Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: July 2011

Section 1 - Historical aspects, detection and interpretation

References

1. LovelockCE, MolyneuxAJ, RothwellPM. Change in incidence and aetiology of intracerebral haemorrhage in Oxfordshire, UK, between 1981 and 2006: a population-based study. Lancet Neurol 2007;6:487–93.
2. GreenbergSM, VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
3. CharcotJM, BouchardC. Nouvelles recherches sur la pathogenie de l'hemorrhagie cerebrale. Arch Physiol Norm Pathol 1868;642:110–27.
4. CharcotJM. Clinical Lectures on Senile and Chronic Diseases. London: New Sydenham Society. 1881.
5. FisherCM. Cerebral miliary aneurysms in hypertension. Am J Pathol 1972;66:313–30.
6. TurnerFC. Arteries of the brain from cases of cerebral hemorrhage. Trans Path Soc London 1882;33:96.
7. EppingerH. Pathogenesis, histogenesis and etiology of the aneurysms, including the aneurysm equi verminosum: pathological–anatomical studies. Arch Kiln Chirurg 1887;xxxv(Suppl. 1).
8. EllisAG. The pathogenesis of spontaneous cerebral hemorrhage. Proc Path Soc (Phil) 1909;12:197–212.
9. TurnbullHM. Alterations in arterial structure and their relation to syphilis. Q J Med 1915;viii:201–54.
10. GreenFHK. Miliary aneurysms in the brain. J Pathol Bacteriol 1930;33:71–7.
11. MatuokaS. Studien uber Hirnblutung underweichung. (III Mitteilung). Uber kleine Aneurysmen in den Gehirnen ohne Blutung bezw. Blutungsfreien Hirnpartien. Trans Soc Pathol Jap 1939;29:449–54.
12. MatuokaS. Histopathological studies on the blood vessels in apoplexia cerebri. Proceedings of the 1st International Congress of Neuropathology, Torino, 1952, pp. 222–30.
13. RussellRWR. Observations on intracerebral aneurysms. Brain 1963;86:425–42.
14. ColeFM, YatesP. Intracerebral microaneurysms and small cerebrovascular lesions. Brain 1967;90:759–68.
15. TakebayashiS, KanekoM. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke 1983;14:28–36.
16. WakaiS, NagaiM. Histological verification of microaneurysms as a cause of cerebral haemorrhage in surgical specimens. J Neurol Neurosurg Psychiatry 1989;52:595–9.
17. VonsattelJP, MyersRH, Hedley-WhyteETet al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991;30:637–49.
18. ChallaVR, MoodyDM, BellMA. The Charcot–Bouchard aneurysm controversy: impact of a new histologic technique. J Neuropathol Exp Neurol 1992;51:264–71.
19. MizutaniT, KojimaH, MikiY. Arterial dissections of penetrating cerebral arteries causing hypertensioninduced cerebral haemorrhage. J Neurosurg 2000;93:859–62.
20. FisherCM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol 2003;62:104–7.
21. RosenblumWI. Cerebral hemorrhage produced by ruptured dissecting aneurysm in miliary aneurysm. Ann Neurol 2003;54:376–8.
22. LeeSH, KwonSJ, KimKS, YoonBW, RohJK. Cerebral microbleeds in patients with hypertensive stroke. Topographical distribution in the supratentorial area. J Neurol 2004;251:1183–9.
23. MayerSA, BrunNC, BegtrupKet al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med 2008;358:2127–37.
24. BeitzkeH. Die Rolle der kleinen Aneurysmen bei den Massenblutungen des Gehirns. Verh Dtsch Ges Pathol 1936;29:74–80.
25. VintersHV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18:311–24.
26. KnudsenKA, RosandJ, KarlukD, GreenbergSM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537–9.
27. ScharfJ, BräuherrE, ForstingM, SartorK. Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage. Neuroradiology 1994;36:504–8.
28. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
29. RoobG, FazekasF. Magnetic resonance imaging of cerebral microbleeds. Curr Opin Neurol 2000;13:69–73.
30. GreenbergSM, FinklesteinSP, SchaeferPW. Petechial hemorrhages accompanying lobar hemorrhage: detection by gradient-echo MRI. Neurology 1996;46:1751–4.
31. OffenbacherH, FazekasF, SchmidtRet al. MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 1996;17:573–8.
32. CordonnierC, Al-ShahiSR, WardlawJ. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
33. TanakaA, UenoA, TakayamaY, TakabayashiK. Small haemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke 1999;30:1637–42.
34. SchragM, McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
35. TatsumiS, ShinoharaM, YamamotoT. Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc Dis 2008;26:142–6.
36. ColeFM, YatesPO. The occurrence and significance of intracerebral micro-aneurysms. J Pathol Bacteriol 1967;93:393–411.

References

1. StankiewiczJ, PanterSS, NeemaMet al. Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics 2007;4:371–86.
2. SchenckJF. Magnetic resonance imaging of brain iron. J Neurolog Sci 2003;207:99–102.
3. SchenckJF, ZimmermanEA. High-field magnetic resonance imaging of brain iron: birth of a biomarker? NMR Biomed 2004;17:433–45.
4. ThulbornKR, SorensenAG, KowallNWet al. The role of ferritin and hemosiderin in the MR appearance of cerebral hemorrhage: a histopathologic biochemical study in rats. AJR Am J Roentgenol 1990;154:1053–9.
5. SchragM, McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
6. TatsumiS, ShinoharaM, YamamotoT. Direct comparison of histology of microbleeds with postmortem MR images: a case report. Cerebrovasc Dis 2008;26:142–6.
7. BrooksRA, VymazalJ, GoldfarbRBet al. Relaxometry and magnetometry of ferritin. Magn Reson Med 1998;40:227–35.
8. VymazalJ, BrooksRA, BaumgarnerCet al. The relation between brain iron and NMR relaxation times: an in vitro study. Magn Reson Med 1996;35:56–61.
9. WrightP, MouginO, TotmanJet al. Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE, and MPRAGE: results and optimization. Magn Reson Mat Phys Biol Med 2008;21:121–30.
10. HaackeEM, ChengNY, HouseMJet al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25.
11. BosC, ViergeverMA, BakkerCJ. On the artifact of a subvoxel susceptibility deviation in spoiled gradient-echo imaging. Magn Reson Med 2003;50:400–4.
12. KoortsAM, ViljoenM. Ferritin and ferritin isoforms. I: Structure–function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 2007;113:30–54.
13. GreenbergSM, VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
14. CordonnierC, Al-ShahiSalman R, WardlawJ. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
15. FiehlerJ. Cerebral microbleeds: old leaks and new haemorrhages. Int J Stroke 2006;1:122–30.
16. ScharfJ, BräuherrE, ForstingMet al. Significance of haemorrhagic lacunes on MRI in patients with hypertensive cerebrovascular disease and intracerebral haemorrhage. Neuroradiology 1994;36:504–8.
17. LiangL, KorogiY, SugaharaTet al. Detection of intracranial hemorrhage with susceptibility-weighted MR sequences. AJNR Am J Neuroradiol 1999;20:1527–34.
18. HaackeEM, XuY, ChengYNet al. Susceptibilityweighted imaging (SWI). Magn Reson Med 2004;52:612–18.
19. RoobG, SchmidtR, KapellerPet al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999;52:991.
20. TsushimaY, TanizakiY, AokiJet al. MR detection of microhemorrhages in neurologically healthy adults. Neuroradiology 2002;44:31–6.
21. HoritaY, ImaizumiT, NiwaJet al. [Analysis of dot-like hemosiderin spots using brain dock system.] No Shinkei Geka 2003;31:263–7.
22. JeerakathilT, WolfPA, BeiserAet al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 2004;35:1831–5.
23. SveinbjornsdottirS, SigurdssonS, AspelundTet al. Cerebral microbleeds in the population based AGES–Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatr 2008;79:1002–6.
24. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14.
25. ScheidR, OttDV, RothHet al. Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. J Neurotrauma 2007;24:1811–16.
26. StehlingC, WerschingH, KloskaSPet al. Detection of asymptomatic cerebral microbleeds: a comparative study at 1.5 and 3.0 T. Acad Radiol 2008;15:895–900.
27. NandigamR, ViswanathanA, DelgadoPet al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–43.
28. VernooijM, IkramMA, WielopolskiPAet al. Cerebral microbleeds: accelerated 3D T2*-weighted GRE MR imaging versus conventional 2D T2*-weighted GRE MR imaging for detection. Radiology 2008;248:272–7.
29. TatsumiS, AyakiT, ShinoharaMet al. Type of gradient recalled-echo sequence results in size and number change of cerebral microbleeds. AJNR Am J Neuroradiol 2008;29:e13.
30. AkterM, HiraiT, HiaiYet al. Detection of hemorrhagic hypointense foci in the brain on susceptibility-weighted imaging: clinical and phantom studies. Acad Radiol 2007;14:1011–19.
31. ReichenbachJR, VenkatesanR, YablonskiyDAet al. Theory and application of static field inhomogeneity effects in gradient-echo imaging. J Magn Reson Imaging 1997;7:266–79.
32. GregoireSM, WerringDJ, ChaudharyUJet al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010;65:391–4.
33. KikutaK, TakagiY, NozakiKet al. Asymptomatic microbleeds in moyamoya disease: T2*-weighted gradient-echo magnetic resonance imaging study. J Neurosurg 2005;102:470–5.
34. AtlasSW, MarkAS, GrossmanRIet al. Intracranial hemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 1988;168:803–7.
35. MoriN, MikiY, KikutaKet al. Microbleeds in moyamoya disease: susceptibility-weighted imaging versus T2*-weighted imaging at 3 Tesla. Invest Radiol 2008;43:574–9.
36. AyazM, BoikovAS, HaackeEMet al. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 2010;31:142–8.
37. HaackeEM, MakkiM, GeYet al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 2009;29:537–44.
38. OggRJ, LangstonJW, HaackeEMet al. The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 1999;17:1141–8.
39. NeelavalliJ, ChengYN, JiangJet al. Removing background phase variations in susceptibilityweighted imaging using a fast, forward-field calculation. J Magn Reson Imaging 2009;29:937–48.
40. YaoB, LiT, GelderenPVet al. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 2009;44:1259–66.
41. DuynJH, van GelderenP, LiTet al. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci USA 2007;104:11796–801.

References

1. HaackeE, SongL, YablonskiyDA. In vivo validation of the bold mechanism: a review of signal changes in gradient echo functional MRI in the presence of flow. Int J Imaging Syst Technol 1995;6:153–63.
2. ReichenbachR, VenkatesanR, SchillingerDJ, KidoDK, HaackeEM. Small vessels deoxyhemoglobin in the human MR venography as an intrinsic contrast agent. Radiology 1997;204:272–7.
3. WangY, YuY, LiDet al. Artery and vein separation using susceptibility-dependent phase in contrastenhanced MRA. Radiology 2000;670:661–70.
4. HaackeEM, XuY, ChengYN, ReichenbachR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;618:612–18.
5. AyazM, BoikovAS, HaackeEM, KidoDK, KirschWM. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 2010;31:142–8.
6. FanYH, ZhangL, LamWWet al. Cerebral microbleeds as a risk factor for subsequent intracerebral hemorrhages among patients with acute ischemic stroke. Stroke 2003;34:2459–62.
7. ImaizumiT, HoritaY, HashimotoY, NiwaJ. Dotlike hemosiderin spots on T2*-weighted magnetic resonance imaging as a predictor of stroke recurrence: a prospective study. J Neurosurg 2004;101:915–20.
8. GreenbergSM, EngJA, NingMet al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–20.
9. GreenbergSM, VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
10. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14.
11. WalkerDA, BroderickDF, KotsenasAL. Routine use of GRE MRI to screen for cerebral amyloid angiopathy in elderly patients. AJR Am J Roentgenol 2004;182:1547–50.
12. RoobG, SchmidtR, KapellerPet al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999;52:991–4.
13. GaaschJA, LockmanPR, GeldenhuysWJ, AllenÆD, SchyfCJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 2007;32:1196–1208.
14. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on GRE T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
15. GregoireSM, WerringDJ, ChaudharyUJet al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010;65:391–4.
16. NandigamR, ViswanathanA, DelgadoPet al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–43.
17. TongKA, AshwalS, HolshouserBAet al. Radiology hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 2003;227:332–9.
18. CordonnierC, PotterGM, JacksonCAet al. Development of the brain observer microbleed scale (BOMBS). Stroke 2009;40:94–9.
19. GregoireSM, ChaudharyUJ, BrownMMet al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759–66.
20. ImaizumiT, HonmaT, HoritaYet al. Clinical investigation dynamics of dot-like hemosiderin spots on T2*-weighted MRIs associated with stroke recurrence. J Neuroimaging 2007;17:204–10.
21. GreenbergSM, NandigamRN, DelgadoPet al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke 2009;40:2382–6.
22. van RoodenSV, Maat-SchiemanML, NabuursRJet al. Cerebral amyloidosis: postmortem detection with human 7.0-T MR imaging system. Radiology 2009;253:788–96.
23. ChamberlainR, ReyesD, CurranGLet al. Comparison of amyloid plaque contrast generated by T2-weighted, T* imaging methods in transgenic mouse models of Alzheimer's disease. Magn Reson Med 2009;253:1158–64.
24. HaackeEM, AyazM, KhanAet al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 2007;264:256–64.
25. XuY, HaackeEM. The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Imaging 2006;24:155–60.
26. SchragM, McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
27. WuZ, MittalS, KishKet al. Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging 2009;182:177–82.
28. WaldLL, FischlB, RosenBR. High-resolution and microscopic imaging at high field. In RobitailleP-M, BerlinerL (eds.) Ultra High Field Magnetic Resonance Imaging. New York: Springer, 2006, pp. 343–71.
29. GreenbergSM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 1998;51:690–4.
30. GreenbergSM, O’DonnellHC, SchaeferPW, Kraft ME. New hemorrhages: potential marker of progression in cerebral amyloid angiopathy. Neurology 1999;53:1135.
31. LiY, ChenP, Haimovitz-FriedmanA, ReillyRM, WongCS. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res 2003;63:5950–6.
32. NguyenV, GaberMW, SontagcMR, KianiaMF. Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 2010;154:531–6.
33. BitzerM, TopkaH. Progressive cerebral occlusive disease after radiation therapy. Stroke 1995;26:131–6.
34. DimitrievichG, Fischer-DzogaK, GriemM. Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res 1984;99:511–35.
35. ShobhaN, SmithEE, DemchukAM, WeirNU. Small vessel infarcts and microbleeds associated with radiation exposure. Can J Neurol Sci 2009;36:376–8.
36. YoshiiY, PhillipsTL. Late vascular effects of whole brain X-irradiation in the mouse. Acta Neurochirurg 1982:84:87–102.
37. BrownWR, BlairRM, MoodyDMet al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurolog Sci 2007;257:67–71.
38. McAuley G, Schrag M, SiposPet al. Quantification of punctate iron sources using magnetic resonance phase. Magn Reson Med 2010;63:106–15.
39. ChengY, NeelavalliJ, HaackeE. Limitations of calculating field distributions and magnetic susceptibilities in MRI using a Fourier based method. Physics Med Biol 2009;54:1169–98.
40. de RochefortL, BrownR, PrinceM, WangY. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med 2008;60:1003–9.
41. HaackeEM, ChengNY, HouseMJet al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25.
42. SalomirR, SennevilleB, MoonenC. A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn Reson 2003;198:26–34.
43. DevilleG, BernierM, DelrieuxJ. NMR multiple echoes observed in solid 3He. Phys Rev 1979;19:5666–88.
44. MarquesJP, BowtellR. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson 2005;25:65–78.
45. LaoZ, ShenD, LiuDet al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine 1. Acad Radiol 2008;15:300–13.
46. PasseroS, BurgalassiL, D’AndreaP. Recurrence of bleeding in patients with primary intracerebral hemorrhage. Radiology 2009;253:788–96.
47. HaackeEM, ReichenbachJR (eds.) Susceptibility Weighted Imaging: Basic Concepts and Clinical Applications. Wiley-Blackwell, 2011.
48. HaackeEM, DelPropostoZS, Chaturvedi S et al. Imaging Cerebral Amyloid Angiopathy with Susceptibility-Weighted Imaging. AJNR 2007;28:316–317.

References

1. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
2. SchragM, McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
3. GreenbergSM, VernooijMW, CordonnierC, ViswanathanA, Al-ShahiSR, WarachSet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
4. CordonnierC, Al-ShahiSR, WardlawJ. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
5. GreenbergSM, NandigamRN, DelgadoPet al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke 2009;40:2382–6.
6. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14.
7. KnudsenKA, RosandJ, KarlukD, GreenbergSM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537–9.
8. RosandJ, MuzikanskyA, KumarAet al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 2005;58:459–62.
9. LeeSH, RyuWS, RohJK. Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology 2009;72:171–6.
10. RosandJ, HylekEM, O’DonnellHC, GreenbergSM. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study. Neurology 2000;55:947–51.
11. WongKS, ChanYL, LiuJY, GaoS, LamWW. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology 2003;60:511–13.
12. GregoireSM, JagerHR, YousryTAet al. Brain microbleeds as a potential risk factor for antiplatelet-related intracerebral haemorrhage: hospital-based, case-control study. J Neurol Neurosurg Psychiatry 2010;81:679–84.
13. BiffiA, HalpinA, TowfighiAet al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 2010;75:693–8.
14. WerringDJ, FrazerDW, CowardLJet al. Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain 2004;127:2265–75.
15. TangWK, ChenYK, LuJYet al. Microbleeds and post-stroke emotional lability. J Neurol Neurosurg Psychiatry 2009;80:1082–6.
16. ViswanathanA, GodinO, JouventEet al. Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging 2010;31:1629–36.
17. AyazM, BoikovAS, HaackeEM, KidoDK, KirschWM. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 2010;31:142–8.
18. HachinskiVC, PotterP, MerskeyH. Leuko-araiosis. Arch Neurol 1987;44:21–3.
19. ScheltensP, ErkinjuntiT, LeysDet al. White matter changes on CT and MRI: an overview of visual rating scales. European Task Force on Age-Related White Matter Changes. Eur Neurol 1998;39:80–9.
20. GregoireSM, ChaudharyUJ, BrownMMet al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759–66.
21. HennemanWJ, SluimerJD, CordonnierCet al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke 2009;40:492–8.
22. NandigamRN, ViswanathanA, DelgadoPet al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–43.
23. IgaseM, TabaraY, IgaseKet al. Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J 2009;73:530–3.
24. StaekenborgSS, KoedamEL, HennemanWJet al. Progression of mild cognitive impairment to dementia: contribution of cerebrovascular disease compared with medial temporal lobe atrophy. Stroke 2009;40:1269–74.
25. HenskensLH, van OostenbruggeRJ, KroonAAet al. Detection of silent cerebrovascular disease refines risk stratification of hypertensive patients. J Hypertens 2009;27:846–53.
26. KirschW, McAuleyG, HolshouserBet al. Serial susceptibility weighted MRI measures brain iron and microbleeds in dementia. J Alzheimer Dis 2009;17:599–609.
27. van RoodenS, van der GrondJ, van den BoomRet al. Descriptive analysis of the Boston crtieria applied to a Dutch-type cerebral amyloid angiopathy population. Stroke 2009;40:3022–7.
28. NishikawaT, UebaT, KajiwaraMet al. Cerebral microbleeds predict first-ever symptomatic cerebrovascular events. Clin Neurol Neurosurg 2009;111:825–8.
29. ChoAH, LeeSB, HanSJet al. Impaired kidney function and cerebral microbleeds in patients with acute ischemic stroke. Neurology 2009;73:1645–8.
30. ShimaH, IshimuraE, NaganumaTet al. Cerebral microbleeds in predialysis patients with chronic kidney disease. Nephrol Dial Transplant 2010;25:1554–59.
31. StaalsJ, van OostenbruggeRJ, KnottnerusILet al. Brain microbleeds relate to higher ambulatory blood pressure levels in first-ever lacunar stroke patients. Stroke 2009:40:3264–8.
32. NishikawaT, UebaT, KajiwaraM, MiyamatsuN, YamashitaK. Cerebral microbleeds in patients with intracerebral hemorrhage are associated with previous cerebrovascular diseases and white matter hyperintensity, but not with regular use of antiplatelet agents. Neurol Med Chir (Tokyo) 2009;49:333–9.
33. LimJB, KimE. Silent microbleeds and old hematomas in spontaneous cerebral hemorrhages. J Korean Neurosurg Soc 2009;46:38–44.
34. SunJ, SooYO, Man LamWWet al. Different distribution patterns of cerebral microbleeds in acute ischemic stroke patients with and without hypertension. Eur Neurol 2009;62:298–303.
35. JeonSB, KwonSU, ChoAHet al. Rapid appearance of new cerebral microbleeds after acute ischemic stroke. Neurology 2009;73:1638–44.
36. KleinI, IungB, LabreucheJ for the Image Study Group. Cerebral microbleeds are frequent in infective endocarditis. A case–control study. Stroke 2009;40:3461–5.
37. OrkenDN, KenangilG, UysalE, FortaH. Cerebral microbleeds in ischemic stroke patients on warfarin treatment. Stroke 2009;40:3638–40.
38. GoosJD, KesterMI, BarkhofFet al. Patients with Alzheimer disease with multiple microbleeds. Relation with cerebrospinal fluid biomarkers and cognition. Stroke 2009;40:3455–60.
39. ParkJH, ParkSW, KangSHet al. Detection of traumatic cerebral microbleeds by susceptibilityweighted image of MRI. J Korean Neurosurg Soc 2009;46:365–9.
40. CordonnierC, PotterGM, JacksonCAet al. Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009;40:94–9.
41. SehgalV, DelpropostoZ, HaackeEMet al. Clinical applications of neuroimaging with susceptibilityweighted imaging. J Magn Reson Imaging 2005;22:439–50.
42. SeghierML, KolankoMA, LeffAPet al. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images. PLoS One 2011;6:e0017547.

References

1. GreenbergSM, VernoojiMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
2. CordonnierC, Al-ShahiSalman R, WardlawJM. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130: 1988–2003.
3. CordonnierC, PotterGM, JacksonCAet al. Improving interrater agreement about brain microbleeds: development of the Brain Observer MicroBleed Scale (BOMBS). Stroke 2009;40: 94–9.
4. GregoireSM, ChaudaryUJ, BrownMMet al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759–66.
5. CasanovaMF, AraqueJM. Mineralization of the basal ganglia: implications for neuropsychiatry, pathology and neuroimaging. Psychiatry Res 2003;121:59–87.
6. JeonSB, KangDW. Cerebral air emboli on T2-weighted gradient echo magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2007;78:871.
7. AlmansoriM, NaikS, AhmedSN. Magnetic susceptibility in a patient with a metallic heart valve. Pak J Neurol Sci 208;3:40–1.
8. TsushimaY, EndoK. Hypointensities in the brain on T2*-weighted gradient echo magnetic resonance imaging. Curr Probl Diagn Radiol 2006;35:140–50.
9. WerringDJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2006;17:1–11.
10. HortobagyiT, Al-SarrajS. The significance of diffuse axonal injury: how to diagnose it and what does it tell us? Adv Clin Neurosci Rehabil 2008;8:16–18.
11. ScheidR, PreulC, GruberOet al. Diffuse axonal injury associated with chronic traumatic brain injury: evidence from T2*-weighted gradient-echo imaging at 3 T. AJNR Am J Neuroradiol 2003;24:1049–56.
12. ClatterbuckRE, EberhartCG, CrainBJ, RigamontiD. Ultrastructural and immunocytochemical evidence that an incompetent blood–brain barrier is related to the pathophysiology of cavernous malformations. J Neurol Neurosurg Psychiatry 2001;71:188–92.
13. RigamontiD, DrayerBP, JohnsonPCet al. The MRI appearance of cavernous malformations (angiomas). J Neurosurgery 1987;67:518–24.
14. ZabramaskiJM, WascherTM, SpetzlerRF. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurgery 1994;80:422–32.
15. ClatterbuckRE, ElmaciI, RigamontiD. The nature and fate of punctate (type IV) cavernous malformations. Neurosurgery 2001;49:26–30.
16. BlitsteinMK, TungGA. MRI of cerebral microhaemorrhages. Am J Radiol 2007;189:720–5.
17. HaackeEM, XuY, ChengYC, ReichenbachJR. Susceptibility- weighted imaging (SWI). Magn Reson Med 2004;52:612–18.
18. ThomasB, SomasundaramS, ThamburajKet al. Clinical applications of susceptibility weighted MR imaging of the brain: a pictorial review. Neuroradiology 2008;50:105–16.