Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: June 2014

Chapter 10 - The neurovascular unit and possible influences on cerebral small vessel disease

from Section 1 - Classification, pathology, and basic aspects

References

1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
2. Del Zoppo GJ, Sharp FR, Heiss W-D, Albers GW. Heterogeneity in the penumbra. J Cereb Blood Flow Metab 2011;31:1836–1851.
3. del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010;267:156–171.
4. Bär T. The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 1980;59:1–62.
5. Bär T. Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: changes during development and aging. In Cervos-Navarro J, ed. Advances in Neurology, 20th edn. New York, NY: Raven Press; 1978: pp. 1–9.
6. Bär T. Patterns of vascularization in the developing cerebral cortex. In Nugent J and O’Connor M., eds. Ciba Foundation Symposium 100 – Development of the Vascular System. Chichester, UK: John Wiley and Sons; 2008: pp. 20–36.
7. Mabuchi T, Lucero J, Feng A, Koziol JA, del Zoppo GJ. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab 2005;25:257–266.
8. Fenstermacher J, Nakata H, Tajima A, et al. Functional variations in parenchymal microvascular systems within the brain. Magn Reson Med 1991;19:217–220.
9. Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 2000;20:1276–1293.
10. Heiss WD. Experimental evidence of ischemic thresholds and functional recovery. Stroke 1992;23:1668–1672.
11. Heiss WD, Graf R, Wienhard K, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 1994;14:892–902.
12. Zülch K-J. The Cerebral Infarct: Pathology, Pathogenesis, and Computed Tomography. Berlin: Springer-Verlag; 1985: pp. 4–5.
13. Edvinsson L, MacKenzie ET, McCulloch J. General and comparative anatomy of the cerebral circulation. In Edvinsson L, MacKenzie ET, McCulloch J, eds. Cerebral Blood Flow and Metabolism. New York, NY: Raven Press; 1993: pp. 3–39.
14. Edvinsson L, MacKenzie ET, McCulloch J. Cerebral Blood Flow and Metabolism. New York, NY: Raven Press; 1993.
15. Garcion E, Halilagic A, Faissner A, French-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 2004;131:3423–3432.
16. del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2009;158:972–982.
17. del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann NY Acad Sci 2010;1207:46–49.
18. del Zoppo GJ. Toward the neurovascular unit: a journey in clinical translation. 2012 Thomas Willis lecture. Stroke 2013;44:263–269.
19. Spatz M, Bacic F, McCarron RM, et al. Human cerebromicrovascular endothelium: studies in vitro. J Cereb Blood Flow Metab 1989;9:S393.
20. Spatz M, Micic D, Mrsulja BB, Klatzo I. Cerebral microvessels as mediators of cerebral transport. Adv Neurol 1978;20:189–196.
21. Micic D, Swink M, Micic J, Klatzo I, Spatz M. The ischemic and postischemic effect on the uptake of neutral amino acids in isolated cerebral capillaries. Experientia 1993;15:625–626.
22. McCarron RM, Merkel N, Bembry J, Spatz M. Cerebrovascular endothelium in vitro: studies related to blood–brain barrier function. Proceedings of the XIst International Congress of Neuropathy 1991;(Suppl. 4):785–787.
23. Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood–brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 2010;88:1457–1474.
24. Haring H-P, Akamine P, Habermann R, Koziol JA, del Zoppo GJ. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol 1996;55:236–245.
25. Milner R, Hung S, Wang X, Spatz M, del Zoppo GJ. The rapid decrease in astrocyte-associated dystroglycan expression by focal cerebral ischemia is protease-dependent. J Cereb Blood Flow Metab 2008;28:812–823.
26. Milner R, Hung S, Wang X, et al. Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 2008;39:191–197.
27. del Zoppo GJ, Milner R. Integrin–matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 2006;26:1966–1975.
28. Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–185.
29. Osada T, Gu Y-H, Kanazawa M, et al. Interendothelial claudin-5 expression depends upon cerebral endothelial cell–matrix adhesion by β1-integrins. J Cereb Blood Flow Metab 2011;31:1972–1985.
30. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008;121:2115–2122.
31. Pardridge WM. Introduction to the Blood–Brain Barrier. Methodology, Biology and Pathology. Cambridge: Cambridge University Press; 1998.
32. Okada Y, Copeland BR, Mori E, et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 1994;25:202–211.
33. Haring H-P, Berg EL, Tsurushita N, Tagaya M, del Zoppo GJ. E-selectin appears in non-ischemic tissue during experimental focal cerebral ischemia. Stroke 1996;27:1386–1392.
34. Bernstein JJ, Getz R, Jefferson M, Kelemen M. Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain Res 1985;327:135–141.
35. Hurwitz AA, Berman JW, Rashbaum WK, Lyman WD. Human fetal astrocytes induce the expression of blood–brain barrier specific proteins by autologous endothelial cells. Brain Res 1993;625:238–243.
36. Webersinke G, Bauer H, Amberger A, Zach O, Bauer HC. Comparison of gene expression of extracellular matrix molecules in brain microvascular endothelial cells and astrocytes. Biochem Biophys Res Commun 1992;189:877–884.
37. Kaizuka M, Yamabe H, Osawa H, Okumura K, Fujimoto N. Thrombin stimulates synthesis of type IV collagen and tissue inhibitor of metalloproteinase-1 by cultured human mesangial cells. J Am Soc Nephrol 1999;10:1516–1523.
38. Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006;9:260–267.
39. Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006;29:547–553.
40. Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. GLIA 2005;50:287–298.
41. Anderson CM, Nedergaard M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 2003;26:340–344.
42. Wagner S, Tagaya M, Koziol JA, Quaranta V, del Zoppo GJ. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin α6β4 during focal cerebral ischemia/reperfusion. Stroke 1997;28:858–865.
43. Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009;32:160–169.
44. Itoh Y, Suzuki N. Control of brain capillary blood flow. J Cereb Blood Flow Metab 2012;32:1167–1176.
45. Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004;129:877–896.
46. Hawkins BT, Gu YH, Izawa Y, del Zoppo GJ. Disruption of dystroglycan–laminin interactions modulates water uptake by astrocytes. Brain Res 2013.
47. Dore-Duffy P, Katychev A, Wang X, Van BE. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006;26:613–624.
48. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006;443:700–704.
49. Zozulya A, Weidenfeller C, Galla HJ. Pericyte–endothelial cell interaction increases MMP-9 secretion at the blood–brain barrier in vitro. Brain Res 2008;1189:1–11.
50. Thanabalasundaram G, Pieper C, Lischper M, Galla HJ. Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 2010;1347:1–10.
51. Fisher M. Pericyte signaling in the neurovascular unit. Stroke 2009;40:S13–S15.
52. Silver R, Silverman AJ, Vitkovic L, Lederhendler I. Mast cells in the brain: evidence and functional significance. Trends Neurosci 1996;19:25–31.
53. Strbian D, Kovanen PT, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ. An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 2009;41:438–450.
54. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ. Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 2006;26:605–612.
55. Strbian D, Tatlisumak T, Ramadan UA, Lindsberg PJ. Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2007;27:795–802.
56. Tchougounova E, Lundequist A, Fajardo I, et al. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 2005;280:9291–9296.
57. Lohi J, Harvima I, Keski-Oja J. Pericellular substrates of human mast cell tryptase: 72 000 dalton gelatinase and fibronectin. J Cell Biochem 1992;50:337–349.
58. Aloisi F, Ambrosini E, Columba-Cabezas S, Magliozzi R, Serafini B. Intracerebral regulation of immune responses. Ann Med 2001;33:510–515.
59. Aloisi F. Immune function of microglia. GLIA 2001;36:165–179.
60. Mabuchi T, Kitagawa K, Ohtsuki T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 2000;31:1735–1743.
61. Heo JH, Lucero J, Abumiya T, et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 1999;19:624–633.
62. Fukuda S, Fini CA, Mabuchi T, et al. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 2004;35:998–1004.
63. Chang DI, Hosomi N, Lucero J, et al. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia. J Cereb Blood Flow Metab 2003;23:1408–1419.
64. Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207–217.
65. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 2010;31:246–254.
66. Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chicken transplantation chimeras. Dev Biol 1981;84:183–192.
67. Willis CL, Leach L, Clarke GJ, Nolan CC, Ray DE. Reversible disruption of tight junction complexes in the rat blood–brain barrier, following transitory focal astrocyte loss. GLIA 2004;48:1–13.
68. Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in-vivo and in-vitro blood–brain barrier tightness. Brain Res 2009;1284:12–21.
69. Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol 2000;20:29–40.
70. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 2010;468:562–566.
71. Kalaria RN, Stockmeier CA, Harik SI. Brain microvessels are innervated by locus ceruleus noradrenergic neurons. Neurosci Lett 1989;97:203–208.
72. Kalinin S, Feinstein DL, Xu HL, et al. Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. Eur J Neurosci 2006;24:3393–3400.
73. Yarnitsky D, Gross Y, Lorian A, et al. Blood–brain barrier opened by stimulation of the parasympathetic sphenopalatine ganglion: a new method for macromolecule delivery to the brain. J Neurosurg 2004;101:303–309.
74. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5:347–360.
75. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med 2006;354:553–555.
76. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007;10:1369–1376.
77. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991;22:1276–1283.
78. Okada Y, Copeland BR, Fitridge R, Koziol JA, del Zoppo GJ. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 1994;25:1847–1853.
79. Tagaya M, Liu KF, Copeland B, et al. DNA scission after focal brain ischemia. Temporal differences in two species. Stroke 1997;28:1245–1254.
80. Garcia JH, Conger KA. Light and electron-microscopic features of brain ischemia. In Wood JH, ed. Cerebral Blood Flow. Physiologic and Clinical Aspects. New York, NY: McGraw-Hill; 1987: pp. 75–91.
81. Garcia JH, Lowry SL, Briggs L, et al. Brain capillaries expand and rupture in areas of ischemia and reperfusion. In Reivich M, Hurtig HI, eds. Cerebrovascular Diseases. New York, NY: Raven Press; 1983: pp. 169–182.
82. Kwon I, Kim EH, del Zoppo GJ, Heo JH. Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J Neurosci Res 2009;87:668–676.
83. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 2005;39:51–70.
84. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 1995;26:2120–2126.
85. Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 1996;16:1373–1378.
86. Garcia JH, Liu KF, Yoshida Y, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994;144:188–199.
87. Wang X, Yue T-L, Barone FC, et al. Concomitant cortical expression of TNF-α and IL-1β mRNA following transient focal ischemia. Mol Chem Neuropathol 1994;23:103–114.
88. Quistorff B, Chance B, Hunding A. An experimental model of the Krogh tissue cylinder: two dimensional quantitation of the oxygen gradient. Adv Exp Med Biol 1977;94:127–136.
89. del Zoppo GJ. Relationship of neurovascular elements to neuron injury during ischemia. Cerebrovasc Dis 2009;27(Suppl 1):65–76.
90. Tagaya M, Haring H-P, Stuiver I, et al. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab 2001;21:835–846.
91. Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 2001;21:7724–7732.
92. Cheng T, Petraglia AL, Li Z, et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 2006;12:1278–1285.
93. Yamashita T, Kamiya T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab 2009;29:715–725.
94. Barr TL, Latour LL, Lee KY, et al. Blood–brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 2010;41:e123–e128.
95. Montaner J, Alvarez-Sabin J, Molina CA, et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001;32:2762–2667.
96. del Zoppo GJ, Milner R, Mabuchi T, et al. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007;38:646–651.
97. del Zoppo GJ, Frankowski H, Gu YH, et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab 2012;32:919–932.
98. Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012;9:23.
99. Iadecola C. Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci 1998;1:263–265.
100. Raichle ME, Hartman BK, Eichling JO, Sharpe LG. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci USA 1975;72:3726–3730.
101. del Zoppo GJ, Copeland BR, Harker LA, et al. Experimental acute thrombotic stroke in baboons. Stroke 1986;17:1254–1265.
102. Kahle KT, Simard JM, Staley KJ, et al. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 2009;24:257–265.
103. del Zoppo GJ, Poeck K, Pessin MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992;32:78–86.
104. del Zoppo GJ. Bleeding in the brain: amyloid-β may keep clots away. Nat Med 2009;15:1132–1133.
105. Yu F, Kamada H, Niizuma K, Endo H, Chan PH. Induction of MMP-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma 2008;25:184–195.
106. Dencoff JE, Rosenberg GA, Harry GJ. Trimethyltin induces gelatinase B and urokinase in rat brain. Neurosci Lett 1997;228:147–150.
107. Katsu M, Niizuma K, Yoshioka H, et al. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood–brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 2010;30:1939–1950.
108. Copin JC, Merlani P, Sugawara T, Chan PH, Gasche Y. Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol 2008;213:196–201.
109. Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke 2007;38:1044–1049.
110. Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010;88:764–773.
111. Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg 2003;99:65–70.
112. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006;37:1399–1406.
113. Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003;107:598–603.
114. Ames A, Wright LW, Kowada M, Thurston JM, Majors G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968;52:437–453.
115. Sundt TM, Jr., Grant WC, Garcia JH. Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 1969;31:311–322.
116. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 1992;23:712–718.
117. Thomas WS, Mori E, Copeland BR, et al. Tissue factor contributes to microvascular defects following cerebral ischemia. Stroke 1993;24:847–853.
118. Abumiya T, Fitridge R, Mazur C, et al. Integrin α(IIb)β(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke 2000;31:1402–1410.
119. Bostwick JS, Kasiewski CJ, Chu V, et al. Anti-thrombotic activity of RG13965, a novel platelet fibrinogen receptor antagonist. Thromb Res 1996;82:495–507.
120. Wardlaw JM. Blood–brain barrier and cerebral small vessel disease. J Neurol Sci 2010;299:66–71.
121. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:2560–2572.