Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2010
  • Online publication date: July 2014

9 - Comparative ecomorphology and biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia



Ecological morphology (ecomorphology) is a powerful tool for exploring diversity, ecology, and evolution in concert (Wainwright, 1994, and references therein). Alpha taxonomy and diversity measures based on taxon counting are the most commonly used tools for understanding long-term evolutionary patterns and provide the foundation for all other biological studies above the organismal level. However, this provides insight into only a single dimension of a multidimensional system. As a complement, ecomorphology allows us to describe the diversification and evolution of organisms in terms of their morphology and ecological role. This is accomplished by using quantitative and semi-quantitative characterisation of features of organisms that are important, for example, in niche partitioning or resource utilisation. In this context, diversity is commonly referred to as disparity (Foote, 1993). The process of speciation, for example, can be better understood and hypotheses more rigorously tested if it can be quantitatively demonstrated whether a new species looks very similar to the original taxon or whether its morphology has changed in a specific direction. For example, if a new species of herbivore evolves with increased grinding area in the cheek dentition, it can either occupy the same area of morphospace as previously existing species, suggesting increased resource competition, or it can occupy an area of morphospace that had previously been empty, suggesting evolution into a new niche. This example illustrates a situation where speciation did not just increase the number of taxa, but also morphologic and ecologic diversity. In turn, this quantitative information can be used to test speciation hypotheses in the extant fauna as well as the fossil record suggested by previous studies using molecular data and habitat reconstruction (Gaubert and Begg, 2007).

Damuth, J. D. (1992). Taxon-free characterization of animal communities. In Terrestrial Ecosystems through Time, ed. Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D. and Wing, S. L.. Chicago, IL:University of Chicago Press, pp. 183–203.
Damuth, J. and MacFadden, B. J., eds. (1990). Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge: Cambridge University Press, 397.
Flynn, J. J. and Nedbal, M. A. (1998). Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. Molecular Phylogenetics and Evolution, 9, 414–26.
Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J. and Nedbal, M. A. (2005). Molecular phylogeny in the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54, 317–37.
Foote, M. (1993). Contributions of individual taxa to overall morphological disparity. Paleobiology, 19, 403–19.
Foote, M. (1994). Morphological disparity in Ordovician–Devonian crinoids and the early saturation of morphological space. Paleobiology, 20, 320–44.
Foote, M. (1997). The evolution of morphological diversity. Annual Review of Ecology and Systematics, 28, 129–52.
Friscia, A. R., Van Valkenburgh, B. and Biknevicius, A. R. (2007). An ecological analysis of extant small carnivorans. Journal of Zoology, 272, 82–100.
Gaubert, P. and Begg, C. M. (2007). Re-assessed molecular phylogeny and evolutionary scenario within genets (Carnivora, Viverridae, Genettinae). Molecular Phylogenetics and Evolution, 44, 920–27.
Gaubert, P. and Cordeiro-Estrela, P. (2006). Phylogenetic systematics and tempo of evolution of the Viverrinae (Mammalia, Carnivora, Viverridae) within feliformians: implications for faunal exchanges between Asia and Africa. Molecular Phylogenetics and Evolution, 41, 266–78.
Gaubert, P. and Veron, G. (2003). Exhaustive sample set among Viverridae reveals the sister-group of felids: the linsangs as a case of extreme morphological convergence within Feliformia. Proceedings of the Royal Society, London Series B, 270, 2523–30.
Gaubert, P., Veron, G. and Tranier, M. (2002). Genets and ‘genet-like’ taxa (Carnivora, Viverrinae): phylogenetic analysis, systematics and biogeographic implications. Zoological Journal of the Linnean Society, 134, 317–34.
Gaubert, P., Fernandes, C. A., Bruford, M. W. and Veron, G. (2004a). Genets (Carnivora, Viverridae) in Africa: an evolutionary synthesis based on cytochrome b sequences and morphological characters. Biological Journal of the Linnean Society, 81, 589–610.
Gaubert, P., Tranier, M., Delmas, A.-S., Colyn, M. and Veron, G. (2004b). First molecular evidence for reassessing phylogenetic affinities between genets (Genetta) and the enigmatic genet-like taxa Osbornictis, Poiana, and Prionodon (Carnivora, Viverridae). Zoologica Scripta, 32, 117–29.
Gaubert, P., Wozencraft, W. C., Cordeiro-Estrela, P. and Veron, G. (2005). Mosaics of convergences and noise in morphological phylogeneties: what's in a viverrid-like carnivoran?Systematic Biology, 54, 865–94.
Gregory, W. K. and Hellman, M. (1939). On the evolution and major classification of the civets (Viverridae) and allied fossil and recent Carnivora: a phylogenetic study of the skull and dentition. Proceedings of the American Philosophical Society, 81, 309–92.
Hunt, R. M.. (1974). The auditory bulla in Carnivora: an anatomical basis for reappraisal of carnivore evolution. Journal of Morphology, 143, 21–76.
Hunt, R. M.. (1996). Basicranial anatomy of the giant viverrid from ‘E’ Quarry, Langebaanweg, South Africa. In Palaeoecology and Palaeoenvironments of Late Cenozoic Mammals: Tributes to the Career of C. S. (Rufus) Churcher, ed. Stewart, K. M. and Seymour, K. L.. Toronto: University of Toronto Press, pp. 588–97.
Kretzoi, M. and Fejfar, O. (1982). Viverriden (Carnivora, Mammalia) im europäischen Altpleistozän. Zeitschrift für geologische Wissenschaften, 10, 979–95.
Lupia, R. (1999). Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology, 25, 1–28.
Owen-Smith, R. N. (1988). Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge: Cambridge University Press, 369 pp.
Patou, M.-L., Debruyne, R., Jennings, A., Zubaid, A., Rovie-Ryan, J. J. and Veron, G. (2008). Phylogenetic relationships of the Asian palm civets (Hemigalinae & Paradoxurinae, Viverridae, Carnivora). Molecular Phylogenetics and Evolution, 47, 883–92.
Perez, M., Li, B., Tillier, A., Cruaud, A., and Veron, G. (2006). Systematic relationships of the bushy-tailed and black-footed mongooses (genus Bdeogale, Herpestidae, Carnivora) based on molecular, chromosomal and morphological evidence. Journal of Zoological Systematics, 44, 251–59.
Radinsky, L. B. (1981a). Evolution of skull shape in carnivores 1. Representative modern carnivores. Biological Journal of the Linnean Society, 15, 369–88.
Radinsky, L. B. (1981b). Evolution of skull shape in carnivores 2. Additional modern carnivores. Biological Journal of the Linnean Society, 16, 337–55.
Radinsky, L. B. (1982). Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families. Paleobiology, 8(3), 177–95.
Ray, J. C. (1995). Civettictis civetta. Mammalian Species, 488, 1–7.
Van Valkenburgh, B. (1988). Trophic diversity in past and present guilds of large predatory mammals. Paleobiology, 14, 155–73.
Van Valkenburgh, B. (1989). Carnivore dental adaptations and diet: a study of trophic diversity within guilds. In Carnivore Behavior, Ecology and Evolution, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 410–36.
Veron, G. and Catzeflis, F. M. (1993). Phylogenetic relationships of the endemic Malagasy carnivore Cryptoprocta ferox (Aeluruidea): DNA/DNA hybridization experiments. Journal of Mammalian Evolution, 1, 169–85.
Veron, G. and Heard, S. (2000). Molecular systematics of the Asiatic Viverridae (Carnivora) inferred from mitochondrial cytochrome b sequence analysis. Journal of Zoological Systematics and Evolutionary Research, 38, 209–17.
Veron, G., Colyn, M., Dunham, A. E., Taylor, P. and Gaubert, P. (2004). Molecular systematics and origin of sociality in mongooses (Herpestidae, Carnivora). Molecular Phylogenetics and Evolution, 30, 582–98.
Wainwright, P. C. (1994). Functional morphology as a tool in ecological research. In Ecological Morphology: Integrative Organismal Biology, ed. Wainwright, P. C. and Reilly, S. M.. Chicago, IL: The University of Chicago Press, pp. 42–59.
Werdelin, L. (1996). Carnivoran ecomorphology: a phylogenetic perspective. In Carnivore Behavior, Ecology, and Evolution. Volume 2, ed. Gittleman, J. L.. Ithaca, NY: Cornell University Press, pp. 582–624.
Werdelin, L. (2003). Mio-Pliocene Carnivora from Lothagam, Kenya. In Lothagam: The Dawn of Humanity in Eastern Africa, ed. Leakey, M. G. and Harris, J. M.. New York, NY: Columbia University Press, pp. 261–314.
Werdelin, L. and Lewis, M. E. (2005). Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zoological Journal of the Linnean Society, 144, 121–44.
Werdelin, L. and Peigné, S. (2010). Carnivora. In Cenozoic Mammals of Africa, ed. Werdelin, L. and Sanders, W. J.. Berkeley, CA: University of California Press, pp. 609–63.
Wesley-Hunt, G. D. (2005). The morphological diversification of carnivores in North America. Paleobiology, 31, 35–55.
Wozencraft, W. C. (1993). Order Carnivora. In Mammal Species of the World — A Taxonomic and Geographic Reference, ed. Wilson, D. E. and Reeder, D. M.. Washington, DC: Smithsonian Institution Press, pp. 279–348.
Yoder, A. D., Burns, M. M., Zehr, S., et al. (2003). Single origin of Malagasy Carnivora from an African ancestor. Nature, 421, 734–37.