keil, K. (2001). Calcium-aluminum-rich inclusions in enstatite chondrites (II): Oxygen isotopes. Meteoritics and Planetary Science, 36, 223230.CrossRefGoogle Scholar
Fedkin, A., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 225250.CrossRefGoogle Scholar
Fincham, C. J. B., and Richardson, F. D. (1954). The behaviour of sulphur in silicate and aluminate melts. Proceedings of the Royal Society of London, Series A, 223, 4062.Google Scholar
Fleet, M. E., and MacRae, N. D. (1987). Sulfidation of Mg-rich olivine and the stability of niningerite in enstatite chondrites. Geochimica et Cosmochimica Acta, 51, 15111521.CrossRefGoogle Scholar
Fogel, R. A. (1998). High-sulfur/low-iron silicate melts: Low-oxygen-fugacity phenomena of importance to aubrite formation. Meteoritics and Planetary Science Supplement, 33, A52.Google Scholar
Fogel, R. A., Weisberg, M. K., and Prinz, M. (1996). The solubility of CaS in aubrite silicate melts. In 27 th Lunar and Planetary Science Conference, p. 371.Google Scholar
Gannoun, A., Boyet, M., El Goresy, A., and Devouard, B. (2011). REE and actinide microdistribution in Sahara 97072 and ALHA77295 EH3 chondrites: A combined cosmochemical and petrologic investigation. Geochimica et Cosmochimica Acta, 75, 32693289.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. The Astrophysical Journal Letters, 841, L17.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Rambaldi, E. R., Rajan, R. S., and Wasson, J. T. (1985). Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochimica et Cosmochimica Acta, 49, 17811795.CrossRefGoogle Scholar
Grossman, J. N., and Wasson, J. T. (1985). The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta, 49, 925939.CrossRefGoogle Scholar
Grossman, L., Beckett, J. R., Fedkin, A. V., Simon, S. B., and Ciesla, F. J. (2008). Redox conditions in the solar nebula: Observational, experimental and theoretical constraints. In MacPherson, G. J. (Ed.), Oxygen in the Solar System. Reviews in Mineralogy and Geochemistry, 68, 93140. Washington, D.C.: Mineralogical Society of America.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., Leshin, L. A., MacPherson, G. J., and McKeegan, K. D. (2006). Oxygen isotope and 26Al-26Mg systematics of aluminum-rich chondrules from unequilibrated enstatite chondrites. Meteoritics and Planetary Science, 41, 3347.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., MacPherson, G. J., and Wasserburg, G. J. (2000a). Calcium-aluminum-rich inclusions from enstatite chondrites: indigenous or foreign? Science, 289, 13301333.CrossRefGoogle ScholarPubMed
Guan, Y., McKeegan, K. D., and MacPherson, G. J. (2000b). Oxygen isotopes in calcium-aluminum-rich inclusions from enstatite chondrites: New evidence for a single CAI source in the solar nebula. Earth and Planetary Science Letters, 181, 271277.CrossRefGoogle Scholar
Herndon, J. M., and Suess, H. E. (1976). Can enstatite meteorites form from a nebula of solar composition. Geochimica et Cosmochimica Acta, 40, 395399.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C. Jr, Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 286316. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Horstmann, M., Humayun, M., and Bischoff, A. (2014). Clues to the origin of metal in Almahata Sitta EL and EH chondrites and implications for primitive E chondrite thermal histories. Geochimica et Cosmochimica Acta, 140, 720744.CrossRefGoogle Scholar
Hsu, W. (1998). Geochemical and petrographic studies of oldhamite, diopside, and roedderite in enstatite meteorites. Meteoritics and Planetary Science, 33, 291301.CrossRefGoogle Scholar
Hsu, W., and Crozaz, G. (1998). Mineral chemistry and the origin of enstatite in unequilibrated enstatite chondrites. Geochimica et Cosmochimica Acta, 62, 19932004.CrossRefGoogle Scholar
Hutson, M., and Ruzicka, A. (2000). A multi-step model for the origin of E3 (enstatite) chondrites. Meteoritics and Planetary Science, 35, 601608.CrossRefGoogle Scholar
Ikeda, Y. (1988). Petrochemical study of the Yamato-691 enstatite chondrite (EH3) I: Major element chemical compositions of chondrules and inclusions. Proceedings of the NIPR Symposium on Antarctic Meteorite Research, 2, 147165.Google Scholar
Ikeda, Y. (1989a). Petrochemical study of the Yamato-691 enstatite chondrite (E3) III: Descriptions and mineral compositions of chondrules. Antarctic Meteorite Research, 2, 75108.Google Scholar
Ikeda, Y. (1989b). Petrochemical study of the Yamato-691 enstatite chondrite (E3) V: Comparison of major element chemistries of chondrules and inclusions in Y-691 with those in ordinary and carbonaceous chondrites. Antarctic Meteorite Research 2, 147165.Google Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3). Meteoritics and Planetary Science, 50, 16241642.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162173.CrossRefGoogle Scholar
Jacquet, E., Paulhiac-Pison, M., Alard, O., and Kearsley, A. (2013). Trace element geochemistry of CR chondrite metal. Meteoritics and Planetary Science, 48, 19811999.CrossRefGoogle Scholar
Jacquet, E., and Robert, F. (2013). Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus, 223, 722732.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics and Planetary Science, 47, 11761190.CrossRefGoogle Scholar
Keil, K. (1968). Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73, 69456976.CrossRefGoogle Scholar
Kimura, M. (1988). Origin of opaque minerals in an unequilibrated enstatite chondrite Yamato-691, Antarctic Meteorite Research, 1, 5164.Google Scholar
Kimura, M., Hiyagon, H., Lin, Y., and Weisberg, M. K. (2003). FeO-rich silicates in the Sahara 97159 (EH3) enstatite chondrite: Mineralogy, oxygen isotopic compositions, and origin. Meteoritics and Planetary Science, 38, 389398.CrossRefGoogle Scholar
Kimura, M., Weisberg, M. K., Lin, Y., et al. (2005). Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics and Planetary Science, 40, 855868.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta, 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early Solar System. Meteoritics and Planetary Science, 48, 13831400.CrossRefGoogle Scholar
Krijt, S., Ciesla, F. J., and Bergin, E. A. (2016). Tracing water vapor and ice during dust growth. The Astrophysical Journal, 833, 285298.CrossRefGoogle Scholar
Larimer, J. W. (1968). An experimental investigation of oldhamite, CaS; and the petrologic significance of oldhamite in meteorites. Geochimica et Cosmochimica Acta, 32, 965982.CrossRefGoogle Scholar
Larimer, J. W., and Bartholomay, M. (1979). The role of carbon and oxygen in cosmic gases – Some applications to the chemistry and mineralogy of enstatite chondrites. Geochimica et Cosmochimica Acta, 43, 14551466.CrossRefGoogle Scholar
Larimer, J. W., and Ganapathy, R. (1987). The trace element chemistry of CaS in enstatite chondrites and some implications regarding its origin. Earth and Planetary Science Letters, 84, 123134.CrossRefGoogle Scholar
Larimer, J. W., and Wasson, J. T. (1988). Refractory lithophile elements. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 394415. Tucson, AZ: University of Arizona Press.Google Scholar
Lehner, S. W., Buseck, P. R., and McDonough, W. F. (2010). Origin of kamacite, schreibersite, and perryite in metal-sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteoritics and Planetary Science, 45, 289303.CrossRefGoogle Scholar
Lehner, S. W., McDonough, W. F., and NéMeth, P. (2014). EH3 matrix mineralogy with major and trace element composition compared to chondrules. Meteoritics and Planetary Science, 49, 22192240.CrossRefGoogle Scholar
Lehner, S. W., Petaev, M. I., Zolotov, M. Y., and Buseck, P. R. (2013). Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites. Geochimica et Cosmochimica Acta, 101, 3456.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas-melt interaction during chondrule formation. Earth and Planetary Science Letters, 251, 232240.CrossRefGoogle Scholar
Lin, Y., and El Goresy, A. (2002). A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills 88136 (EL3): Representatives of EH and EL parent bodies. Meteoritics and Planetary Science, 37, 577599.CrossRefGoogle Scholar
Lin, Y., El Goresy, A., Boyet, M., et al. (2011). Earliest solid condensates consisting of the assemblage Oldhamite, Sinoite, Graphite and excess 36S in Lawrencite from Almahata Sitta MS-17 EL3 chondrite fragment. In Workshop on Formation of the First Solids in the Solar System, LPI Contributions, 1639, 9040.Google Scholar
Lin, Y., Kimura, M., Hiyagon, H., and Monoi, A. (2003). Unusually abundant refractory inclusions from Sahara 97159 (EH3): A comparative study with other groups of chondrites. Geochimica et Cosmochimica Acta, 67, 49354948.CrossRefGoogle Scholar
Lodders, K., and Fegley, B. (1993). Lanthanide and actinide chemistry at high C/O ratios in the solar nebula. Earth and Planetary Science Letters, 117, 125145.CrossRefGoogle Scholar
Lusby, D., Scott, E. R. D., and Keil, K. (1987). Ubiquitous high-FeO silicates in enstatite chondrites. Journal of Geophysical Research, 92, 679.CrossRefGoogle Scholar
Manzari, P. (2010). Investigation of Enstatite Chondrites: Mineralogical and Chemical Features of EH3 and EL3 Chondrules. PhD thesis, Dipartimento Geomineralogico – Università degli Studi di Bari, Italy.Google Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochimica et Cosmochimica Acta, 119, 117136.CrossRefGoogle Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) Meteorite: A textural, chemical and phase relations view of melting and melt migration. Meteoritics and Planetary Science, 34, 735746.CrossRefGoogle Scholar
McCoy, T. J., and Nittler, L. R. (2014). Mercury. In Davis, A. M. (Ed.), Planets, Asteroids, Comets and the Solar System. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 119126. Amsterdam, Netherlands: Elsevier.Google Scholar
Metzler, K., and Pack, A. (2016). Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites. Meteoritics and Planetary Science, 51, 276302.CrossRefGoogle Scholar
Milani, A., Kneževic, Z., Novakovic, B., and Cellino, A. (2010). Dynamics of the Hungaria asteroids. Icarus, 207, 769794.CrossRefGoogle Scholar
Miller, K. E., Lauretta, D. S., Connolly, H. C. Jr., et al. (2017). Formation of unequilibrated R chondrite chondrules and opaque phases. Geochimica et Cosmochimica Acta, 209, 2450.CrossRefGoogle Scholar
Nakashima, D., Kimura, M., Yamada, K., et al. (2010). Study of chondrules in CH chondrites I: Oxygen isotope ratios of chondrules. Meteoritics and Planetary Science Supplement, 73, 5288.Google Scholar
Pack, A., Shelley, J. M. G., and Palme, H. (2004). Chondrules with peculiar REE patterns: Implications for solar nebular condensation at high C/O. Science, 303, 9971000.CrossRefGoogle ScholarPubMed
Pasek, M. A., Milsom, J. A., Ciesla, F. J., et al. (2005). Sulfur chemistry with time-varying oxygen abundance during Solar System formation. Icarus, 175, 114.CrossRefGoogle Scholar
Petaev, M. I., and Wood, J. A. (1998). The condensation with partial isolation model of condensation in the solar nebula. Meteoritics and Planetary Science, 33, 11231137.CrossRefGoogle Scholar
Petaev, M. I., and Wood, J. A. (2001). Condensation in Fractionated Nebular Systems. II. Formation of Enstatite Chondrites in Dust-enriched Nebular Reservoirs. Meteoritics and Planetary Science Supplement, 36, A162.Google Scholar
Piani, L., Marrocchi, Y., Libourel, G., and Tissandier, L. (2016). Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites. Geochimica et Cosmochimica Acta, 195, 8499.CrossRefGoogle Scholar
Piani, L., Robert, F., Beyssac, O., et al. (2012). Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3). Meteoritics and Planetary Science, 47, 829.CrossRefGoogle Scholar
Pignatale, F. C., Liffman, K., Maddison, S. T., and Brooks, G. (2016). 2D condensation model for the inner Solar Nebula: an enstatite-rich environment. Monthly Notices of the Royal Astronomical Society, 457, 13591370.CrossRefGoogle Scholar
Rambaldi, E. R., Rajan, R. S., Housley, R. M., and Wang, D. (1986). Gallium-bearing sphalerite in a metal-sulfide nodule of the Qingzhen (EH3) chondrite. Meteoritics, 21, 2331.CrossRefGoogle Scholar
Rambaldi, E. R., Rajan, R. S., Wang, D., and Housley, R. M. (1983). Evidence for RELICT grains in chondrules of Qingzhen, an E3 type enstatite chondrite. Earth and Planetary Science Letters, 66, 1124.CrossRefGoogle Scholar
Ramdohr, P. (1963). Opaque minerals in stony meteorites. Journal of Geophysical Research, 68, 20112036.CrossRefGoogle Scholar
Rubin, A. E. (1983). The Adhi Kot breccia and implications for the origin of chondrules and silica-rich clasts in enstatite chondrites. Earth and Planetary Science Letters, 64, 201212.CrossRefGoogle Scholar
Rubin, A. E. (2000). Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews, 50, 327.CrossRefGoogle Scholar
Rubin, A. E. (2010). Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta, 74, 48074828.CrossRefGoogle Scholar
Rubin, A. E., and Grossman, J. N. (1987). Size-frequency distributions of EH3 chondrules. Meteoritics, 22, 237251.CrossRefGoogle Scholar
Rubin, A. E., and Scott, W. R. D. (1997). Abee and related EH chondrite impact-melt breccias. Geochimica et Cosmochimica Acta, 61, 425435.CrossRefGoogle Scholar
Rudraswami, N. G., Ushikubo, T., Nakashima, D., and Kita, N. T. (2011). Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochimica et Cosmochimica Acta, 75, 75967611.CrossRefGoogle Scholar
Schneider, D. M., Akridge, D. G., and Sears, D. W. G. (1998). Size Distribution of Metal Grains and Chondrules in Enstatite Chondrites. Meteoritics and Planetary Science Supplement, 33, 136.Google Scholar
Schneider, D. M., Symes, S. J. K., Benoit, P. H., and Sears, D. W. G. (2002). Properties of chondrules in EL3 chondrites, comparison with EH3 chondrites, and the implications for the formation of enstatite chondrites. Meteoritics and Planetary Science, 37, 14011416.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Amsterdam, Netherlands: Elsevier.Google Scholar
Simon, S. B., Sutton, S. R., and Grossman, L. (2016). The valence and coordination of titanium in ordinary and enstatite chondrites. Geochimica et Cosmochimica Acta, 189, 377390.CrossRefGoogle Scholar
Skinner, B., and Luce, F. (1971). Solid solution of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. American Mineralogist, 56, 12691296.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteoritics and Planetary Science, 52, 225250.CrossRefGoogle Scholar
Tanaka, R., and Nakamura, E. (2017). Silicate-SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules. Nature Astronomy, 1, 0137.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta, 148, 228250.CrossRefGoogle Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochimica et Cosmochimica Acta, 102, 226245.CrossRefGoogle Scholar
Trieloff, M., Storck, J. -C., Mostefaoui, S., et al. (2013). A precise 53Mn-53Cr age of sphalerites from the primitive EH3 chondrite sahara 97158. Meteoritics and Planetary Science Supplement, 76, 5251.Google Scholar
Uesugi, M., Akaki, T., Sekiya, M., and Nakamura, T. (2005). Motion of iron sulfide inclusions inside a shock-melted chondrule. Meteoritics and Planetary Science, 40, 1103.CrossRefGoogle Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 90, 242264.CrossRefGoogle Scholar
van Niekerk, D., and Keil, K. (2011). Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body. Meteoritics and Planetary Science, 46, 14841497.CrossRefGoogle Scholar
Varela, M. E., Sylvester, P., Brandstätter, F., and Engler, A. (2015). Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing. Meteoritics and Planetary Science, 50, 13381361.CrossRefGoogle Scholar
Weisberg, M. K., Ebel, D. S., Bigolski, J. N., and Friedrich, J. M. (2016). Metal-sulfide nodules in enstatite and ordinary chondrites. 79th Annual Meeting of the Meteoritical Society, 1921, 6549.Google Scholar
Weisberg, M. K., Ebel, D. S., Connolly, H. C., Kita, N. T., and Ushikubo, T. (2011). Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochimica et Cosmochimica Acta, 75, 65566569.CrossRefGoogle Scholar
Weisberg, M. K., Fogel, R. A., and Prinz, M. (1997). Kamacite-enstatite intergrowths in enstatite chondrites. In 28th Lunar and Planetary Science Conference, p. 523.Google Scholar
Weisberg, M. K., and Prinz, M. (1998). Sahara 97096: A highly primitive EH3 chondrite with layered sulfide-metal-rich chondrules. In 29th Lunar and Planetary Science Conference, #1741.Google Scholar
Weisberg, M. K., Prinz, M., and Fogel, R. A. (1994). The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene. Meteoritics, 29, 362373.CrossRefGoogle Scholar
Weisberg, M., and Kimura, M. (2012). The unequilibrated enstatite chondrites. Chemie der Erde, 72, 101115.CrossRefGoogle Scholar
Whitby, J. A., Gilmour, J. D., Turner, G., Prinz, M., and Ash, R. D. (2002). Iodine-Xenon dating of chondrules from the Qingzhen and Kota Kota enstatite chondrites. Geochimica et Cosmochimica Acta, 66, 347359.CrossRefGoogle Scholar
Wood, J. A., and Hashimoto, A. (1993). Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 23772388.CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., and Zanda, B. (1996). Sodium and sulfur in chondrules: Heating time and cooling curves. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 213219. Cambridge, UK: Cambridge University Press.Google Scholar
Zhang, Y., Benoit, P. H., and Sears, D. W. G. (1995). The classification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research, 100, 94179438.CrossRefGoogle Scholar

References

Alexander, C. M. O’D. (2004). Chemical equilibrium and kinetic constraints for chondrule and CAI formation conditions. Geochim. Cosmochim. Acta 68, 39423969.CrossRefGoogle Scholar
Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. (1989). The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 30453057.CrossRefGoogle Scholar
Allende Prieto, C., Lambert, D. L., and Asplund, M. (2001). The forbidden abundance of oxygen in the Sun. Astrophys. J. 556, L63L66.CrossRefGoogle Scholar
Allende Prieto, C., Lambert, D. L., and Asplund, M. (2002). A reappraisal of the Solar photospheric C/O ratio. Astrophys. J. 573, L137L140.CrossRefGoogle Scholar
Anders, E., and Grevesse, N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197214.CrossRefGoogle Scholar
Ando, M., Nagata, T., Sato, S., et al. (2002). Near-infrared and CO (J = 1–0) observations of photodissociation regions in M17. Astrophys. J. 574, 187197.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369379.CrossRefGoogle Scholar
Baertschi, P. (1976). Absolute 18O content of standard mean ocean water. Earth Planet. Sci. Lett. 31, 341344.CrossRefGoogle Scholar
Behrens, H., Zhang, Y. X., Leschik, , et al. (2007). Molecular H2O as carrier for oxygen diffusion in hydrous silicate melts. Earth Planet. Sci. Lett. 254, 6976.CrossRefGoogle Scholar
Behrens, H., Zhang, Y. X., and Xu, Z. G. (2004). H2O diffusion in dacitic and andesitic melts. Geochim. Cosmochim. Acta 68, 51395160.CrossRefGoogle Scholar
Berlin, J. (2009). Mineralogy and bulk chemistry of chondrules and matrix in petrologic type 3 chondrites: Implications for early solar system processes. Ph.D. thesis, The University of New Mexico.Google Scholar
Binet, L., Gourier, D., Derenne, S., and Robert, F. (2002). Heterogeneous distribution of paramagnetic radicals in insoluble organic matter from the Orgueil and Murchison meteorites. Geochim. Cosmochim. Acta 66, 41774186.CrossRefGoogle Scholar
Bischoff, A., Geiger, T., Palme, , et al. (1994). Acfer 217-A new member of the Rumuruti chondrite group (R). Meteoritics 29, 264274.CrossRefGoogle Scholar
Bischoff, A., and Keil, K. (1984). Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochim. Cosmochim. Acta 48, 693709.CrossRefGoogle Scholar
Bischoff, A., Vogel, N., and Roszjar, J. (2011). The Rumuruti chondrite group. Chemie der Erde 71, 101133.CrossRefGoogle Scholar
Bodénan, J. -D., Starkey, N. A., Russell, S. S., Wright, I. P., and Franchi, I. A. (2014). An oxygen isotope study of Wark-Lovering rims on type A CAIs in primitive carbonaceous chondrites. Earth Planet. Sci. Lett. 401, 327336.CrossRefGoogle Scholar
Bonal, L., Bourot-Denise, M., Quirico, E., Montagnac, G., and Lewin, E. (2007). Organic matter and metamorphic history of CO chondrites. Geochim. Cosmochim. Acta 71, 16051623.CrossRefGoogle Scholar
Brearley, A. J. (1997). Disordered biopyriboles, amphibole, and talc in the Allende meteorite: Products of nebular or parent body aqueous alteration? Science 276, 11031105.CrossRefGoogle ScholarPubMed
Bridges, J. C., Franchi, I. A., Sexton, A. S., and Pillinger, C. T. (1999). Mineralogical controls on the oxygen isotopic compositions of UOCs. Geochim. Cosmochim. Acta 63, 945951.CrossRefGoogle Scholar
Bullock, E. S., MacPherson, G. J., Nagashima, K., et al. (2012). Forsterite-bearing type B refractory inclusions from CV3 chondrites: From aggregates to volatilized melt droplets. Meteorit. Planet. Sci. 47, 21282147.CrossRefGoogle Scholar
Cassen, P. (2001). Nebular thermal evolution and the properties of primitive planetary materials. Meteorit. Planet. Sci. 36, 671700.CrossRefGoogle Scholar
Chakraborty, S. (2010). Diffusion coefficients in olivine, wadsleyite, and ringwoodite. In Zhang, Y. and Cherniak, D. J. (Eds.), Reviews in Mineralogy and Geochemistry 72, 603639. Washington D.C.: Mineralogical Society of America.Google Scholar
Chaussidon, M., Libourel, G., and Krot, A. N. (2008). Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System. Geochim. Cosmochim. Acta 72, 19241938.CrossRefGoogle Scholar
Choi, B. -G., Krot, A. N., and Wasson, J. T. (2000). Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia. Meteorit. Planet. Sci. 35, 12391248.CrossRefGoogle Scholar
Choi, B. -G., McKeegan, K. D., Krot, A. N., and Wasson, J. T. (1998). Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites. Nature 392, 577579.CrossRefGoogle Scholar
Choi, B. -G., McKeegan, K. D., Leshin, L. A., and Wasson, J. T. (1997). Origin of magnetite in oxidized CV chondrites: In situ measurement of oxygen isotope compositions of Allende magnetite and olivine. Earth Planet. Sci. Lett. 146, 337349.CrossRefGoogle ScholarPubMed
Ciesla, F. J., and Cuzzi, J. N. (2006). The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178204.CrossRefGoogle Scholar
Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115149.CrossRefGoogle Scholar
Clayton, R. N. (2003). Oxygen isotopes in meteorites. In Davis, A.M. (Ed.), Meteorites, Comets, and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (First Edition) 1, 129142. Oxford, UK: Elsevier-Pergamon.Google Scholar
Clayton, R. N., Grossman, L., and Mayeda, T. K. (1973). A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485488.CrossRefGoogle ScholarPubMed
Clayton, R. N., and Kieffer, S. W. (1991). Oxygen isotopic thermometer calibrations. In Taylor, H. P. Jr., O’Neil, J. R., and Kaplan, I. R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein, 310. Special Publication, 3. San Antonio, TX: Geochemical Society.Google Scholar
Clayton, R. N., and Mayeda, T. K. (1983). Oxygen isotopes in eucrites, shergottites, nakhlites, and chassignites. Earth Planet. Sci. Lett. 62, 16.CrossRefGoogle Scholar
Clayton, R. N., and Mayeda, T. K. (1984). Oxygen isotopic compositions of enstatite chondrites and aubrites. J. Geophys. Res. 89, C245C249.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K., Goswami, J. N., and Olsen, E. J. (1991). Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 23172337.CrossRefGoogle Scholar
Clayton, R. N., Onuma, N., Grossman, L., and Mayeda, T. K. (1977). Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209224.CrossRefGoogle Scholar
Connolly, H. C. Jr., and Huss, G. R. (2010). Compositional evolution of the protoplanetary disk: Oxygen isotopes of type II chondrules from CR2 chondrites. Geochim. Cosmochim. Acta 74, 24732483.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M., and Dobrovolskis, A. R. (2001). Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496508.CrossRefGoogle Scholar
Davidson, J., Krot, A. N., Nagashima, K., Hellebrand, E., and Lauretta, D. S. (2014). Oxygen isotope and chemical compositions of magnetite and olivine in the anomalous CK3 Watson 002 and ungrouped Asuka-881595 carbonaceous chondrites: effects of parent body thermal metamorphism. Meteorit. Planet. Sci. 49, 14561474.CrossRefGoogle Scholar
Desch, S. J., Morris, M. A., Connolly, H. C. Jr., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteorit. Planet. Sci. 47, 11391156.CrossRefGoogle Scholar
Di Rocco, T., and Pack, A. (2015). Triple oxygen isotope exchange between chondrule melt and water vapor: an experimental study. Geochim. Cosmochim. Acta 55, 23172337.Google Scholar
Dohmen, R., Becker, H. -W., and Chakraborty, S. (2007). Fe-Mg diffusion in olivine I: Experimental determination between 700 and 1200°C as a function of composition, crystal orientation and oxygen fugacity. Phys. Chem. Minerals 34, 389407.CrossRefGoogle Scholar
Dominguez, G. (2010). A heterogeneous chemical origin for the 16O-enriched and 16O-depleted reservoirs of the early solar system. Astrophys. J. Lett. 713, L59L63.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015). Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun. 6, 110.CrossRefGoogle ScholarPubMed
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochim. Cosmochim. Acta 64, 339366.CrossRefGoogle Scholar
Eiler, J. M. (2001). Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Valley, J. W. and Cole, D. R. (Eds.), Reviews in Mineralogy and Geochemistry 43, 319364. Washington, D.C.: Mineralogical Society of America.Google Scholar
Farver, J. R. (2010). Oxygen and hydrogen diffusion in minerals. In Zhang, Y. and Cherniak, D. J. (Eds.), Reviews in Mineralogy and Geochemistry 72, 447507. Washington D.C.: Mineralogical Society of America.Google Scholar
Fedkin, A. V., and Grossman, L. (2006). The fayalite content of chondritic olivine: Obstacle to understanding the condensation of rocky material. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 279294. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Fedkin, A. V., and Grossman, L. (2016). Effects of dust enrichment on oxygen fugacity of cosmic gases. Meteorit. Planet. Sci. 51, 843850.CrossRefGoogle Scholar
Fegley, B. (2000). Kinetics of gas-grain reactions in the solar nebula. Space Sci. Rev. 92, 177200.CrossRefGoogle Scholar
Franchi, I. A. (2008). Oxygen isotopes in asteroidal materials. In MacPherson, G. J. (Ed.), Reviews in Mineralogy and Geochemistry 68, 345397. Washington D.C.: Mineralogical Society of America.Google Scholar
Friend, P., Hezel, D. C., and Mucerschi, D. (2016). The conditions of chondrule formation, Part II: Open system. Geochim. Cosmochim. Acta 173, 198209.CrossRefGoogle Scholar
Ganguly, J., and Tazzoli, V. (1994). Fe2+-Mg interdiffusion in orthopyroxene: Retrieval from the data on intracrystalline exchange reaction. Am. Mineral. 79, 930937.Google Scholar
Gao, H., Song, Y., Chang, Y. -C., et al. (2013). Branching ratio measurements for vacuum ultraviolet photodissociation of 12C16O. J. Phys. Chem. 117, 61856195.CrossRefGoogle ScholarPubMed
Gerard, O., and Jaoul, O. (1989). Oxygen diffusion in San Carlos olivine. J. Geophys. Res. 94, 41194128.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. Astrophys. J. Lett. 841, L17 (7 pp).CrossRefGoogle Scholar
Giletti, B. J., Semet, M. P., and Yund, R. A. (1978). Studies in diffusion-III. Oxygen in feldspars: An ion microprobe determination. Geochim. Cosmochim. Acta 42, 4557.CrossRefGoogle Scholar
Gounelle, M., Young, E. D., Shahar, A., Tonui, E., and Kearsley, A. (2007). Magnesium isotopic constraints on the origin of CBb chondrites. Earth Planet. Sci. Lett. 256, 521533.CrossRefGoogle Scholar
Gounelle, M., Krot, A. N., Nagashima, K., and Kearsley, A. (2009). Extreme 16O enrichment in calcium-aluminum-rich inclusions from the Isheyevo (CH/CB) chondrite. Astrophys. J. 698, L18L22.CrossRefGoogle Scholar
Greenwood, J. P., Rubin, A. E., and Wasson, J. T. (2000). Oxygen isotopes in R-chondrite magnetite and olivine: Links between R chondrites and ordinary chondrites. Geochim. Cosmochim. Acta 64, 38973911.CrossRefGoogle Scholar
Greenwood, R. C., Burbine, T. H., Miller, M. F., and Franchi, I. A. (2017). Melting and differentiation of early-formed asteroids: The perspective from high-precision oxygen isotope studies. Chemie der Erde 77, 143.CrossRefGoogle Scholar
Grossman, J. N., Alexander, C. M. O’D., Wang, J., and Brearley, A. J. (2002). Zoned chondrules in Semarkona: Evidence for high- and low-temperature processing. Meteorit. Planet. Sci. 37, 4973.CrossRefGoogle Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci. 40, 87122.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Nagahara, H., and King, E. A. (1988). Properties of chondrules. In Kerridge, J. and Shapley Matthews, M. (Eds.), Meteorites and the Early Solar System, 619659. Tucson, AZ: University of Arizona Press.Google Scholar
Grossman, L., Beckett, J. R., Fedkin, A. V., Simon, S. B., and Ciesla, F. J. (2008). Redox conditions in the solar nebula: Observational, experimental, and theoretical constraints. In MacPherson, G. J. (Ed.), Reviews in Mineralogy and Geochemistry 68, 93140. Washington D.C.: Mineralogical Society of America.Google Scholar
Guan, Y., Huss, G. R., Leshin, L. A., MacPherson, G. J., and McKeegan, K. D. (2006). Oxygen isotope and 26Al-26Mg systematics of aluminum-rich chondrules from unequilibrated enstatite chondrites. Meteorit. Planet. Sci. 41, 3347.CrossRefGoogle Scholar
Harju, E. R., Rubin, A. E., Ahn, , et al. (2014). Progressive alteration of CR carbonaceous chondrites. Geochim. Cosmochim. Acta 139, 267292.CrossRefGoogle Scholar
Hashizume, K., Takahata, N., Naraoka, H., and Sano, Y. (2011). Extreme oxygen isotope anomaly with a solar origin detected in meteoritic organics. Nature Geosci. 4, 165168.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C. Jr., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrules and the Protoplanetary Disk, 286316. ASP Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Hewins, R. H., and Radomsky, P. M. (1990). Temperature conditions for chondrule formation. Meteoritics 25, 309318.CrossRefGoogle Scholar
Howard, K. T., Alexander, C. M. O’D., Schrader, D. L., and Dyl, K. A. (2015). Classification of hydrous meteorites (CR, CM and C2 ungrouped) by phyllosilicate fraction: PSD-XRD modal mineralogy and planetesimal environments. Geochim. Cosmochim. Acta 149, 206222.CrossRefGoogle Scholar
Huss, G. R., and Lewis, R. S. (1994). Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics 29, 811829.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006). Thermal metamorphism in chondrites. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 567586. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Ichimura, S., Seto, Y., and Tomeoka, K. (2017). Nepheline formation in chondrite parent bodies: Verification through experiments. Geochim. et Cosmochim. Acta 210, 114131.CrossRefGoogle Scholar
Isa, J., Rubin, A. E., Marin-Carbonne, J., McKeegan, K. D., and Wasson, J. T. (2011). Oxygen-isotopic compositions of R-chondrite chondrules. LPSC XLII, #2623.Google Scholar
Isa, J., Rubin, A. E., and Wasson, J. T. (2014). R-chondrite bulk-chemical compositions and diverse oxides: Implications for parent-body processes. Geochim. Cosmochim. Acta 124, 131151.CrossRefGoogle Scholar
Javoy, M., Balan, E., Méhut, M., Blanchard, M., and Lazzeri, M. (2012). First-principles investigation of equilibrium isotopic fractionation of O- and Si-isotopes between refractory solids and gases in the solar nebula. Earth Planet. Sci. Lett. 319–320, 118127.CrossRefGoogle Scholar
Jiang, Y., Hsu, W., Guan, Y., and Wang, Y. (2015). In situ SIMS oxygen isotope analyses: Evidence for the formation of aluminum-rich chondrules from ordinary chondrites. Science China 58, 17481757.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Jones, R. H. (1992). On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307. Geochim. Cosmochim. Acta 56, 467482.CrossRefGoogle Scholar
Jones, R. H., Leshin, L. A., Guan, , et al. (2004). Oxygen isotope heterogeneity in chondrules from the Mokoia CV3 carbonaceous chondrite. Geochim. Cosmochim. Acta 68, 34233438.CrossRefGoogle Scholar
Jones, R. H., Saxton, J. M., Lyon, I. C., and Turner, G. (2000). Oxygen isotopes in chondrule olivine and isolated olivine grains from the CO3 chondrite Allan Hills A77307. Meteorit. Planet. Sci. 35, 849857.CrossRefGoogle Scholar
Kallemeyn, G. W., Rubin, A. E., and Wasson, J. T. (1996). The compositional classification of chondrites: VII. The R chondrite group. Geochim. Cosmochim. Acta 60, 22432256.CrossRefGoogle Scholar
Kimura, M., Barrat, J. A., Weisberg, , et al. (2014). Petrology and bulk chemistry of Yamato-82094, a new type of carbonaceous chondrite. Meteorit. Planet. Sci. 49, 346357.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci. 43, 11611177.CrossRefGoogle Scholar
Kimura, M., and Ikeda, Y. (1995). Anhydrous alteration of Allende chondrules in the solar nebula II: Alkali-Ca exchange reactions and formation of nepheline, sodalite and Ca-rich phases in chondrules. Proc. NIPR Symp. Antarctic Meteorites 8, 123138.Google Scholar
Kimura, M., and Ikeda, Y. (1997). Comparative study of anhydrous alteration of chondrules in reduced and oxidized CV chondrites. Antarctic Meteorite Res. 10, 191202.Google Scholar
Kimura, M., Nakajima, H., Hiyagon, H., and Weisberg, M. K. (2006). Spinel group minerals in LL3.00–6 chondrites: Indicators of nebular and parent body processes. Geochim. Cosmochim. Acta 70, 56345650.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47, 11081119.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, , et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochim. Cosmochim. Acta 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., Tenner, T. J., Defouilloy, , et al. (2015). Oxygen isotope systematics of chondrules in R3 clasts: A genetic link to ordinary chondrites. LPSC XLVI, #2053.Google Scholar
Kita, N. T., Tenner, T. J., Ushikubo, , et al. (2016). Internal homogeneity of oxygen isotope ratios in chondrules. LPSC XLVII, #2375.Google Scholar
Kobayashi, S., Imai, H., and Yurimoto, H. (2003). New extreme 16O-rich reservoir in the early solar system. Geochem. J. 37, 663669.CrossRefGoogle Scholar
Kööp, L., Davis, A. M., Nakashima, , et al. (2016). A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochim. Cosmochim. Acta 189, 7095.CrossRefGoogle Scholar
Kring, D. A. (1988). The petrology of meteoritic chondrules: Evidence for fluctuating conditions in the solar nebula. PhD thesis, Harvard University.Google Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D., and Keil, K. (2002). Plagioclase-rich chondrules in the reduced CV chondrites: Evidence for complex formation history and genetic links between calcium-aluminum-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci. 37, 155182.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., and Chaussidon, M. (2006b). Oxygen isotope compositions of chondrules in CR chondrites. Geochim. Cosmochim. Acta 70, 767779.CrossRefGoogle Scholar
Krot, A. N., McKeegan, K. D., Huss, , et al. (2006c). Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrohys. J. 639, 12271237.CrossRefGoogle Scholar
Krot, A. N., and Nagashima, K. (2016). Evidence for oxygen-isotope exchange in chondrules and refractory inclusions during fluid-rock interaction on the CV chondrite parent body. Meteorit. Planet. Sci. 51 (Suppl.), A392 (abstr.).Google Scholar
Krot, A. N., and Nagashima, K. (2017). Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochem. J. 51, 4568.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Ciesla, F. J., et al. (2010a). Oxygen isotopic composition of the Sun and mean osygen isotopic composition of the protosolar silicate dust: Evidence from refractory inclusions. Astrophys. J. 713, 11591166.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Huss, G. R., et al. (2007). Relict refractory inclusions in magnesian porphyritic chondrules from the CH and CH/CB carbonaceous chondrites. Meteorit. Planet. Sci. 42 (Suppl.), A90 (abstr.).Google Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017). Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 185223.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Yoshitake, M., and Yurimoto, H. (2010b). Oxygen isotopic compositions of chondrules from the metal-rich chondrites Isheyevo (CH/CBb), MAC 02675 (CBb) and QUE 94627 (CBb). Geochim. Cosmochim. Acta 74, 21902211.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Scott, E. R., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 10651085.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., McKeegan, K. D., et al. (2006a). Oxygen isotopic compositions of chondrules: Implication for evolution of oxygen isotopic reservoirs in the early solar nebula. Chemie der Erde 66, 249276.CrossRefGoogle Scholar
Krot, A. N., Zolensky, M. E., Wasson, J. T., et al. (1997). Carbide-magnetite-bearing type 3 ordinary chondrites. Geochim. Cosmochim. Acta 61, 219237.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T. (2004). Oxygen-isotopic compositions of relict and host grains in chondrules in the Yamato 81020 CO3.0 chondrite. Geochim. Cosmochim. Acta 68, 35993606.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., and Wasson, J. T. (2005). Oxygen-isotopic composition of low-FeO relicts in high FeO-host chondrules in Acfer 094, a type 3.0 carbonaceous chondrite closely related to CM. Geochim. Cosmochim. Acta 69, 38313840.CrossRefGoogle Scholar
Libourel, G., and Chaussidon, M. (2011). Oxygen isotopic constraints on the origin of Mg-rich olivines from chondritic meteorites. Earth Planet. Sci. Lett. 301, 921.CrossRefGoogle Scholar
Lodders, K. (2003). Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 12201247.CrossRefGoogle Scholar
Lofgren, G. E. and Le, L. (2000). Experimental evidence for a partial melting origin for most porphyritic chondrules. LPSC XXXI, #1809.Google Scholar
Lugaro, M., Liffman, K., Ireland, T. R., and Maddison, S. T. (2012). Can galactic chemical evolution explain the oxygen isotopic variations in the solar system? Astrophys, J. 759, 1.CrossRefGoogle Scholar
Luz, B., and Barkan, E. (2010). Variations of 17O/16O and 18O/16O in meteoritic waters. Geochim. Cosmochim. Acta 74, 62766286.CrossRefGoogle Scholar
Lyons, J. R., and Young, E. D. (2005). CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula. Nature 435, 317320.CrossRefGoogle ScholarPubMed
Ma, C., Beckett, J. R., Connolly, H. C. Jr., and Rossman, G. R. (2008). Aluminous spinels in ferromagnesian chondrules from Allende. LPSC XXXIX, #2030.Google Scholar
Makide, K., Nagashima, J., Krot, A. N., et al. (2009). Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta 73, 50185050.CrossRefGoogle Scholar
Marrocchi, Y., and Chaussidon, M. (2015). A systematic for oxygen isotopic variation in meteoritic chondrules. Earth Planet. Sci. Lett. 430, 308315.CrossRefGoogle Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochim. Cosmochim. Acta 119, 117136.CrossRefGoogle Scholar
Maruyama, S., Yurimoto, H., and Sueno, S. (1999). Oxygen isotope evidence regarding the formation of spinel-bearing chondrules. Earth Planet. Sci. Lett. 169, 165171.CrossRefGoogle Scholar
Matthews, A., Palin, J. M., Epstein, S., and Stolper, E. M. (1994). Experimental study of 18O/16O partitioning between crystalline albite, albitic glass, and CO2 gas. Geochim. Cosmochim. Acta 58, 52555266.CrossRefGoogle Scholar
McKeegan, K. D., Kallio, A. P. A., Heber, V. S., et al. (2011). The oxygen isotopic composition of the Sun inferred from captured solar wind. Science 332, 15281532.CrossRefGoogle ScholarPubMed
Merigoux, H. (1968). Etude de la mobilite d l’oxygen dans the feldspaths alcalins. Bull. Soc. Fr Mineral. Crystallogr. 91, 5164.Google Scholar
Miller, K. E., Lauretta, D. S., Connolly, H. C. Jr., et al. (2017). Formation of unequilibrated R chondrite chondrules and opaque phases. Geochim. Cosmochim. Acta 209, 2450.CrossRefGoogle Scholar
Miller, M. F., Franchi, I. A., Sexton, A. S., and Pillinger, C. T. (1999). High precision δ17O isotope measurements of oxygen from silicates and other oxides: methods and applications. Rapid Comm. Mass Spectrom. 13, 12111217.3.0.CO;2-M>CrossRefGoogle Scholar
Morris, M. A., Weidenschilling, S. J., and Desch, S. J. (2016). The effect of multiple particle sizes on cooling rates produced in large-scale shocks in the solar nebula. Meteorit. Planet. Sci. 51, 870883.CrossRefGoogle Scholar
Nagahara, H. (1981). Evidence for secondary origin of chondrules. Nature 292, 135136.CrossRefGoogle Scholar
Nagahara, H., Kita, N. T., Ozawa, K., and Morishita, Y. (2008). Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochim. Cosmochim. Acta 72, 14421465.CrossRefGoogle Scholar
Nagahara, H., and Ozawa, K. (2012). The role of exchange reactions in oxygen isotope fractionation during CAI and chondrule formation. Meteorit. Planet. Sci. 47, 12091228.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2015). Oxygen-isotope compositions of chondrule phenocrysts and matrix grains in Kakangari K-grouplet chondrite: Implication to a chondrule-matrix genetic relationship. Geochim. Cosmochim. Acta 151, 4967.CrossRefGoogle Scholar
Nakashima, D., Ushikubo, T., Gowda, R. N., et al. (2011). Ion microprobe analyses of oxygen three-isotope ratios of chondrules from the Sayh al Uhaymir 290 CH chondrite using a multiple-hole disk. Meteorit. Planet. Sci. 46, 857874.CrossRefGoogle Scholar
Newton, J., Bischoff, A., Arden, J. W., et al. (1995). Acfer 094, a uniquely primitive carbonaceous chondrite from the Sahara. Meteoritics 30, 4756.CrossRefGoogle Scholar
Onuma, N, Clayton, R. N., and Mayeda, T. K. (1972). Oxygen isotope geothermometer. Geochim. Cosmochim. Acta 36, 169188.CrossRefGoogle Scholar
Pacaud, L., Ingrin, J., and Jaoul, O. (1999). High-temperature diffusion of oxygen in synthetic diopside measured by nuclear reaction analysis. Miner. Mag. 63, 673686.CrossRefGoogle Scholar
Pack, A., Yurimoto, H., and Palme, H. (2004). Petrographic and oxygen-isotopic study of refractory forsterites from R-chondrite Dar al Gani 013 (R3.5–6), unequilibrated ordinary and carbonaceous chondrites. Geochim. Cosmochim. Acta 68, 11351157.CrossRefGoogle Scholar
Prinz, M., Weisberg, M. K., Neru, C. E., et al. (1989). Petrologic and stable isotope study of the Kakangari (K-group) chondrite: Chondrules, matrix, and CAI’s. Lunar Planet. Sci. 20, 870871 (abstr.).Google Scholar
Rambaldi, E. R. (1981). Relict grains in chondrules. Nature 293, 558561.CrossRefGoogle Scholar
Remusat, L., Robert, F., and Derenne, S. (2007). The insoluble organic matter in carbonaceous chondrites: Chemical structure, isotopic composition and origin. C.R. Geosci. 339, 895906.CrossRefGoogle Scholar
Richet, P., Bottinga, Y., and Javoy, M. (1977). Review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine stable isotope fractionation among gaseous molecules. Annu. Rev. Earth Planet. Sci. 5, 65110.CrossRefGoogle Scholar
Rosman, J. J. R., and Taylor, P. D. P. (1998). Isotopic compositions of the elements 1997. Pure Appl. Chem. 70, 217236.CrossRefGoogle Scholar
Rubin, A. E., Wasson, J. T., Clayton, R. N., and Mayeda, T. K. (1990). Oxygen isotopes in chondrules and coarse-grained chondrule rims from the Allende meteorite. Earth Planet. Sci. Lett. 96, 247255.CrossRefGoogle Scholar
Rudraswami, N. G., Ushikubo, T., Nakashima, D, and Kita, N. T. (2011). Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochim. Cosmochim. Acta 75, 75967611.CrossRefGoogle Scholar
Russell, S. S., MacPherson, G. J., Leshin, L. A., and McKeegan, K. D. (2000). 16O enrichments in aluminum-rich chondrules from ordinary chondrites. Earth Planet. Sci. Lett. 184, 5774.CrossRefGoogle Scholar
Ruzicka, A., Hiyagon, H., Hutson, M., and Floss, C. (2007). Relict olivine, chondrule recycling, and the evolution of nebular reservoirs. Earth Planet. Sci. Lett. 257, 274289.CrossRefGoogle Scholar
Ryerson, F. J., Durham, W. B., Cherniak, D. J., and Lanford, W. A. (1989). Oxygen diffusion in olivine: Effect of oxygen fugacity and implications for creep. J. Geophys. Res. 94, 41054118.CrossRefGoogle Scholar
Ryerson, F. J., and McKeegan, K. D. (1994). Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al rich inclusions. Geochim. Cosmochim. Acta 58, 37133734.CrossRefGoogle Scholar
Sakamoto, N., Seto, Y., Itoh, S., et al. (2007). Remnants of the early solar system water enriched in heavy oxygen isotopes. Science 317, 231233.CrossRefGoogle ScholarPubMed
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci. 47, 21702192.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2013). The formation and alteration of the Renazzo-like carbonaceous chondrites II: Linking O-isotope composition and oxidation state of chondrule olivine. Geochim. Cosmochim. Acta 101, 302327.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C. Jr., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Towards understanding the genesis of ferromagnesian chondrules. Meteorit. Planet. Sci. 50, 1550.CrossRefGoogle Scholar
Schrader, D. L., Davidson, J., Greenwood, R. C., Franchi, I. A., and Gibson, J. M. (2014b). A water-ice rich minor body from the early Solar System: The CR chondrite parent asteroid. Earth Planet. Sci. Lett. 407, 4860.CrossRefGoogle Scholar
Schrader, D. L., Franchi, I. A., Connolly, H. C. Jr., et al. (2011). The formation and alteration of the Renazzo-like carbonaceous chondrites I: Implications of bulk-oxygen isotopic composition. Geochim. Cosmochim. Acta 75, 308325.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, D., Krot, A. N., Ogliore, R. C., and Hellebrand, E. (2014a). Variations in the O-isotope composition of gas during the formation of chondrules from CR chondrites. Geochim. Cosmochim. Acta 132, 5074.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta. 201, 275302.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites, Comets and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 143200. Oxford, UK: Elsevier.Google Scholar
Scott, E. R. D., Love, S. G., and Krot, A. N. (1996). Formation of chondrules and chondrites in the protoplanetary nebula. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 8796. Cambridge, UK: Cambridge University Press.Google Scholar
Scott, E. R. D., and Taylor, J. G. (1983). Chondrules and other components in C, O, and E chondrites: Similarities in their properties and origins. Proceedings, 14th Lunar and Planetary Science Conference, Part 1. J. Geophys. Res. (Suppl.) 88, B275B286.CrossRefGoogle Scholar
Seto, Y., Sakamoto, N., Fujino, K., et al. (2008). Mineralogical characterization of a unique material having heavy oxygen isotope anomaly in matrix of the primitive carbonaceous chondrite Acfer 094. Geochim. Cosmochim. Acta 72, 27232734.CrossRefGoogle Scholar
Sheffer, Y., Lambert, D. L., and Federman, S. R. (2002). Ultraviolet detection of interstellar 12C17O and the CO isotopometric ratios toward X Persei. Astrophys. J. 547, L171L174.CrossRefGoogle Scholar
Shi, X., Yin, Q. -Z., Luo, Z., Huang, H., and Ng, C. -Y. (2011). Testing “self-shielding” model with laboratory experiment for the oxygen isotope evolution in the early solar nebula – A progress report. LPSC XLII #2705.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteorit. Planet. Sci. 52, 225250.CrossRefGoogle Scholar
Spicuzza, M. J., Day, J. M. D., Taylor, L. A., and Valley, J. W. (2007). Oxygen isotope constraints on the origin and differentiation of the Moon. Earth Planet. Sci. Lett. 253, 254265.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Mostefaoui, S., and Kita, N. T. (2003). Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteorit. Planet. Sci. 38, 939962.CrossRefGoogle Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta 102, 226245.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochim. Cosmochim. Acta 148, 228250.CrossRefGoogle Scholar
Tenner, T. J., Kimura, M., and Kita, N. T. (2017). Oxygen isotope characteristics of chondrules from the Yamato-82094 ungrouped carbonaceous chondrite: Further evidence for common O-isotope environments sampled among carbonaceous chondrites. Meteorit. Planet. Sci. 52, 268294.CrossRefGoogle Scholar
Thiemens, M. H., and Heidenreich, J. E. (1983). The mass-independent fractionation of oxygen: A novel isotope effect and its possible cosmochemical implications. Science 219, 10731075.CrossRefGoogle ScholarPubMed
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas–melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci. 37, 13771389.CrossRefGoogle Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta 90, 242264.CrossRefGoogle Scholar
Ushikubo, T., Tenner, T. J., Hiyagon, H., and Kita, N. T. (2017). A long duration of the 16O-rich reservoirs in the solar nebula, as recorded in fine-grained refractory inclusions from the least metamorphosed carbonaceous chondrites. Geochim. Cosmochim. Acta 201, 103122.CrossRefGoogle Scholar
Ustunisik, G., Ebel, D. S., Walker, D., and Boesenberg, J. S. (2014). Experimental investigation of condensation predictions for dust-enriched systems. Geochim. Cosmochim. Acta 142, 2738.CrossRefGoogle Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., and Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206209.CrossRefGoogle ScholarPubMed
Warren, P. H. (2011). Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93100.CrossRefGoogle Scholar
Weichert, U., Halliday, A. N., Lee, D. -C., et al. (2001). Oxygen isotopes and the Moon-forming giant impact. Science 294, 345348.CrossRefGoogle Scholar
Weisberg, M. K., Boesenberg, J. S., Kozhusko, G., et al. (1995). EH3 and EL3 chondrites: A petrologic-oxygen isotopic study. Lunar. Planet. Sci. XXVI, 14811482.Google Scholar
Weisberg, M. K., Ebel, D. S., Connolly, H. C. Jr., Kita, N. T., and Ushikubo, T. (2011). Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochim. Cosmochim. Acta 75, 65566569.CrossRefGoogle Scholar
Weisberg, M. K., Ebel, D. S., Nakashima, D., Kita, N. T., and Humayun, M. (2015). Petrology and geochemistry of chondrules and metal in NWA 5492 and GRO 95551: A new type of metal-rich chondrite. Geochim. Cosmochim. Acta 167, 269285.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1993). The CR (Renazzo-type) carbonaceous chondrite group and its implications. Geochim. Cosmochim. Acta 57, 15671586.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1996). The K (Kakangari) chondrite grouplet. Geochim. Cosmochim. Acta 60, 42534263.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Kojima, H., et al. (1991). The Carlisle Lakes-type chondrites: A new grouplet with high Δ17O and evidence for nebular oxidation. Geochim. Cosmochim. Acta 55, 26572669.CrossRefGoogle Scholar
Wick, M. J., and Jones, R. H. (2012). Formation conditions of plagioclase-bearing type I chondrules in CO chondrites: A study of natural samples and experimental analogs. Geochim. Cosmochim. Acta 98, 140159.CrossRefGoogle Scholar
Young, E. D. (2007). Time-dependent oxygen isotopic effects of CO self shielding across the solar protoplanetary disk. Earth Planet. Sci. Lett. 262, 468483.CrossRefGoogle Scholar
Young, E. D., Ash, R. D., Galy, A., and Belshaw, N. S. (2002). Mg isotope heterogeneity in the Allende meteorite measured by UV laser ablation-MC-ICPMS and comparisons with O-isotopes. Geochim. Cosmochim. Acta 66, 683698.CrossRefGoogle Scholar
Young, E. D., and Russell, S. S. (1998). Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452455.CrossRefGoogle ScholarPubMed
Yu, Y., Hewins, R. H., Clayton, R. C., and Mayeda, T. K. (1995). Experimental study of high temperature oxygen isotope exchange during chondrule formation. Geochim. Cosmochim. Acta 59, 20952104.CrossRefGoogle Scholar
Yurimoto, H., Krot, A. N., Choi, B. -G., et al. (2008). Oxygen isotopes of chondritic components. In MacPherson, G. J. (Ed.), Reviews in Mineralogy and Geochemistry, 68, 141186. Washington D.C.: Mineralogical Society of America.Google Scholar
Yurimoto, H., and Kuramoto, K. (2004). Molecular cloud origin for the oxygen isotope heterogeneity in the solar system. Science 305, 17631766.CrossRefGoogle ScholarPubMed
Zhang, A. -C., Itoh, S., Sakamoto, N., Wang, R. -C., and Yurimoto, H. (2014). Origins of Al-rich chondrules: Clues from a compound Al-rich chondrule in the Dar al Gani 978 carbonaceous chondrite. Geochim. Cosmochim. Acta 130, 7892.CrossRefGoogle Scholar
Zhang, A. -C., and Yurimoto, H. (2013). Petrography and mineralogy of the ungrouped type 3 carbonaceous chondrite Dar al Gani 978. Meteorit. Planet. Sci. 48, 16511677.CrossRefGoogle Scholar

References

Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Amelin, Y. (2008a). U-Pb ages of angrites. Geochim. Cosmochim. Acta, 72, 221232.CrossRefGoogle Scholar
Amelin, Y. (2008b). The U-Pb systematics of angrite Sahara 99555. Geochim. Cosmochim. Acta, 72, 48744885.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Amelin, Y., and Krot, A. N. (2007). Pb isotopic age of the Allende chondrules. Meteorit. Planet. Sci., 42, 13211335.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B.-M., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth Planet Sci. Lett., 432, 472482.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., and Haack, H. (2004). Contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.CrossRefGoogle ScholarPubMed
Bland, P. A., Collins, G. S., Davison, T. M., et al. (2014). Pressure–temperature evolution of primordial Solar System solids during impact- induced compaction. Nat. Commun., 5, 5451.CrossRefGoogle ScholarPubMed
Bollard, J., Connelly, J. N., and Bizzarro, M. (2014). The absolute chronology of the early Solar System revisited. Meteorit. Planet. Sci., 77, abstract #5234.Google Scholar
Bollard, J., Kawasaki, N., Sakamoto, N., et al. (2015). Early disk dynamics inferred from isotope systematics of individual chondrules. Meteorit. Planet. Sci., 78, abstract #5211.Google Scholar
Bonal, L., Quirico, E., Bourot-Denise, M., and Montagnac, G. (2006). Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochim. Cosmochim. Acta, 70, 18491863.CrossRefGoogle Scholar
Bouvier, A., Brennecka, G. A., and Wadhwa, M. (2011). Absolute chronology of the first solids in the Solar System. Workshop on Formation of the First Solids in the Solar System abstract #9054.Google Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet Sci. Lett., 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl. Acad. Sci. USA, 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2017). Hafnium-tungsten chronology of CR chondrites. Lunar Planet. Sci., 48, abstract #1886.Google Scholar
Busemann, H., Alexander, C. M. O’D., and Nittler, L. R. (2007). Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit. Planet. Sci., 42, 13871416.CrossRefGoogle Scholar
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early Solar System: The record from chondritic meteorites. In Harlov, D. E. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock – Lecture Notes in Earth System Sciences, 659789. New York NY: Springer-Verlag.Google Scholar
Brennecka, G. A., Budde, G., and Kleine, T. (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteorit. Planet Sci., 50, 19952002.CrossRefGoogle Scholar
Brennecka, G. A., and Wadhwa, M. (2011). Uranium isotope compositions of mineral separates from a single refractory inclusion. 74th Meteorit. Soc. Meet., abstract #5030.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA, 108, 63866389.CrossRefGoogle Scholar
Cherniak, D. J. (2010). Cation diffusion in feldspars. Rev. Min. Geochem., 72, 691733.CrossRefGoogle Scholar
Claydon, J. L., Lai, Y.-J., Coath, C. D., et al. (2014). The Al-Mg system in chondrules: A two-pronged approach. Meteorit. Planet. Sci., 77, abstract #5164.Google Scholar
Claydon, J. L., Elliott, T., Coath, C. D., et al. (2015). A chondrule from the Mokoia (CV3) chondrite with anomalously low 26Mg*: Evidence for a multi-stage history. Meteorit. Planet. Sci., 78, abstract #5250.Google Scholar
Cody, G. D., Alexander, C. M. O’D., Yabuta, H., et al. (2008). Organic thermometry for chondritic parent bodies. Earth Planet. Sci. Lett., 272, 446455.CrossRefGoogle Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., and Bizzarro, M. (2008). Chronology of the Solar System’s oldest solids. Astrophys. J. Lett., 675, L121.CrossRefGoogle Scholar
Connelly, J. N., and Bizzarro, M. (2009). Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chem. Geol., 259, 143151.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connelly, J. N., Bollard, J., and Bizzarro, M. (2017). Pb-Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta, 201, 345363.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., and Bottke, W. F. (2010). Towards initial mass functions for asteroids and Kuiper Belt Objects. Icarus, 208, 518538.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015). Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Commun., 6, 110.CrossRefGoogle ScholarPubMed
Elkins-Tanton, L. T., Weiss, B. P., and Zuber, M. T. (2011). Chondrites as samples of differentiated planetesimals. Earth Planet. Sci. Lett., 305, 110.CrossRefGoogle Scholar
Faak, K., Chakraborty, S., and Coogan, L. A. (2013). Mg in plagioclase: Experimental calibration of a new geothermometer and diffusion coefficients. Geochim. Cosmochim. Acta, 123, 195217.CrossRefGoogle Scholar
Galy, A., Young, E. D., Ash, R. D., and O’nions, R. K. (2000). The formation of chondrules at high gas pressures in the solar nebula. Science, 290, 17511753.CrossRefGoogle ScholarPubMed
Gattacceca, J., Weiss, B. P., Gounelle, M., Lima, E. A., and Rochette, P. (2013). More evidence for a partially differentiated CV parent body from the meteorite Kaba. Lunar Planet. Sci., 44, abstract #1721.Google Scholar
Grossman, J. N., and Brearley, A. J. (2005). The onset of metamorphism in ordinary and carbonaceous chondrites. Meteorit. Planet. Sci., 40, 87122.CrossRefGoogle Scholar
Hayakawa, A., Fukuda, K., Iizuka, T., and Hiyagon, H. (2017). High precision magnesium isotopic measurements for CV chondrite CAIs and LL3.15 chondrite chondrules. Lunar Planet. Sci., 48, abstract #1923.Google Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013). 182Hf–182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. Proc. Natl. Acad. Sci. USA, 110, 88198823.CrossRefGoogle ScholarPubMed
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S., and Srinivasan, G. (2001). Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 36, 975997.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006). Thermal Metamorphism in Chondrites. In Lauretta, D. and McSween, H. (Eds.), Meteorites and the Early Solar System II, 567586. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Hutcheon, I. D., and Hutchison, R. (1989). Evidence from the Semarkona ordinary chondrite for 26Al heating of small planets. Nature, 337, 238241.CrossRefGoogle Scholar
Hutcheon, I. D., Marhas, K. K., Krot, A. N., Goswami, J. N., and Jones, R. H. (2009). 26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation. Geochim. Cosmochim. Acta, 73, 50805099.CrossRefGoogle Scholar
Huyskens, M. H., Yin, Q. -Z., Sanborn, M. E., et al. (2016). Possible uranium isotopic heterogeneity in Allende chondrules and its impact on Pb-Pb ages: A first case of U and Pb isotopes from a single chondrule. Lunar Planet. Sci., 47, abstract #2727.Google Scholar
Ireland, T. R. (1990). Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochim. Cosmochim. Acta, 54, 32193237.CrossRefGoogle Scholar
Ito, M., and Messenger, S. (2010). Thermal metamorphic history of a Ca, Al-rich inclusion constrained by high spatial resolution Mg isotopic measurements with NanoSIMS 50L. Meteorit. Planet. Sci., 45, 583595.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q.-Z., Moynier, F., et al. (2008). 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth Planet. Sci. Lett., 272, 353364.CrossRefGoogle Scholar
Jilly, C. E., Huss, G. R., Nagashima, K., and Schrader, D. L. (2014). Oxygen isotopes and geothermometry of secondary minerals in CR chondrite. Meteorit. Planet. Sci., 77, abstract #5395.Google Scholar
Johansen, A., and Klahr, H. (2011). Planetesimal formation through streaming and gravitational instabilities. Earth, Moon, and Planets, 108, 3943.CrossRefGoogle Scholar
Kimura, M., and Ikeda, Y. (1998). Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites. Meteorit. Planet. Sci., 33, 11391146.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci., 43, 11611177.CrossRefGoogle Scholar
Kita, N. T., Huss, G. R., Tachibana, S., et al. (2005). Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionucleides. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 558588. ASP Conf. Ser. 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Kita, N. T., Nagahara, H., Togashi, S., and Morshita, Y. (2000). A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochim. Cosmochim. Acta, 64, 39133922.CrossRefGoogle Scholar
Kita, N. T., Tenner, T. J., Ushikubo, T., et al. (2015). Why do U-Pb ages of chondrules and CAIs have more spread than their 26Al ages? Meteorit. Planet. Sci., 78, abstract #5360.Google Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci., 47, 11081119.CrossRefGoogle Scholar
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early Solar System. Meteorit. Planet. Sci., 48, 13831400.CrossRefGoogle Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. (2012). Chronology of the angrite parent body and implications for core formation in protoplanets. Geochim. Cosmochim. Acta, 84, 186203.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. (2005). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites. Geochim. Cosmochim. Acta, 69, 58055818.CrossRefGoogle Scholar
Komatsu, M., Fagan, T. J., Mikouchi, T., and Yamaguchi, A. (2014). Alteration sequence of CV3 chondrites: Matrix textures and Raman spectroscopy. 5th Symp. Polar Science, National Inst. Polar Res. Abstract #370.Google Scholar
Krot, A. N., Amelin, Y., Bland, P., et al. (2009). Origin and chronology of chondritic components: A review. Geochim. Cosmochim. Acta, 73, 49634997.CrossRefGoogle Scholar
Krot, A. N., Anders, M., Weisberg, M. K., and Keil, K. (2002). Invited Review: The CR chondrite clan: Implications for early Solar System processes. Meteorit. Planet. Sci., 37, 14511490.CrossRefGoogle Scholar
Krot, A. N., and Hutcheon, I. D. (1997). Highly oxidized and metamorphosed chondritic or igneous (?) clasts in the CV3 carbonaceous chondrite Mokoia: Excavated material from the interior of the CV3 asteroid or previously unsampled asteroid. Lunar Planet. Sci., 28, abstract #767.Google Scholar
Krot, A. N., and Keil, K. (2002). Anorthite-rich chondrules in CR and CH carbonaceous chondrites: Genetic link between Ca,Al-rich inclusions and ferromagnesian chondrules. Meteorit. Planet. Sci., 37, 91111.CrossRefGoogle Scholar
Krot, A. N., Keil, K., Goodrich, C., Weisberg, M. K., and Scott, E. R. D. (2014a). Classification of meteorites. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry, 1, 163. Oxford, UK: Elsevier.Google Scholar
Krot, A. N., and Nagashima, K. (2017). Constraints on mechanisms of chondrule formation from chondrule precursors and chronology of transient heating events in the protoplanetary disk. Geochem. J., 51, 4568.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., Bizzarro, M. (2014b). Aluminum-magnesium isotope systematics of porphyritic chondrules and plagioclase fragments in CH carbonaceous chondrites. Lunar Planet. Sci., 45, abstract #2142.Google Scholar
Krot, A. N., Nagashima, K., Bizzarro, M., et al. (2008). Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. Astrophys. J. 672, 713721.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998a). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci., 33, 10651085.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Zolensky, M. E., et al. (1998b). Secondary calcium-iron-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteorit. Planet. Sci., 33, 623645.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014). Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca–Al-rich inclusions. Earth Planet. Sci. Lett., 403, 317327.CrossRefGoogle Scholar
Kunihiro, T., Rubin, A. E., McKeegan, K. D., and Wasson, J. T. (2004). Initial 26Al/27Al in carbonaceous-chondrite chondrules: Too little 26Al to melt asteroids. Geochim. Cosmochim. Acta, 68, 29472957.CrossRefGoogle Scholar
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). Al-26-Mg-26 systematics and petrological study of chondrules in CR chondrites. Geochim. Cosmochim. Acta, 72, abstract #504.Google Scholar
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochim. Cosmochim. Acta, 72, 38653882.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J., 735, L37.CrossRefGoogle Scholar
LaTourrette, T., and Wasserburg, G. J. (1998). Mg diffusion in anorthite: Implications for the formation of early Solar System planetesimals. Earth Planet. Sci. Lett., 158, 91108.CrossRefGoogle Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1976). Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett., 3 (1), 4144.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas-melt interaction during chondrule formation. Earth Planet. Sci. Lett., 251, 232240.CrossRefGoogle Scholar
Lugaro, M., Heger, A., Osrin, D., et al. (2014). Stellar origin of the 182Hf cosmochronometer and the presolar history of Solar System matter. Science, 345, 650653.CrossRefGoogle ScholarPubMed
Luu, T. -H., Young, E. D., Gounelle, M., and Chaussidon, M. (2015). Short time interval for condensation of high-temperature silicates in the solar accretion disk. Proc. Natl. Acad. Sci. USA, 112, 12981303.CrossRefGoogle ScholarPubMed
Luu, T. -H., Hin, R. C., Coath, C. D., and Elliott, T. (2016). High precision mg-isotope measurements of bulk chondrites and the homogeneity of 26Al in the solar nebula. Meteorit. Planet. Sci., 79, abstract #6485.Google Scholar
MacPherson, G. J., Bullock, E. S., Janney, P. E., et al. (2010). Early solar nebula condensates with canonical, not supracanonical, initial 26Al/27Al ratios. Astrophys. J., 711 L117L121.CrossRefGoogle Scholar
MacPherson, G. J., Davis, A. M., and Zinner, E. K. (1995). The Distribution of 26Al in the early Solar-System – A reappraisal. Meteoritics, 30, 365386.CrossRefGoogle Scholar
MacPherson, G. J., Kita, N. T., Ushikubo, T., Bullock, E. S., and Davis, A. M. (2012). Well-resolved variations in the formation ages for Ca-Al-rich inclusions in the early Solar System. Earth Planet. Sci. Lett., 331, 4354.CrossRefGoogle Scholar
McKeegan, K. D., Greenwood, J. P., Leshin, L. A., and Cosarinsky, M. (2000). Abundance of 26Al in ferromagnesian chondrules of unequilibrated ordinary chondrites. Lunar Planet. Sci., 31, abstract #2009.Google Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2009). Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites. Geochim. Cosmochim. Acta, 73, 50185050.CrossRefGoogle Scholar
Mostefaoui, S., Kita, N. T., Togashi, S., et al. (2002). The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteorit. Planet. Sci., 37, 421438.CrossRefGoogle Scholar
Nagahara, H., Kita, N. T., Ozawa, K., and Morishita, Y. (2008). Condensation of major elements during chondrule formation and its implication to the origin of chondrules. Geochim. Cosmochim. Acta, 72, 14421465.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014). 26Al in chondrules from CR2 chondrites. Geochem. J., 48, 561570.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017). 26Al-26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 303319.CrossRefGoogle Scholar
Nakashima, D., Ishida, H., Tenner, T. J., Kita, N. T., and Nakamura, T. (2016). Al-Mg chronology of chondrules in the RBT 04143 CV3 chondrite. Goldschmidt Abstracts, 2016 #2236.Google Scholar
Nishiizumi, K. (2004). Preparation of 26Al AMS standards. Nucl. Instr. Meth. Phys. Res. B., 223–224, 388392.CrossRefGoogle Scholar
Norris, T. L., Gancarz, A. J., Rokop, D. J., and Thomas, K. W. (1983). Half-life of 26Al. J. Geophys. Res., 88, B331B333.CrossRefGoogle Scholar
Olsen, M. B., Schiller, M., Krot, A. N., and Bizzarro, M. (2013). Magnesium isotope evidence for single stage formation of CB chondrules by colliding planetesimals. Astrophys. J., 776, L1.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochim. Cosmochim. Acta, 191, 118138.CrossRefGoogle ScholarPubMed
Pringle, E. A., Savage, P. S., Jackson, M. G., Barrat, J.-A., and Moynier, F. (2013). Si isotope homogeneity of the solar nebula. Astrophys. J., 779, L123.CrossRefGoogle Scholar
Reisener, R., Meibom, A., Krot, A. N., Goldstein, H. I., and Keil, K. (2000). Microstructure of condensate Fe-Ni metal particles in the CH chondrite PAT 91546. Lunar Planet. Sci. 31, abstract #1445.Google Scholar
Rudraswami, N. G., Goswami, J. N., Chattopadhyay, B., Sengupta, S. K., and Thapliyal, A. P. (2008). Al-26 records in chondrules from unequilibrated ordinary chondrites: II. Duration of chondrule formation and parent body thermal metamorphism. Earth Planet. Sci. Lett., 274, 93102.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteorit. Planet. Sci., 47, 21702192.CrossRefGoogle Scholar
Sano, Y., Takada, M., Takahata, N., Fujiya, W., and Sugiura, N. (2014). Ion microprobe Al-Mg dating of single plagioclase grains in an Efremovka chondrule. Geochem. J., 48, 133144.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta, 201, 275302.CrossRefGoogle Scholar
Schiller, M., Baker, J. A., and Bizzarro, M. (2010). 26Al–26Mg dating of asteroidal magmatism in the young Solar System. Geochim. Cosmochim. Acta, 74, 48444864.CrossRefGoogle Scholar
Schiller, M., Connelly, J. N., Aslaug, G. C., Mikouchi, T., and Bizzarro, M. (2015). Early accretion of protoplanets inferred from a reduced inner Solar System 26Al inventory. Earth Planet. Sci. Lett., 420, 4554.CrossRefGoogle ScholarPubMed
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. (2009). 26Al–26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochim. Cosmochim. Acta, 73, 52025211.CrossRefGoogle Scholar
Srinivasan, G., Huss, G. R., and Wasserburg, G. J. (2000). A petrographic, chemical, and isotopic study of calcium-aluminum-rich inclusions and aluminum-rich chondrules from the Axtell (CV3) chondrite. Meteorit. Planet. Sci., 35, 13331354.CrossRefGoogle Scholar
Sugiura, N. and Fujiya, W. (2014). Correlated accretion ages and epsilon Cr-54 of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci., 49, 772787.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., Mostefaoui, S., and Kita, N. T. (2003). Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites. Meteorit. Planet. Sci., 38, 939962.CrossRefGoogle Scholar
Tarduno, J. A., O’Brien, T. M., and Smirnov, A. V. (2016). Does the magnetization of CV meteorites record a parent body core dynamo? Lunar Planet. Sci., 47, abstract #2609.Google Scholar
Tenner, T. J., Ushikubo, T., Nakashima, D., Kita, N. T., and Weisberg, M. K. (2013). 26Al in chondrules from the CR3.0 chondrite Queen Alexandra Range 99177: A link with O isotopes. Lunar Planet. Sci., 44, abstract #2010.Google Scholar
Tenner, T. J., Ushikubo, T., Nakashima, D., et al. (2014). Silica excess in anorthitic plagioclase from type 3.00 chondrite chondrules: Evidence for retaining primary 26Al-26Mg systematics. Lunar Planet. Sci., 45, abstract #1187.Google Scholar
Tissandier, L., Libourel, G., and Robert, F. (2002). Gas-melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci., 37, 13771389.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.CrossRefGoogle ScholarPubMed
Ushikubo, T., Nakashima, D., Kimura, M., Tenner, T. J., and Kita, N. T. (2013). Contemporaneous formation of chondrules in distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta, 109, 280295.CrossRefGoogle Scholar
van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Natl. Acad. Sci. USA, 113, 20112016.CrossRefGoogle ScholarPubMed
Van Orman, J. A., Cherniak, D. J., and Kita, N. T. (2014). Magnesium diffusion in plagioclase: Dependence on composition, and implications for thermal resetting of the 26Al–26Mg early Solar System chronometer. Earth Planet. Sci. Lett., 385, 7988.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of Al-26 in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle Scholar
Wasserburg, G. J., Lee, T., and Papanastassiou, D. A. (1977). Correlated O and Mg isotopic anomalies in Allende inclusions: II. Magnesium. Geophys. Res. Lett., 4, 299302.CrossRefGoogle Scholar
Wasserburg, G. J., Wimpenny, J., and Yin, Q. -Z. (2012). Mg isotopic heterogeneity, Al-Mg isochrons, and canonical 26Al/27Al in the early Solar System. Meteorit. Planet. Sci., 47, 19801997.CrossRefGoogle Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., et al. (1995). The CR chondrite clan. Proc. NIPR Symposium, 8, 1132.Google Scholar
Weisberg, M. K., Prinz, M., Clayton, R. N., and Mayeda, T. K. (1997). CV3 chondrites: Three subgroups, not two. Meteorit. Planet. Sci., 32, abstract #139.Google Scholar
Youdin, A. N., and Shu, F. (2002). Planetesimal formation by gravitational instability. Astrophys. J., 580, 494505.CrossRefGoogle Scholar
Yurimoto, H., Koike, O., Nagahara, H., Morioka, M., and Nagasawa, H. (2000). Heterogeneous distribution of Mg isotopes in anorthite single crystal from Type-B CAIs in Allende meteorite. Lunar Planet. Sci., 31, abstract #1593.Google Scholar
Yurimoto, H., and Wasson, J. T. (2002). Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess. Geochim. Cosmochim. Acta, 66, 43554363.CrossRefGoogle Scholar
Zolotov, M. Y., Mironenko, M. V., and Shock, E. L. (2006). Thermodynamic constraints on fayalite formation on parent bodies of chondrites. Meteorit. Planet. Sci. 41, 17751796.CrossRefGoogle Scholar

References

Alexander, C. M. O’D. (2005). From supernovae to planets: The view from meteorites and interplanetary dust particles. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 9721002. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Alexander, C. M. O.’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteoritics & Planetary Science, 47, 11571175.CrossRefGoogle Scholar
Amelin, Y., and Krot, A. N. (2007). Pb isotopic ages of the Allende chondrules. Meteoritics & Planetary Science, 42, 13211335.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Arlandini, C., Käppeler, F., and Wisshak, K. (1999). Neutron capture in low-mass asymptotic giant branch stars: Cross sections and abundance signatures. Astrophysical Journal, 525, 886900.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, M. (2011). Chondrule formation during planetesimal accretion. Earth and Planetary Science Letters, 308, 369379.CrossRefGoogle Scholar
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth and Planetary Science Letters, 432, 472482.CrossRefGoogle Scholar
Bland, P. A., Alard, O., Benedix, G. K., et al. (2005). Volatile fractionation in the early solar system and chondrule/matrix complementarity. Proceedings of the National Academy of Sciences of the United States of America, 102, 1375513760.CrossRefGoogle ScholarPubMed
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017). Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, (8), e1700407.CrossRefGoogle ScholarPubMed
Bonal, L., Bourot-Denise, M., Quirico, E., and Montagnac, G. (2006). Determination of the petrologic type of CV3 chondrites by Raman spectroscopy of included organic matter. Geochimica et Cosmochimica Acta, 70, 18491863.CrossRefGoogle Scholar
Brennecka, G. A., Budde, G., and Kleine, T., (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteoritics & Planetary Science, 50, 19952002.CrossRefGoogle Scholar
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016a). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth and Planetary Science Letters, 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016b). Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, 113, 28862891.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2018). Hf–W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Dauphas, N., and Wieler, R. (2012). Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: Implications for Hf–W chronometry. The Astrophysical Journal Letters, 753, L6.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Oberli, F., et al. (2011). Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth. Earth and Planetary Science Letters, 312, 390400.CrossRefGoogle Scholar
Burkhardt, C., Kleine, T., Palme, H., et al. (2008). Hf–W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals. Geochimica et Cosmochimica Acta, 72, 61776197.CrossRefGoogle Scholar
Campbell, A. J., Zanda, B., Perron, C., et al. (2005). Origin and thermal history of Fe-Ni metal in primitive chondrites. In Krot, A. N. (Ed.), Chondrites and the Protoplanetary Disk. pp. 407431. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Connelly, J. N., Amelin, Y., Krot, A. N., and Bizzarro, M. (2008). Chronology of the solar system’s oldest solids. The Astrophysical Journal Letters, 675, L121.CrossRefGoogle Scholar
Connelly, J. N., and Bizzarro, M. (2009). Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143151.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connolly, H. C., and Desch, S. J. (2004). On the origin of the “kleine Kügelchen” called Chondrules. Chemie der Erde – Geochemistry, 64, 95125.CrossRefGoogle Scholar
Connolly, H. C., Huss, G. R., and Wasserburg, G. J. (2001). On the formation of Fe-Ni metal in Renazzo-like carbonaceous chondrites. Geochimica et Cosmochimica Acta, 65, 45674588.CrossRefGoogle Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015). Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.CrossRefGoogle ScholarPubMed
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochimica et Cosmochimica Acta, 172, 322356.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., and Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. Astrophysical Journal Letters, 841, L17.CrossRefGoogle Scholar
Hellmann, J. L., Kruijer, T. S., and Kleine, T. (2017). Constraining the timescale of solar nebula metal-silicate fractionation using Hf–W chronometry of ordinary chondrites. 48th Lunar and Planetary Science Conference, abstract #2046.Google Scholar
Henke, S., Gail, H. P., Trieloff, M., Schwarz, W. H., and Kleine, T. (2012). Thermal history modelling of the H chondrite parent body. Astronomy & Astrophysics, 545, A45.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth and Planetary Science Letters, 294, 8593.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2008). Constraints for chondrule formation from Ca–Al distribution in carbonaceous chondrites. Earth and Planetary Science Letters, 265, 716725.CrossRefGoogle Scholar
Hubbard, A. (2016a). Partitioning tungsten between matrix precursors and chondrule precursors through relative settling. The Astrophysical Journal, 826, 151.CrossRefGoogle Scholar
Hubbard, A. (2016b). Ferromagnetism and particle collisions: Applications to protoplanetary disks and the meteoritical record. The Astrophysical Journal, 826, 152.CrossRefGoogle Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., and Hohenberg, C. M. (2003). Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: Implications for thermal processing in the solar nebula. Geochimica et Cosmochimica Acta, 67, 48234848.CrossRefGoogle Scholar
Huss, G. R., Rubin, A. E., and Grossman, J. N. (2006). Thermal metamorphism in chondrites. In Lauretta, D. S., and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 567586. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Jacobsen, B., Yin, Q. -Z., Moynier, F., et al. (2008). 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth and Planetary Science Letters, 272, 353364.CrossRefGoogle Scholar
Jacquet, E. (2014). Transport of solids in protoplanetary disks: Comparing meteorites and astrophysical models. Comptes Rendus – Geoscience, 346, 312.CrossRefGoogle Scholar
Jacquet, E., Paulhiac-Pison, M., Alard, O., et al. (2013). Trace element geochemistry of CR chondrite metal. Meteoritics & Planetary Science, 48, 19811999.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162173.CrossRefGoogle Scholar
Jogo, K., Nakamura, T., Ito, M., et al. (2017). Mn–Cr ages and formation conditions of fayalite in CV3 carbonaceous chondrites: Constraints on the accretion ages of chondritic asteroids. Geochimica et Cosmochimica Acta, 199, 5874.CrossRefGoogle Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature, 517, 339341.CrossRefGoogle ScholarPubMed
Kita, N. T., Nagahara, H., Togashi, S., and Morishita, Y. (2000). A short duration of chondrule formation in the solar nebula: Evidence from 26Al in Semarkona ferromagnesian chondrules. Geochimica et Cosmochimica Acta, 64, 39133922.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteoritics & Planetary Science, 47, 11081119.CrossRefGoogle Scholar
Kleine, T., Mezger, K., Palme, H., Scherer, E., and Münker, C. (2005). Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites and iron meteorites. Geochimica et Cosmochimica Acta, 69, 58055818.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Bourdon, B., et al. (2009). Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochimica et Cosmochimica Acta, 73, 51505188.CrossRefGoogle Scholar
Kleine, T., Touboul, M., Van Orman, J. A., et al. (2008). Hf–W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth and Planetary Science Letters, 270, 106118.CrossRefGoogle Scholar
Kleine, T., and Walker, R. J. (2017). Tungsten isotopes in planets. Annual Review of Earth and Planetary Sciences, 45, 389417.CrossRefGoogle ScholarPubMed
Kong, P., Ebihara, M. and Palme, H. (1999). Distribution of siderophile elements in CR chondrites: Evidence for evaporation and recondensation during chondrule formation. Geochimica et Cosmochimica Acta, 63, 26372652.CrossRefGoogle Scholar
Krot, A. N., Hutcheon, I. D., Brearley, A. J., Pravdivtseva, O., and Petaev, M. I. (2006). Timescales and settings for alteration of chondritic meteorites. In Lauretta, D. S. and McSween, H. Y. (Eds.), Meteorites and the Early Solar System II, 525554. Tucson, AZ: University of Arizona Press.CrossRefGoogle Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., Burkhardt, C., and Wieler, R. (2014a). Nucleosynthetic W isotope anomalies and the Hf–W chronometry of Ca-Al-rich inclusions. Earth and Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014b). Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.CrossRefGoogle ScholarPubMed
Kruijer, T. S., Burkhardt, C., Budde, G., and Kleine, T. (2017). Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Sciences, 114, 67126716.CrossRefGoogle ScholarPubMed
Kurahashi, E., Kita, N. T., Nagahara, H., and Morishita, Y. (2008). 26Al-26Mg systematics of chondrules in a primitive CO chondrite. Geochimica et Cosmochimica Acta, 72, 38653882.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. The Astrophysical Journal Letters, L37, L37.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Komatsu, M. (2017). 26Al–26Mg systematics in chondrules from Kaba and Yamato 980145 CV3 carbonaceous chondrites. Geochimica et Cosmochimica Acta, 201, 303319.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E., and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochimica et Cosmochimica Acta, 191, 118138.CrossRefGoogle ScholarPubMed
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth and Planetary Science Letters, 411, 1119.CrossRefGoogle Scholar
Palme, H., Lodders, K., and Jones, A. (2014). Solar System Abundances of the Elements. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1536. Oxford: Elsevier.CrossRefGoogle Scholar
Qin, L., Dauphas, N., Wadhwa, M., Masarik, J., and Janney, P. E. (2008a). Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling. Earth and Planetary Science Letters, 273, 94104.CrossRefGoogle Scholar
Qin, L. P., Dauphas, N., Wadhwa, M., et al. (2008b). Tungsten nuclear anomalies in planetesimal cores. Astrophysical Journal, 674, 12341241.CrossRefGoogle Scholar
Render, J., Fischer-Gödde, M., Burkhardt, C., and Kleine, T. (2017). The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth. Geochemical Perspectives Letters, 3, 170178.CrossRefGoogle Scholar
Rudraswami, N. G., and Goswami, J. N. (2007). 26Al in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system. Earth and Planetary Science Letters, 257, 231244.CrossRefGoogle Scholar
Sanders, I. S., and Scott, E. R. D. (2012). The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals? Meteoritics & Planetary Science, 47, 21702192.CrossRefGoogle Scholar
Scherstén, A., Elliott, T., Hawkesworth, C., Russell, S. S., and Masarik, J. (2006). Hf–W evidence for rapid differentiation of iron meteorite parent bodies. Earth and Planetary Science Letters, 241, 530542.CrossRefGoogle Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochimica et Cosmochimica Acta, 201, 275302.CrossRefGoogle Scholar
Scott, E. R. D. (2007). Chondrites and the protoplanetary disk. Annual Review of Earth and Planetary Sciences, 35, 577620.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003). Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.CrossRefGoogle ScholarPubMed
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.CrossRefGoogle ScholarPubMed
Van Orman, J. A., Cherniak, D. J., and Kita, N. (2014). Magnesium diffusion in plagioclase: Dependence on composition, and implications for thermal resetting of the 26Al-26Mg early solar system chronometer. Earth and Planetary Science Letters, 385, 7988.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of Al-26 in the Solar System from the Mg isotopic composition of chondrules. Science, 325, 985988.CrossRefGoogle Scholar
Vockenhuber, C., Oberli, F., Bichler, M., et al. (2004). New half-life measurement of 182Hf: Improved chronometer for the early solar system. Physical Review Letters, 93, article # 172501.CrossRefGoogle ScholarPubMed
Wasson, J. T., and Kallemeyn, G. W. (1988). Compositions of chondrites. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 325, 535544.Google Scholar
Zanda, B., Bourot-Denise, M., Perron, C., and Hewins, R. H. (1994). Origin and metamorphic redistribution of silicon, chromium, and phosphorus in the metal of chondrites. Science, 265, 18461849.CrossRefGoogle ScholarPubMed
Zook, H. A. (1981). On a new model for the generation of chondrules. Lunar and Planetary Science Conference, XII, 1242–1244. Abstract.Google Scholar

References

Alexander, C. M. O’D. (2005). Re-examining the role of chondrules in producing the elemental fractionations in chondrites. Meteorit. Planet. Sci., 40, 943965.CrossRefGoogle Scholar
Alexander, C. M. O’D., Grossman, J. N., Ebel, D. S., and Ciesla, F. J. (2008). The formation conditions of chondrules and chondrites. Science, 320, 16171619.CrossRefGoogle ScholarPubMed
Amelin, Y. (2008). The U–Pb systematics of angrite Sahara 99555. Geochim. Cosmochim. Acta, 72, 48744885.CrossRefGoogle Scholar
Amelin, Y., Connelly, J. N., Zartman, R. E., et al. (2009). Modern U-Pb chronometry of meteorites: Advancing to higher time resolution reveals new problems. Geochim. Cosmochim. Acta, 73, 52125223.CrossRefGoogle Scholar
Amelin, Y., Kaltenbach, A., Iizuka, T., et al. (2010). U–Pb chronology of the Solar System’s oldest solids with variable 238U/235U. Earth Planet. Sci. Lett., 300, 343350.CrossRefGoogle Scholar
Amelin, Y., and Krot, A. N. (2007). Pb isotopic age of the Allende chondrules. Meteorit. Planet. Sci., 42, 13211335.CrossRefGoogle Scholar
Amelin, Y., Krot, A. N., Hutcheon, I. D., and Ulyanov, A. A. (2002). Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 16781683.CrossRefGoogle ScholarPubMed
Becker, M., Hezel, D. C., Schulz, T., Elfers, B. -M., and Münker, C. (2015). Formation timescales of CV chondrites from component specific Hf–W systematics. Earth Planet. Sci. Lett., 432, 472482.CrossRefGoogle Scholar
Bitsch, B., Lambrechts, M., and Johansen, A. (2015). The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys., 582, A112.CrossRefGoogle Scholar
Bizzarro, M., Baker, J. A., and Haack, H. (2004). Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Nature, 431, 275278.CrossRefGoogle ScholarPubMed
Bizzarro, M., Paton, C., Larsen, K., et al. (2011). High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC- ICPMS – Implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth. J. Anal. At. Spectrom., 26, 565577.CrossRefGoogle Scholar
Bizzarro, M., Connelly, J.N., and Krot, A.N. (2017). Chondrules – Ubiquitous chondritic solids tracking the evolution of the solar protoplanetary disk. In Pessah, M. and Gressel, O. (Eds.), Formation, Evolution, and Dynamics of Young Solar Systems, 161195. Cham, Switzerland: Springer International.CrossRefGoogle Scholar
Bizzarro, M., Olsen, M., Itoh, S., et al. (2014). Evidence for a reduced initial abundance of 26Al in chondrule forming regions and implications for the accretion timescales of protoplanets. Meteorit. Planet. Sci, 49 (Suppl.), Abstract #A43.Google Scholar
Blundy, J., and Wood, B. (2003). Mineral-melt partitioning of uranium, thorium and their daughters. Rev. Mineral. Geochem., 52, 59123.CrossRefGoogle Scholar
Boley, A. C., and Durisen, R. H. (2008). Gravitational instabilities, chondrule formation, and the FU Orionis phenomenon. Astrophys. J., 685, 11931209.CrossRefGoogle Scholar
Boley, A. C., Morris, M. A., and Desch, S. J. (2013). High-temperature processing of solids through solar nebular bow shocks: 3D radiation hydrodynamics simulations with particles. Astrophys. J., 776, 101.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015a). Pb–Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteorit. Planet. Sci., 50, 11971216.CrossRefGoogle ScholarPubMed
Bollard, J., Kawaski, N., Sakamoto, N., et al. (2015b). Early disk dynamics inferred from isotope systematics of individual chondrules. Meteorit. Planet. Sci., 50 (Suppl.), Abstract #5211.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017). Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Sci. Adv., 3 (8), e1700407.CrossRefGoogle ScholarPubMed
Boss, A. P., and Durisen, R. H. (2005). Chondrule-forming Shock Fronts in the Solar Nebula: A Possible Unified Scenario for Planet and Chondrite Formation. Astrophys. J. Lett., 621, L137L140.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010). 238U/235U variations in meteorites: extant 247Cm and implications for Pb–Pb dating. Science, 327, 449451.CrossRefGoogle ScholarPubMed
Brennecka, G. A., Budde, G., and Kleine, T. (2015). Uranium isotopic composition and absolute ages of Allende chondrules. Meteorit. Planet. Sci., 50, 19952002.CrossRefGoogle Scholar
Brennecka, G. A., and Wadhwa, M. (2012). Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl. Acad. Sci., 109, 92999303.CrossRefGoogle ScholarPubMed
Budde, G., Burkhardt, C., Brennecka, G. A., et al. (2016b). Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett., 454, 293303.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., Burkhardt, C., and Metzler, K. (2016a). Tungsten isotopic constraints on the age and origin of chondrules. Proc. Natl. Acad. Sci., 113, 28862891.CrossRefGoogle ScholarPubMed
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci., 108, 63866389.CrossRefGoogle Scholar
Carrasco-Gonzalez, C., Henning, T., Chandler, C. J., et al. (2016). The VLA view of the HL Tau Disk - Disk Mass, Grain Evolution, and Early Planet Formation. Astrophys. J., 821, L16.CrossRefGoogle Scholar
Ciesla, F. J., and Hood, L. L. (2002). The nebular shock wave model for chondrule formation: Shock processing in a particle -gas suspension. Icarus, 158, 281293.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Thrane, K., and Baker, J. A. (2008). The Pb–Pb age of Angrite SAH99555 revisited. Geochim. Cosmochim. Acta, 72, 48134824.CrossRefGoogle Scholar
Connelly, J. N., and Bizzarro, M. (2009). Pb–Pb dating of chondrules from CV chondrites by progressive dissolution. Chemical Geology, 259, 143151.CrossRefGoogle Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.CrossRefGoogle ScholarPubMed
Connelly, J. N., Bollard, J., and Bizzarro, M. (2017). Pb–Pb chronometry and the early Solar System. Geochim. Cosmochim. Acta, 201, 345363.CrossRefGoogle Scholar
Dauphas, N., and Pourmand, A. (2011). Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489492.CrossRefGoogle ScholarPubMed
Desch, S. J., Morris, M. A., Connolly, H. C., and Boss, A. P. (2012). The importance of experiments: Constraints on chondrule formation models. Meteorit. Planet. Sci., 47, 11391156.CrossRefGoogle Scholar
Ebel, D. S., Brunner, C., Konrad, K., et al. (2016). Abundance, major element composition and size of components and matrix in CV, CO and Acfer 094 chondrites. Geochim. Cosmochim. Acta, 172, 322356.CrossRefGoogle Scholar
Evans, N. J. II, Dunham, M. M., Jørgensen, J. K., et al. (2009). The Spitzer c2d Legacy results: star formation rates and efficiencies; evolution and lifetimes. Astrophys. J. Suppl. Ser., 181, 321350.CrossRefGoogle Scholar
Goldberg, A. Z., Owen, J. E., and Jacquet, E. (2015). Chondrule transport in protoplanetary discs. Mon. Not. R. Astron. Soc., 452, 40544069.CrossRefGoogle Scholar
Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S., and Wadhwa, M. (2015). The uranium isotopic composition of the Earth and the Solar System. Geochim. Cosmochim. Acta, 148, 145158.CrossRefGoogle Scholar
Hezel, D. C., and Palme, H. (2010). The chemical relationship between chondrules and matrix and the chondrule matrix complementarity. Earth Planet. Sci. Lett., 294, 8593.CrossRefGoogle Scholar
Holst, J. C., Olsen, M. B., Paton, C., et al. (2013). 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System. Proc. Natl. Acad. Sci., 110, 88198823.CrossRefGoogle ScholarPubMed
Hood, L. L., Ciesla, F. J., Artemieva, N. A., Marzari, F., and Weidenschilling, S. J. (2009). Nebular shock waves generated by planetesimals passing through Jovian resonances: Possible sites for chondrule formation. Meteorit. Planet. Sci., 44, 327342.CrossRefGoogle Scholar
Hu, R. (2010). Transport of the First Rocks of the Solar System by X-winds. Astrophys. J., 725, 14211428.CrossRefGoogle Scholar
Huss, G. R., MacPherson, G. J., Wasserburg, G. J., Russell, S. S., and Srinivasan, G. (2001). Aluminum-26 in calcium-aluminum-rich inclusions and chondrules from unequilibrated ordinary chondrites. Meteorit. Planet. Sci., 36, 975997.CrossRefGoogle Scholar
Itoh, S., and Yurimoto, H. (2003). Contemporaneous formation of chondrules and refractory inclusions in the early Solar System. Nature, 423, 728731.CrossRefGoogle ScholarPubMed
Johansen, A., Low, M. -M. M., Lacerda, P., and Bizzarro, M. (2015). Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv., 1, e1500109e1500109.CrossRefGoogle ScholarPubMed
Johansen, A., Oishi, J. S., Low, M. -M. M., et al. (2007). Rapid planetesimal formation in turbulent circumstellar disks. Nature, 448, 10221025.CrossRefGoogle ScholarPubMed
Kaltenbach, A. (2012). Uranium isotopic analyses of terrestrial and extraterrestrial samples. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 174 p.Google Scholar
Krot, A. N., and Wasson, J. T. (1995). Igneous rims on low-FeO and high-FeO chondrules in ordinary chondrites. Geochim. Cosmochim. Acta, 59, 49514966.CrossRefGoogle Scholar
Krot, A. N., Libourel, G., Goodrich, C. A., and Petaev, M. I. (2004). Silica-rich igneous rims around magnesian chondrules in CR carbonaceous chondrites: Evidence for condensation origin from fractionated nebular gas. Meteorit. Planet. Sci. Arch., 39, 19311955.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005a). Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature, 436, 989992.CrossRefGoogle Scholar
Krot, A. N., Yurimoto, H., Hutcheon, I. D., and MacPherson, G. J. (2005b). Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions. Nature, 434, 9981001.CrossRefGoogle ScholarPubMed
Krot, A. N., Amelin, Y., Bland, P., et al. (2009). Origin and chronology of chondritic components: A review. Geochim. Cosmochim. Acta, 73, 49634997.CrossRefGoogle Scholar
Krot, A. N., Nagashima, K., van Kooten, E. M. M., and Bizzarro, M. (2017). Calcium-aluminum-rich inclusions recycled during formation of porphyritic chondrules from CH carbonaceous chondrites. Geochim. Cosmochim. Acta, 201, 185223.CrossRefGoogle Scholar
Lambrechts, M., and Johansen, A. (2012). Rapid growth of gas-giant cores by pebble accretion. A. Astron. Astrophys., 544, A32.CrossRefGoogle Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011). Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophys. J. Lett., 735, L37.CrossRefGoogle Scholar
Larsen, K. K., Schiller, M., and Bizzarro, M. (2016). Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochim. Cosmochim. Acta, 176, 295315.CrossRefGoogle Scholar
Lodders, K. (2003). Solar System Abundances and condensation temperatures of the elements. Astrophys. J., 591, 12201247.CrossRefGoogle Scholar
Morris, M. A., Boley, A. C., Desch, S. J., and Athanassiadou, T. (2012). Chondrule formation in bow shocks around eccentric planetary embryos. Astrophys. J., 752, 27.CrossRefGoogle Scholar
Morris, M. A., Garvie, L. A. J., and Knauth, L. P. (2015). New insight into the Solar System’s transition disk phase provided by the unusual meteorite Isheyevo. Astrophys. J., 801, L22.CrossRefGoogle Scholar
Mostefaoui, S., Kita, N. T., Togashi, S., et al. (2002). The relative formation ages of ferromagnesian chondrules inferred from their initial aluminum-26/aluminum-27 ratios. Meteorit. Planet. Sci., 37, 421438.CrossRefGoogle Scholar
Moynier, F., Beck, P., Jourdan, F., et al. (2009). Isotopic fractionation of zinc in tektites. Earth Planet. Sci. Lett., 277, 482489.CrossRefGoogle Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014). 26Al in chondrules from CR2 chondrites. Geochem. J. 48, 561570.CrossRefGoogle Scholar
Norris, T. L., Gancarz, A. J., Rokop, D. J., and Thomas, K. W. (1983). Half-life of 26Al. J. Geophys. Res.: Solid Earth, 88, B331B333.CrossRefGoogle Scholar
Olsen, M. B., Schiller, M. Krot, A. N., and Bizzarro, M. (2013). Magnesium isotope evidence for single stage formation of CB chondrules by colliding planetesimals. Astrophys. J. Lett., 776, L1.CrossRefGoogle Scholar
Olsen, M. B., Wielandt, D., Schiller, M., Van Kooten, E. M. M. E. and Bizzarro, M. (2016). Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules – Insights into early disk processes. Geochim. Cosmochim. Acta, 191, 118138.CrossRefGoogle ScholarPubMed
Palme, H., Hezel, D. C., and Ebel, D. S. (2015). The origin of chondrules: Constraints from matrix composition and matrix-chondrule complementarity. Earth Planet. Sci. Lett., 411, 1119.CrossRefGoogle Scholar
Pérez, L. M., Carpenter, J. M., Andrews, S. M., et al. (2016). Spiral density waves in a young protoplanetary disk. Science, 353, 15191521.CrossRefGoogle Scholar
Rudraswami, N. G., and Goswami, J. N. (2007). 26Al in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system. Earth Planet. Sci. Lett., 257, 231244.CrossRefGoogle Scholar
Schiller, M., Connelly, J. N., Glad, A. C., Mikouchi, T., and Bizzarro, M. (2015a). Early accretion of protoplanets inferred from a reduced inner solar system 26Al inventory. Earth Planet. Sci. Lett., 420, 4554.CrossRefGoogle ScholarPubMed
Schiller, M., Paton, C., and Bizzarro, M. (2015b). Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. Geochim. Cosmochim. Acta, 149, 88102.CrossRefGoogle ScholarPubMed
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta, 201, 275302.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2003). Chondrites and their Components. In Davis, A. M. (Ed.), Meteorites, Comets and Planets. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (First Edition), 1, 144200. Oxford, UK: Elsevier.Google Scholar
Scott, E. R. D. (2007). Chondrites and the Protoplanetary Disk. Annu. Rev. Earth Planet. Sci., 35, 577620.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2005). Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys. J., 623, 571.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science, 271, 15451552.CrossRefGoogle Scholar
Steiger, R. H., and Jäger, E. (1977). Subcommission on geochronology: Convention on use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett., 36, 359362.CrossRefGoogle Scholar
Tatsumoto, M., Knight, R. J., and Allegre, C. J. (1973). Time differences in the formation of meteorites as determined from the ratio of Lead-207 to Lead-206. Science, 180, 12791283.CrossRefGoogle ScholarPubMed
Testi, L., Birnstiel, T., Ricci, L., et al. (2014). In Beuther, H., Klessen, R. S., Dullemond, C. P., and Henning, T. (Eds.), Protostars and Planets VI, 339361. Tucson, AZ: University of Arizona Press.Google Scholar
Thrane, K., Kazuhide, N., Krot, A. N., and Bizzarro, M. (2008). Discovery of a new FUN CAI from a CV carbonaceous chondrite: Evidence for multistage thermal processing in the protoplanetary disk. Astrophys. J. Lett., 680, L141L144.CrossRefGoogle Scholar
Tobin, J. J., Looney, L. W., Wilner, D. J., et al. (2015). A sub-arcsecond survey toward Class 0 protostars in Perseus: Searching for signatures of protostellar disks. Astrophys. J., 805, 125.CrossRefGoogle Scholar
Tomida, K., Okuzumi, S., and Machida, M. N. (2015). Radiation magnetohydrodynamic simulations of protostellar collapse: Nonideal magnetohydrodynamic effects and early formation of circumstellar disks. Astrophys. J., 801, 117.CrossRefGoogle Scholar
Trinquier, A., Elliott, T., Ulfbeck, D., et al. (2009). Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science, 324, 374376.CrossRefGoogle ScholarPubMed
Van Kooten, E. M. M. E., Wielandt, D., Schiller, M., et al. (2016). Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites. Proc. Natl. Acad. Sci., 113, 20112016.CrossRefGoogle ScholarPubMed
Weidenschilling, S. J. (1977). Aerodynamics of solid bodies in the solar nebula. Mon. Not. Roy. Astron. Soc., 180, 5770.CrossRefGoogle Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci., 41, 529560.CrossRefGoogle Scholar
Williams, J. P., and Cieza, L. A. (2011). Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys., 49, 67117.CrossRefGoogle Scholar

References

Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. (1989). The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 30453057.CrossRefGoogle Scholar
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci. 47, 11571175.CrossRefGoogle Scholar
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369379.CrossRefGoogle Scholar
Bai, X. -N. (2016). Towards a global evolutionary model of protoplanetary disks. Astrophys. J. 821, 80.CrossRefGoogle Scholar
Bai, X. -N. (2015). Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. Astrophys. J. 798, 84.CrossRefGoogle Scholar
Bai, X. -N. (2014). Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. Astrophys. J. 791, 137.CrossRefGoogle Scholar
Bai, X. -N. (2011). Magnetorotational-instability-driven accretion in protoplanetary disks. Astrophys. J. 739, 119.CrossRefGoogle Scholar
Bai, X. -N., and Goodman, J. (2009). Heat and dust in active layers of protostellar disks. Astrophys. J. 701, 737755.CrossRefGoogle Scholar
Balbus, S. A. (2003). Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555597.CrossRefGoogle Scholar
Bitsch, B., Johansen, A., Lambrechts, M., and Morbidelli, A. (2015). The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28.CrossRefGoogle Scholar
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early solar system: The record from chondritic meteorites, in: Harlov, D.E. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock., 659789. Berlin: Springer-Verlag.Google Scholar
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA 108, 63866389.CrossRefGoogle Scholar
Carrera, D., Johansen, A., and Davies, M. B. (2015). How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579, A43.CrossRefGoogle Scholar
Ciesla, F. J., Lauretta, D. S., and Hood, L. L. (2004). The frequency of compound chondrules and implications of chondrule formation. Meteorit. Planet. Sci. 39, 531544.CrossRefGoogle Scholar
Cuzzi, J. N., and Hogan, R. C. (2003). Blowing in the wind I. Velocities of chondrule-sized particles in a turbulent protoplanetary nebula. Icarus 164, 127138.CrossRefGoogle Scholar
Desch, S. J., and Connolly, H. C. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183207.CrossRefGoogle Scholar
Desch, S. J., and Mouschovias, T. C. (2001). The magnetic decoupling of star formation. Astrophys. J. 550, 314333.CrossRefGoogle Scholar
Flock, M., Ruge, J. P., Dzyurkevich, N., et al. (2015). Gaps, rings, and non-axisymmetric structures in protoplanetary disks – From simulations to ALMA observations. Astron. Astrophys. 574, A68.CrossRefGoogle Scholar
Fu, R. R., Lima, E. A., and Weiss, B. P. (2014a). No nebular magnetization in the Allende CV carbonaceous chondrite. Earth Planet. Sci. Lett. 404, 5466.CrossRefGoogle Scholar
Fu, R. R., and Weiss, B. P. (2012). Detrital remanent magnetization in the solar nebula. J. Geophys. Res. 117, E02003.CrossRefGoogle Scholar
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014b). Solar nebula magnetic fields recorded in the Semarkona meteorite. Science. 346, 10891092.CrossRefGoogle ScholarPubMed
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2017). Evaluating the paleomagnetic potential of single zircon crystals using Bishop Tuff zircons. Earth Planet. Sci. Lett. 458, 113.CrossRefGoogle Scholar
Gammie, C. F. (1996). Layered accretion in T Tauri disks. Astrophys. J. 457, 355362.CrossRefGoogle Scholar
Garrick-Bethell, I., and Weiss, B. P. (2010). Kamacite blocking temperatures and applications to lunar magnetism. Earth Planet. Sci. Lett. 294, 17.CrossRefGoogle Scholar
Glenn, D. R., Fu, R. R., Kehayias, P., et al. (2017). Micrometer-scale magnetic imaging of geological samples using quantum diamond microscopy. Geochem. Geophys. Geosyst. 18, 32543267.CrossRefGoogle Scholar
Guilet, J., and Ogilvie, G. I. (2014). Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. Mon. Not. R. Astr. Soc. 441, 852868.CrossRefGoogle Scholar
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Sup. Prog. Theor. Phys. 70, 3553.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. ASP Conference Series, 341, 286316. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Johansen, A. (2009). The role of magnetic fields for planetary formation. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E. (Eds.), Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. Proc. IAU Symp. 259, 119128. Cambridge, UK: Cambridge University Press.Google Scholar
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.CrossRefGoogle ScholarPubMed
Jones, R. H., and Danielson, L. R. (1997). A chondrule origin for dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci. 32, 753760.CrossRefGoogle Scholar
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci. 43, 11611177.CrossRefGoogle Scholar
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47, 11081109.CrossRefGoogle Scholar
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci. 48, 118.CrossRefGoogle Scholar
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 10651085.CrossRefGoogle Scholar
Lanoix, M., Strangway, D. W., and Pearce, G. W. (1978). The primordial magnetic field preserved in chondrules of the Allende meteorite. Geophys. Res. Lett. 5, 7376.CrossRefGoogle Scholar
Lappe, S. -C. L. L., Harrison, R. J., Feinberg, J. M., and Muxworthy, A. (2013). Comparison and calibration of nonheating paleointensity methods: A case study using dusty olivine. Geochem. Geophys. Geosyst. 14, 116.CrossRefGoogle Scholar
Leroux, H., Libourel, G., Lemelle, L., and Guyot, F. (2003). Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction. Meteorit. Planet. Sci. 38, 8194.CrossRefGoogle Scholar
Lesur, G., Kunz, M. W., and Fromang, S. (2014). Thanatology in protoplanetary discs: The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. Astron. Astrophys. 566, A56.CrossRefGoogle Scholar
Levy, E. H., and Araki, S. (1989). Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81, 7491.CrossRefGoogle Scholar
Levy, E. H., and Sonett, C. P. (1978). Meteorite magnetism and early solar system magnetic fields. In Gehrels, T. (Ed.), Protostars and Planets: Studies of Star Formation and of the Origin of the Solar System., 516532. Tucson, AZ: University of Arizona Press.Google Scholar
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. 767, L2.CrossRefGoogle Scholar
Miura, H., Nakamoto, T., and Doi, M. (2008). Origin of three-dimensional shapes of chondrules: I. Hydrodynamics simulations of rotating droplet exposed to high-velocity rarefied gas flow. Icarus 197, 269281.CrossRefGoogle Scholar
Nübold, H., and Glassmeier, K. -H. (2000). Accretional remanence of magnetized dust in the solar nebula. Icarus 144, 149159.CrossRefGoogle Scholar
Okuzumi, S., Takeuchi, T., and Muto, T. (2014). Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength. Astrophys. J. 785, 127.CrossRefGoogle Scholar
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules. Meteor. Planet. Sci. 50, 1550.CrossRefGoogle Scholar
Schrader, D. L., Davidson, J., and McCoy, T. J. (2016a). Widespread evidence for high-temperature formation of pentlandite in chondrites. Geochim. Cosmochim. Acta 189, 359376.CrossRefGoogle Scholar
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016b). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates. Lunar Planet. Sci. Conf. XLVII, 1180.Google Scholar
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201, 375302.CrossRefGoogle Scholar
Shah, J., Bates, H. C., Muxworthy, A. R., et al. (2017). Long-lived magnetism on chondrite parent bodies. Earth Planet. Sci. Lett. 475, 106118.CrossRefGoogle Scholar
Shu, F. H., Shang, H., Glassgold, A. E., and Lee, T. (1997). X-rays and fluctuating x-winds from protostars. Science. 277, 14751479.CrossRefGoogle Scholar
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science. 271, 15451552.CrossRefGoogle Scholar
Stepinski, T. F. (1992). Generation of dynamo magnetic fields in the primordial solar nebula. Icarus 97, 130141.CrossRefGoogle Scholar
Sugiura, N., Lanoix, M., Strangway, D. W., (1979). Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Phys. Earth Planet. Inter. 20, 342349.CrossRefGoogle Scholar
Sugiura, N., and Strangway, D. W. (1985). NRM directions around a centimeter-sized dark inclusion in Allende. Proc. Lunar Planet. Sci. Conf. XV, C729–C738.Google Scholar
Swartzendruber, L. J., Itkin, V. P., and Alcock, C. B. (1991). The Fe-Ni (iron-nickel) system. J. Phase Equilibria 12, 288312.CrossRefGoogle Scholar
Tachibana, S., Nagahara, H., and Mizuno, K. (2006). Constraints on cooling rates of chondrules from metal-troilite assemblages. Lunar Planet. Sci. Conf. XXXVII.Google Scholar
Takac, M., and Kletetschka, G. (2015). Meteorite movement during deceleration studied analogically with magnetic remanence in the bullet. In AGU Fall Meeting. Abstract # GP43B-1244.Google Scholar
Tauxe, L. (2010). Essentials of Paleomagnetism. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
Tsuchiyama, A., Shigeyoshi, R., Kawabata, T., et al. (2003). Three-dimensional structures of chondrules and their high-speed rotation. Lunar Planet. Sci. Conf. XXXIV.Google Scholar
Turner, N. J., and Sano, T. (2008). Dead zone accretion flows in protostellar disks. Astrophys. J. Lett. 679, L131L134.CrossRefGoogle Scholar
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J. (2011). Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications of paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306, 241252.CrossRefGoogle Scholar
Uehara, M., and Nakamura, N. (2006). Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines. Earth Planet. Sci. Lett. 250, 292305.CrossRefGoogle Scholar
van der Marel, N., van Dishoeck, E. F., Bruderer, S., et al. (2013). A major asymmetric dust trap in a transition disk. Science. 340, 11991202.CrossRefGoogle Scholar
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science. 325, 985988.CrossRefGoogle ScholarPubMed
Wang, H., Weiss, B. P., Bai, X. -N., et al. (2017). Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science. 355, 623627.CrossRefGoogle ScholarPubMed
Wardle, M. (2007). Magnetic fields in protoplanetary disks. Astrophys. Sp. Sci. 311, 3545.CrossRefGoogle Scholar
Wasilewski, P. (1981). New magnetic results from Allende C3(V). Phys. Earth Planet. Inter. 26, 134148.CrossRefGoogle Scholar
Wasilewski, P. J., and O’Bryan, M. V. (1994). Chondrule magnetic properties. Lunar Planet. Sci. Conf. XXV, 1467.Google Scholar
Weiss, B. P., and Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41, 21.CrossRefGoogle Scholar
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U. R. (2010). Paleomagnetic records of meteorites and early planetesimal differentiation. Sp. Sci. Rev. 152, 341390.CrossRefGoogle Scholar
Weiss, B. P., and Tikoo, S. M. (2014). The lunar dynamo. Science. 346, 1246753–1.CrossRefGoogle ScholarPubMed
Zhu, Z., Stone, J. M., and Rafikov, R. R. (2013). Low-mass planets in protoplanetary disks with net vertical magnetic fields: The planetary wake and gap opening. Astrophys. J. 768, 143.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×