Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T23:41:52.007Z Has data issue: false hasContentIssue false

1 - Purification and characterization of cancer stem cells

from SECTION I - CHARACTERIZATION OF CANCER STEM CELLS

Published online by Cambridge University Press:  15 December 2009

William L. Farrar
Affiliation:
National Cancer Institute at Frederick, National Institutes of Health
Get access

Summary

The processes underlying the etiology of cancer have been the fodder for several theories for a century (for a discussion of the earliest theories, see the subsequent discussion and previous studies). Central to all these theories is the cell of origin for the transformation from a normal to a cancerous cell. The prevailing hypothesis, until recent years, was that any cell that had acquired multiple genetic hits could give rise to a tumor. The cancer stem cell hypothesis posits that only a small subset of cells, termed tumor-initiating cells or cancer stem cells (CSCs), is capable of giving rise to and maintaining tumors. Therefore all CSCs must display several characteristics: they must be the only cells that are capable of giving rise to a tumor (tumorigenic), they must be able to maintain the population of tumorigenic cells (self-renewal), and they must be able to give rise to the heterogeneous cells composing the entire tumor (pluripotency). When a CSC is transplanted into an immunocompromised mouse, self-renewal and pluripotency are vital for the formation of a tumor that recapitulates the original (reviewed by Wang and Dick).

HISTORY OF CANCER STEM CELLS (CSCs)

Tumors are masses containing heterogeneous populations of cells with different biological characteristics. Although there has been a marked increase in the number of publications regarding CSCs in the past 14 years, the notion that cancer cells have properties reminiscent of stem cells is not a new theory.

Type
Chapter
Information
Cancer Stem Cells , pp. 1 - 14
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bignold, L.P., Coghlan, B.L., and Jersmann, H.P.Hansemann, Boveri, chromosomes and the gametogenesis-related theories of tumours, Cell Biol. Int., 30: 640–644, 2006.CrossRefGoogle ScholarPubMed
Sell, S.Stem cell origin of cancer and differentiation therapy, Crit. Rev. Oncol. Hematol., 51: 1–28, 2004.CrossRefGoogle ScholarPubMed
Knudson, A.G., Strong, L.C., and Anderson, D.E.Heredity and cancer in man, Prog. Med. Genet., 9: 113–158, 1973.Google ScholarPubMed
Wang, J.C., and Dick, J.E.Cancer stem cells: lessons from leukemia, Trends Cell Biol., 15: 494–501, 2005.CrossRefGoogle ScholarPubMed
Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L.Stem cells, cancer, and cancer stem cells, Nature, 414: 105–111, 2001.CrossRefGoogle ScholarPubMed
Huntly, B.J., and Gilliland, D.G.Leukaemia stem cells and the evolution of cancer-stem-cell research, Nat. Rev. Cancer, 5: 311–321, 2005.CrossRefGoogle ScholarPubMed
Southam, C.M., and Brunschwig, A.Quantitative studies of autotransplantation of human cancer, Cancer, 14: 971–978, 1961.3.0.CO;2-O>CrossRefGoogle Scholar
Bruce, W.R., and Gaag, H.ADE quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo, Nature, 199: 79–80, 1963.CrossRefGoogle Scholar
Hamburger, A.W., and Salmon, S.E.Primary bioassay of human tumor stem cells, Science, 197: 461–463, 1977.CrossRefGoogle ScholarPubMed
Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature, 367: 645–648, 1994.CrossRefGoogle ScholarPubMed
Al-Hajj, M., Wicha, M.S., Hernandez, A., Morrison, S.J., and Clarke, M.F.Prospective identification of tumorigenic breast cancer cells, Proc. Natl. Acad. Sci. U. S. A., 100: 3983–3988, 2003.CrossRefGoogle ScholarPubMed
Goodell, M.A., Brose, K., Paradis, G., Conner, A.S., and Mulligan, R.C.Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo, J. Exp. Med., 183: 1797–1806, 1996.CrossRefGoogle ScholarPubMed
Wulf, G.G., Wang, R.Y., Kuehnle, I., Weidner, D., Marini, F., Brenner, M.K., Andreeff, M., and Goodell, M.A.A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia, Blood, 98: 1166–1173, 2001.CrossRefGoogle ScholarPubMed
Feuring-Buske, M., and Hogge, D.E.Hoechst 33342 efflux identifies a subpopulation of cytogenetically normal CD34+CD38− progenitor cells from patients with acute myeloid leukemia, Blood, 97: 3882–3889, 2001.CrossRefGoogle ScholarPubMed
Szotek, P.P., Pieretti-Vanmarcke, R., Masiakos, P.T., Dinulescu, D.M., Connolly, D., Foster, R., Dombkowski, D., Preffer, F., Maclaughlin, D.T., and Donahoe, P.K.Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness, Proc. Natl. Acad. Sci. U. S. A., 103: 11154–11159, 2006.CrossRefGoogle ScholarPubMed
Chiba, T., Kita, K., Zheng, Y.W., Yokosuka, O., Saisho, H., Iwama, A., Nakauchi, H., and Taniguchi, H.Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties, Hepatology, 44: 240–251, 2006.CrossRefGoogle ScholarPubMed
Hirschmann-Jax, C., Foster, A.E., Wulf, G.G., Nuchtern, J.G., Jax, T.W., Gobel, U., Goodell, M.A., and Brenner, M.K.A distinct “side population” of cells with high drug efflux capacity in human tumor cells, Proc. Natl. Acad. Sci. U. S. A., 101: 14228–14233, 2004.CrossRefGoogle ScholarPubMed
Setoguchi, T., Taga, T., and Kondo, T.Cancer stem cells persist in many cancer cell lines, Cell Cycle, 3: 414–415, 2004.CrossRefGoogle ScholarPubMed
Shen, G., Shen, F., Shi, Z., Liu, W., Hu, W., Zheng, X., Wen, L., and Yang, X.Identification of cancer stem-like cells in the C6 glioma cell line and the limitation of current identification methods, In Vitro Cell Dev. Biol. Anim., 44: 280–289, 2008.CrossRefGoogle ScholarPubMed
Ho, M.M., Ng, A.V., Lam, S., and Hung, J.Y.Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells, Cancer Res., 67: 4827–4833, 2007.CrossRefGoogle ScholarPubMed
Mitsutake, N., Iwao, A., Nagai, K., Namba, H., Ohtsuru, A., Saenko, V., and Yamashita, S.Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively, Endocrinology, 148: 1797–1803, 2007.CrossRefGoogle Scholar
Wang, J., Guo, L.P., Chen, L.Z., Zeng, Y.X., and Lu, S.H.Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line, Cancer Res., 67: 3716–3724, 2007.CrossRefGoogle ScholarPubMed
Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., and Tang, D.G.Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic, Cancer Res., 65: 6207–6219, 2005.Google ScholarPubMed
Goodell, M.A., Kinney-Freeman, S., and Camargo, F.D.Isolation and characterization of side population cells, Methods Mol. Biol., 290: 343–352, 2005.Google ScholarPubMed
Zhou, S., Morris, J.J., Barnes, Y., Lan, L., Schuetz, J.D., and Sorrentino, B.P.Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo, Proc. Natl. Acad. Sci. U. S. A., 99: 12339–12344, 2002.CrossRefGoogle ScholarPubMed
Yin, L., Castagnino, P., and Assoian, R.K.ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition, Cancer Res., 68: 800–807, 2008.CrossRefGoogle ScholarPubMed
Bhatt, R.I., Brown, M.D., Hart, C.A., Gilmore, P., Ramani, V.A., George, N.J., and Clarke, N.W.Novel method for the isolation and characterisation of the putative prostatic stem cell, Cytometry A, 54: 89–99, 2003.CrossRefGoogle ScholarPubMed
Smalley, M.J., and Clarke, R.B.The mammary gland “side population”: a putative stem/progenitor cell marker?, J. Mammary Gland Biol. Neoplasia, 10: 37–47, 2005.CrossRefGoogle ScholarPubMed
Iwatani, H., Ito, T., Imai, E., Matsuzaki, Y., Suzuki, A., Yamato, M., Okabe, M., and Hori, M.Hematopoietic and nonhematopoietic potentials of Hoechst(low)/side population cells isolated from adult rat kidney, Kidney Int., 65: 1604–1614, 2004.CrossRefGoogle ScholarPubMed
Terunuma, A., Jackson, K.L., Kapoor, V., Telford, W.G., and Vogel, J.C.Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells, J. Invest. Dermatol., 121: 1095–1103, 2003.CrossRefGoogle ScholarPubMed
Triel, C., Vestergaard, M.E., Bolund, L., Jensen, T.G., and Jensen, U.B.Side population cells in human and mouse epidermis lack stem cell characteristics, Exp. Cell Res., 295: 79–90, 2004.CrossRefGoogle ScholarPubMed
Weigmann, A., Corbeil, D., Hellwig, A., and Huttner, W.B.Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells, Proc. Natl. Acad. Sci. U. S. A., 94: 12425–12430, 1997.CrossRefGoogle ScholarPubMed
Yin, A.H., Miraglia, S., Zanjani, E.D., Almeida-Porada, G., Ogawa, M., Leary, A.G., Olweus, J., Kearney, J., and Buck, D.W.AC133, a novel marker for human hematopoietic stem and progenitor cells, Blood, 90: 5002–5012, 1997.Google ScholarPubMed
Bauer, N., Fonseca, A.V., Florek, M., Freund, D., Jaszai, J., Bornhauser, M., Fargeas, C.A., and Corbeil, D.New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133), Cells Tissues Organs, 188: 127–138, 2008.CrossRefGoogle Scholar
Maw, M.A., Corbeil, D., Koch, J., Hellwig, A., Wilson-Wheeler, J.C., Bridges, R.J., Kumaramanickavel, G., John, S., Nancarrow, D., Roper, K., Weigmann, A., Huttner, W.B., and Denton, M.J.A frameshift mutation in prominin (mouse)-like 1 causes human retinal degeneration, Hum. Mol. Genet., 9: 27–34, 2000.CrossRefGoogle ScholarPubMed
Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B.Identification of a cancer stem cell in human brain tumors, Cancer Res., 63: 5821–5828, 2003.Google ScholarPubMed
Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B.Identification of human brain tumour initiating cells, Nature, 432: 396–401, 2004.CrossRefGoogle ScholarPubMed
O'Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice, Nature, 445: 106–110, 2007.CrossRefGoogle ScholarPubMed
Ricci-Vitiani, L., Lombardi, D.G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De, Maria, R.Identification and expansion of human colon-cancer-initiating cells, Nature, 445: 111–115, 2007.CrossRefGoogle ScholarPubMed
Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di, Virgilio, A., Conticello, C., Ruco, L., Peschle, C., and De, Maria, R.Identification and expansion of the tumorigenic lung cancer stem cell population, Cell Death Differ., 15: 504–514, 2008.CrossRefGoogle ScholarPubMed
Ma, S., Chan, K.W., Hu, L., Lee, T.K., Wo, J.Y., Ng, I.O., Zheng, B.J., and Guan, X.Y.Identification and characterization of tumorigenic liver cancer stem/progenitor cells, Gastroenterology, 132: 2542–2556, 2007.CrossRefGoogle ScholarPubMed
Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., and Maitland, N.J.Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res., 65: 10946–10951, 2005.CrossRefGoogle ScholarPubMed
Du, L., Wang, H., He, L., Zhang, J., Ni, B., Wang, X., Jin, H., Cahuzac, N., Mehrpour, M., Lu, Y., and Chen, Q.CD44 is of functional importance for colorectal cancer stem cells, Clin. Cancer Res., 14: 6751–6760, 2008.CrossRefGoogle ScholarPubMed
Misra, S., Hascall, V.C., Berger, F.G., Markwald, R.R., and Ghatak, S.Hyaluronan, CD44, and cyclooxygenase-2 in colon cancer, Connect. Tissue Res., 49: 219–224, 2008.CrossRefGoogle Scholar
Ghatak, S., Misra, S., and Toole, B.P.Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells, J. Biol. Chem., 280: 8875–8883, 2005.CrossRefGoogle ScholarPubMed
Misra, S., Toole, B.P., and Ghatak, S.Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells, J. Biol. Chem., 281: 34936–34941, 2006.CrossRefGoogle ScholarPubMed
Sheridan, C., Kishimoto, H., Fuchs, R.K., Mehrotra, S., Bhat-Nakshatri, P., Turner, C.H., Goulet, R., Badve, S., and Nakshatri, H.CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis, Breast Cancer Res., 8: R59, 2006.CrossRefGoogle ScholarPubMed
Omara-Opyene, A.L., Qiu, J., Shah, G.V., and Iczkowski, K.A.Prostate cancer invasion is influenced more by expression of a CD44 isoform including variant 9 than by Muc18, Lab. Invest., 84: 894–907, 2004.CrossRefGoogle ScholarPubMed
Li, Y., and Heldin, P.Hyaluronan production increases the malignant properties of mesothelioma cells, Br. J. Cancer, 85: 600–607, 2001.CrossRefGoogle ScholarPubMed
Avigdor, A., Goichberg, P., Shivtiel, S., Dar, A., Peled, A., Samira, S., Kollet, O., Hershkoviz, R., Alon, R., Hardan, I., Ben-Hur, H., Naor, D., Nagler, A., and Lapidot, T.CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow, Blood, 103: 2981–2989, 2004.CrossRefGoogle ScholarPubMed
Paradis, V., Eschwege, P., Loric, S., Dumas, F., Ba, N., Benoit, G., Jardin, A., and Bedossa, P.De novo expression of CD44 in prostate carcinoma is correlated with systemic dissemination of prostate cancer, J. Clin. Pathol., 51: 798–802, 1998.CrossRefGoogle ScholarPubMed
Dontu, G., Abdallah, W.M., Foley, J.M., Jackson, K.W., Clarke, M.F., Kawamura, M.J., and Wicha, M.S.In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells, Genes Dev., 17: 1253–1270, 2003.CrossRefGoogle ScholarPubMed
Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J.G., Chandra, D., Zhou, J., Claypool, K., Coghlan, L., and Tang, D.G.Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells, Oncogene, 25: 1696–1708, 2006.CrossRefGoogle ScholarPubMed
Hurt, E.M., Kawasaki, B.T., Klarmann, G.J., Thomas, S.B., and Farrar, W.L.CD44(+)CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis, Br. J. Cancer, 98: 756–765, 2008.CrossRefGoogle ScholarPubMed
Dalerba, P., Dylla, S.J., Park, I.K., Liu, R., Wang, X., Cho, R.W., Hoey, T., Gurney, A., Huang, E.H., Simeone, D.M., Shelton, A.A., Parmiani, G., Castelli, C., and Clarke, M.F.Phenotypic characterization of human colorectal cancer stem cells, Proc. Natl. Acad. Sci. U. S. A., 104: 10158–10163, 2007.CrossRefGoogle ScholarPubMed
Li, C., Heidt, D.G., Dalerba, P., Burant, C.F., Zhang, L., Adsay, V., Wicha, M., Clarke, M.F., and Simeone, D.M.Identification of pancreatic cancer stem cells, Cancer Res., 67: 1030–1037, 2007.CrossRefGoogle ScholarPubMed
Prince, M.E., Sivanandan, R., Kaczorowski, A., Wolf, G.T., Kaplan, M.J., Dalerba, P., Weissman, I.L., Clarke, M.F., and Ailles, L.E.Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A, 104: 973–978, 2007.CrossRefGoogle ScholarPubMed
Matsui, W., Huff, C.A., Wang, Q., Malehorn, M.T., Barber, J., Tanhehco, Y., Smith, B.D., Civin, C.I., and Jones, R.J.Characterization of clonogenic multiple myeloma cells, Blood, 103: 2332–2336, 2004.CrossRefGoogle ScholarPubMed
Bonnet, D., and Dick, J.E.Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell, Nat. Med., 3: 730–737, 1997.CrossRefGoogle ScholarPubMed
Masters, J.R., Foley, C.L., Bisson, I., and Ahmed, A.Cancer stem cells, BJU Int., 92: 661–662, 2003.CrossRefGoogle ScholarPubMed
Reynolds, B.A., and Weiss, S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science, 255: 1707–1710, 1992.CrossRefGoogle ScholarPubMed
Todaro, M., Alea, M.P., Di Stefano, A.B., Cammareri, P., Vermeulen, L., Iovino, F., Tripodo, C., Russo, A., Gulotta, G., Medema, J.P., and Stassi, G.Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4, Cell Stem Cell, 1: 389–402, 2007.CrossRefGoogle ScholarPubMed
Gou, S., Liu, T., Wang, C., Yin, T., Li, K., Yang, M., and Zhou, J.Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties, Pancreas, 34: 429–435, 2007.CrossRefGoogle ScholarPubMed
Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Belle, P.A., Xu, X., Elder, D.E., and Herlyn, M.A tumorigenic subpopulation with stem cell properties in melanomas, Cancer Res., 65: 9328–9337, 2005.CrossRefGoogle ScholarPubMed
Ponti, D., Costa, A., Zaffaroni, N., Pratesi, G., Petrangolini, G., Coradini, D., Pilotti, S., Pierotti, M.A., and Daidone, M.G.Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties, Cancer Res., 65: 5506–5511, 2005.CrossRefGoogle ScholarPubMed
Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D.L., Black, K.L., and Yu, J.S.Isolation of cancer stem cells from adult glioblastoma multiforme, Oncogene, 23: 9392–9400, 2004.CrossRefGoogle ScholarPubMed
Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A.Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma, Cancer Res., 64: 7011–7021, 2004.CrossRefGoogle ScholarPubMed
Gibbs, C.P., Kukekov, V.G., Reith, J.D., Tchigrinova, O., Suslov, O.N., Scott, E.W., Ghivizzani, S.C., Ignatova, T.N., and Steindler, D.A.Stem-like cells in bone sarcomas: implications for tumorigenesis, Neoplasia, 7: 967–976, 2005.CrossRefGoogle ScholarPubMed
Suslov, O.N., Kukekov, V.G., Ignatova, T.N., and Steindler, D.A.Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres, Proc. Natl. Acad. Sci. U. S. A, 99: 14506–14511, 2002.CrossRefGoogle ScholarPubMed
Jensen, J.B., and Parmar, M.Strengths and limitations of the neurosphere culture system, Mol. Neurobiol., 34: 153–161, 2006.CrossRefGoogle ScholarPubMed
Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., and Wahl, G.M.Cancer stem cells – perspectives on current status and future directions: AACR Workshop on Cancer Stem Cells, Cancer Res., 66: 9339–9344, 2006. Quote from p. 9340.CrossRefGoogle ScholarPubMed
Flanagan, S.P.“Nude,” a new hairless gene with pleiotropic effects in the mouse, Genet. Res., 8: 295–309, 1966.CrossRefGoogle ScholarPubMed
Shultz, L.D., Schweitzer, P.A., Christianson, S.W., Gott, B., Schweitzer, I.B., Tennent, B., McKenna, S., Mobraaten, L., Rajan, T.V., and Greiner, D.L.Multiple defects in innate and adaptive immunologic function in NOD/LtSz-SCID mice, J. Immunol., 154: 180–191, 1995.Google ScholarPubMed
Bosma, G.C., Custer, R.P., and Bosma, M.J.A severe combined immunodeficiency mutation in the mouse, Nature, 301: 527–530, 1983.CrossRefGoogle ScholarPubMed
Collins, A.T., Habib, F.K., Maitland, N.J., and Neal, D.E.Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression, J. Cell Sci., 114: 3865–3872, 2001.Google ScholarPubMed
Al-Hajj, M., and Clarke, M.F.Self-renewal and solid tumor stem cells, Oncogene, 23: 7274–7282, 2004.CrossRefGoogle ScholarPubMed
Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N.M., Pastorino, S., Purow, B.W., Christopher, N., Zhang, W., Park, J.K., and Fine, H.A.Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell, 9: 391–403, 2006.CrossRefGoogle ScholarPubMed
Tang, D.G., Patrawala, L., Calhoun, T., Bhatia, B., Choy, G., Schneider-Broussard, R., and Jeter, C. Prostate cancer stem/progenitor cells: identification, characterization, and implications, Mol. Carcinog., 46: 1–14, 2007.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×