Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-30T17:44:21.690Z Has data issue: false hasContentIssue false

8 - Marine organic geochemistry

Published online by Cambridge University Press:  05 September 2012

Steven Emerson
Affiliation:
University of Washington
John Hedges
Affiliation:
University of Washington
Kenia Whitehead
Affiliation:
Institute for Systems Biology Seattle, WA
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amon, R. M. W., Fitzner, H. P. and Benner, R. (2001) Linkages among the bioreactivity, chemical composition and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–97.CrossRefGoogle Scholar
Benner, R. (2002) Chemical composition and reactivity. In Biogeochemistry of Marine Dissolved Organic Matter (ed. Hansell, D. A. and Carlson, C. A.), pp. 59–90. New York, NY: Elsevier Science.Google Scholar
Benner, R., Hatcher, P. G. and Hedges, J. I. (1990) Early diagenesis of mangrove leaves in a tropical estuary: bulk chemical characterization using solid-state 13 C NMR and elemental analysis. Geochim. Cosmochim. Acta 54, 2003–13.CrossRefGoogle Scholar
Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I. and Hatcher, P. G. (1992) Bulk chemical characteristics of dissolved organic matter in the ocean. Science 255, 1561–4.CrossRefGoogle ScholarPubMed
Brassell, S. C. (1993) Application of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene. In Organic Geochemistry. Principles and Applications (ed. Engel, M. H. and Macko, S. A.), pp. 699–738. New York, NY: Plenum Press.CrossRefGoogle Scholar
Constanz, B. and Weiner, S. (1988) Acidic macromolecules associated with the mineral phase of Scleractinian coral skeletons. J. Exp. Zool. 248, 253–8.CrossRefGoogle Scholar
Cowie, G. L. and Hedges, J. I. (1984a) Determination of neutral sugars in plankton, sediments and wood by capillary gas chromatography of equilibrated isomeric mixtures. Analyt. Chem. 56, 497–504.CrossRefGoogle Scholar
Cowie, G. L. and Hedges, J. I. (1984b) Carbohydrate sources in a coastal marine environment. Geochim. Cosmochim. Acta 48, 2075–87.CrossRefGoogle Scholar
Cowie, G. L. and J. I. Hedges (1991) Organic carbon and nitrogen geochemistry of Black Sea surface sediments from stations spanning the oxic:anoxic boundary. In Black Sea Oceanography (ed. Izdar, E. and Murray, J. W.), pp. 343–9. Boston, MA: Kluwer.CrossRefGoogle Scholar
Cowie, G. L. and Hedges, J. I. (1992a) Improved amino acid quantification in environmental samples: charge-matched recovery standards and reduced analysis time. Mar. Chem. 37, 223–38.CrossRefGoogle Scholar
Cowie, G. L. and Hedges, J. I. (1992b) Sources and reactivities of amino acids in a coastal marine environment. Limnol. Oceanogr. 37, 703–24.CrossRefGoogle Scholar
Dauwe, B. and Middelburg, J. J. (1998) Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr. 43, 782–98.CrossRefGoogle Scholar
Degens, E. E. (1969) The biochemistry of stable carbon isotopes. In Organic Geochemistry (ed. Eglinton, G. and Murphy, M. T. J.), pp. 304–28. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Druffel, E. R., Williams, P. M. and Suzuki, Y. (1989) Concentrations and radiocarbon signatures of dissolved organic matter in the Pacific Ocean. Geophys. Res. Lett. 16, 991–4.CrossRefGoogle Scholar
Forsberg, B. R., Araujo-Lima, C. A., Martinelli, R. M.et al. (1993) Autotrophic carbon sources for fish of the central Amazon. Ecology 74, 643–52.CrossRefGoogle Scholar
Gélinas, Y., Baldock, J. A. and Hedges, J. I. (2001) Demineralization of marine and freshwater sediments for CP/MAS 13 C NMR analysis. Org. Geochem. 32, 677–93.CrossRefGoogle Scholar
Ghuysen, J. M. and G. D. Shockman (1973) In Bacterial Membranes and Cell Walls (ed. Leive, L.), vol. 1, pp. 37–130. New York, NY: Dekker.Google Scholar
Goñi, M. A., Ruttenberg, K. C. and Eglinton, T. I. (1997) Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389, 275–8.CrossRefGoogle Scholar
Goñi, M. A., Ruttenberg, K. C. and Eglinton, T. I. (1998) A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim. Cosmochim. Acta 62, 3055–75.CrossRefGoogle Scholar
Hatcher, P. G., Spiker, E. C., Szeverenyi, N. M. and Macial, G. E. (1983) Selective preservation and origin of petroleum-forming aquatic kerogen. Nature 305, 498–501.CrossRefGoogle Scholar
Hayes, J. M. (2001) Fractionation of the isotopes of carbon and hydrogen in biosynthetic processes. Valley, J. W. and Cole, D. R. (organizers) for the Mineralogical Society of America. Presented at the National Meeting of the Geological Society of America, Boston, USA.
Hedges, J. I. and Ertel, J. R. (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Analyt. Chem. 54, 174–8.CrossRefGoogle Scholar
Hedges, J. I. and Mann, D. C. (1979) The lignin geochemistry of marine sediments from the southern Washington coast. Geochim. Cosmochim. Acta 43, 1809–18.CrossRefGoogle Scholar
Hedges, J. I. and Stern, J. H. (1984) Carbon and nitrogen determination of carbonate containing solids. Limnol. Oceanogr. 29, 657–63.CrossRefGoogle Scholar
Hedges, J. I., Baldock, J. A., Gelinas, Y.et al. (2002) The biochemical and elemental compositions of marine plankton: a NMR perspective. Mar. Chem. 78, 47–63.CrossRefGoogle Scholar
Hedges, J. I., Clark, W. A. and Cowie, G. L. (1988) Fluxes and reactivities of organic matter in a coastal marine bay. Limnol. Oceanogr. 33, 1137–52.CrossRefGoogle Scholar
Hedges, J. I., Cowie, G. L., Ertel, J. R., Barbour, R. J. and Hatcher, P. G. (1985) Degradation of carbohydrates and lignins in buried woods. Geochim. Cosmochim. Acta 49, 701–11.CrossRefGoogle Scholar
Hedges, J. I., Keil, R. G. and Benner, R. (1997) What happens to terrestrial organic matter in the ocean?Org. Geochem. 27, 195–212.CrossRefGoogle Scholar
Hernes, P. J., Benner, R., Cowie, G. L.et al. (2001) Tannin diagenesis in mangrove leaves from a tropical estuary: a novel molecular approach. Geochim. Cosmochim. Acta 65, 3109–22.CrossRefGoogle Scholar
Hernes, P. J. and Hedges, J. I. (2000) Determination of condensed tannin monomers in plant tissues, soils and sediments by capillary gas chromatography of acid depolymerization extracts. Analyt. Chem. 72, 5115–24.CrossRefGoogle Scholar
Kelsey, R. G. and Harmon, M. E. (1989) Distribution and variation of extractable total phenols and tannins in the logs of four conifers after 1 year on the ground. Can. J. For. Res. 19, 1030–6.CrossRefGoogle Scholar
Kröger, N., Deutzmann, R. and Sumper, M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286, 1129–32.Google ScholarPubMed
Lambert, J. B., Shurvell, H. F., Lightner, D. A. and Cooks, R. G. (1998) Organic Structural Spectroscopy, part IV, Mass Spectrometry. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Lee, C. and Cronin, C. (1982) The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J. Mar. Res. 40, 227–51.Google Scholar
Lindroth, P. and Mopper, K. (1979) HPLC determination of sub-picomole amounts of amino acids by precolumn fluorescence derivatization with O-phthaldialdehyde. Analyt. Chem. 51, 1667–74.CrossRefGoogle Scholar
Llewellyn, C. A. and Mantoura, R. F. C. (1996) Pigment biomarkers and particulate carbon in the upper water column compared to the ocean interior of the northeast Atlantic. Deep-Sea Res. 43, 1165–84.CrossRefGoogle Scholar
Mackenzie, A. S., Brassell, S. C., Eglinton, G. and Maxwell, J. R. (1982) Chemical fossils: the geological fate of steroids. Science 217, 491–504.CrossRefGoogle ScholarPubMed
Macko, S. A., Estep, M. L. F., Hare, P. E. and Hoering, T. C. (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Isotope Geosci. 65, 79–92.CrossRefGoogle Scholar
McCarthy, M. D., Hedges, J. I. and Benner, R. (1998) Major bacterial contribution to marine dissolved organic nitrogen. Science 281, 231–4.CrossRefGoogle ScholarPubMed
Merritt, D. A. and Hayes, J. M. (1994) Factors controlling precision and accuracy in isotope-ratio-monitoring mass spectrometry. Analyt Chem. 66, 2336–47.CrossRefGoogle ScholarPubMed
Müller, P. J., Kirst, G., Ruhland, G., Storch, I. and Rosell-Mele, A. (1998) Calibration of the alkenone paleotemperature index UK'37 based on core-tops from the eastern South Atlantic and the global ocean (60° N – 60° S). Geochim. Cosmochim. Acta 62, 1757–72.CrossRefGoogle Scholar
Onstad, G. D., Canfield, D. E., Quay, P. D. and Hedges, J. I. (2000) Sources of particulate organic matter in rivers from the continental USA: lignin phenol and stable carbon isotope compositions. Geochim. Cosmochim. Acta 64, 3539–46.CrossRefGoogle Scholar
Opsahl, S. and Benner, R. (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386, 480–2.CrossRefGoogle Scholar
Prahl, F. G. and Wakeham, S. G. (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–9.CrossRefGoogle Scholar
Preston, C. M. (1996) Applications of NMR to soil organic matter analysis: history and prospects. Soil Sci. 161, 144–66.CrossRefGoogle Scholar
Rau, G. (1978) Carbon-13 depletion in a subalpine lake: carbon flow implications. Science 201, 901–2.CrossRefGoogle Scholar
Reuter, J. H. and Perdue, E. M. (1984) A chemical structural model of early diagenesis of sedimentary humus/proto-kerogens. Mitt. Geol.-Paläont. Inst., Univ. Hamburg 56, 249–62.Google Scholar
Shuman, F. R. and Lorenzen, C. J. (1975) Quantitative degradation of chlorophyll by a marine herbivore. Limnol. Oceanogr. 20, 580–6.CrossRefGoogle Scholar
Skoog, A. and Benner, R. (1997) Aldoses in various size fractions of marine organic matter: implications for carbon cycling. Limnol. Oceanogr. 42, 1803–13.CrossRefGoogle Scholar
Smith, B. N. and Epstein, S. (1971) Two categories of 13C/12C ratios for higher plants. Pl. Physiol. 47, 380–4.CrossRefGoogle Scholar
Sun, M. Y., Aller, R. C. and Lee, C. (1994) Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. J. Mar. Res. 49, 57–80.Google Scholar
Treibs, A. (1934) Chlorophyll und Häminderivate in bituminösen Gesteinen, Erdölen, Erdwäschen und Asphalten. Ann. Chem. 510, 42–62.CrossRefGoogle Scholar
Verardo, D. J., Froelich, P. N. and McIntyre, A. (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyzer. Deep-Sea Res. 37, 157–65.CrossRefGoogle Scholar
Volkman, J. K. (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org. Geochem. 36, 139–59.CrossRefGoogle Scholar
Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J. and Peterson, M. L. (1997) Molecular indicators of diagenetic status in marine organic matter. Geochim. Cosmochim. Acta 61, 5363–9.CrossRefGoogle Scholar
Wakeham, S. G., Pease, T. K. and Benner, R. (2003) Hydroxy fatty acids in marine dissolved organic matter as indicators of bacterial membrane material. Org. Geochem. 34, 857–68.CrossRefGoogle Scholar
Ziegler, R., Blaheta, A., Guha, N. and Schonegge, B. (1988) Enzymatic formation of pheophorbide and pyropheophorbide during chlorophyll degradation in a mutant of Chlorella fusca Shihira et Kraus. Pl. Physiol. 132, 327–32.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×