Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T12:05:43.690Z Has data issue: false hasContentIssue false

4.6 - Ascending Neurotransmitter Systems

from 4 - Neuroanatomy

Published online by Cambridge University Press:  08 November 2023

Mary-Ellen Lynall
Affiliation:
University of Cambridge
Peter B. Jones
Affiliation:
University of Cambridge
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

In this section, we describe key functions of neurons in the brain that synthesise and release noradrenaline (NA), serotonin (5-hydroxytryptamine; 5-HT), dopamine (DA), and acetylcholine (ACh). As classic ‘neuromodulators’, these widely researched neurotransmitter systems ascend from posterior and ventral regions of the braillopregna by optimising the performance of brain networks without inhibiting or exciting neurons directly. Traditionally considered in the context of ‘non-specific’ arousal states (i.e. sleep and wakefulness) and the ‘reticular activating system’ (), the ascending neurotransmitter systems contribute to a surprisingly diverse array of behavioural and cognitive functions via specific pathways in the brain. These pathways arise from discrete clusters of neurons in the midbrain and forebrain (Figure 4.6.1). As the loci for clinically effective drugs to treat neuropsychiatric conditions such as depression, schizophrenia, and attention deficit hyperactivity disorder, the ascending neurotransmitter systems are a major success story for the ‘receptor revolution’ in neuropsychiatry. For more on the synaptic physiology of these neurotransmitters, see Section 2.4.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amat, J, Baratta, MV, Paul, E et al. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8(3): 365371. doi:10.1038/nn1399CrossRefGoogle ScholarPubMed
Aston-Jones, G, Rajkowski, J, Cohen, J (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46(9): 13091320. doi:10.1016/s0006-3223(99)00140-7CrossRefGoogle ScholarPubMed
Atzori, M, Cuevas-Olguin, R, Esquivel-Rendon, E et al. (2016). Locus ceruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci 8: 25. doi:10.1177/1073858420974336CrossRefGoogle ScholarPubMed
Azizi, SA (2020). Monoamines: dopamine, norepinephrine, and serotonin, beyond modulation, “switches” that alter the state of target networks. Neuroscientist 28(2) doi:10.1177/1073858420974336Google ScholarPubMed
Browning, M, Behrens, TE, Jocham, G, O’Reilly, JX, Bishop, SJ (2015). Anxious individuals have difficulty learning the causal statistics of aversive environments. Nat Neurosci 18(4): 590596. doi:10.1038/nn.3961CrossRefGoogle ScholarPubMed
Cahill, L, Prins, B, Weber, M, McGaugh, JL (1994). Beta-adrenergic activation and memory for emotional events. Nature 371(6499): 702704. doi:10.1038/371702a0CrossRefGoogle ScholarPubMed
Dalley, JW, McGaughy, J, O’Connell, MT et al. (2001). Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21(13): 49084914. www.ncbi.nlm.nih.gov/pubmed/11425918CrossRefGoogle ScholarPubMed
Furey, ML, Drevets, WC (2006). Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63(10): 11211129. doi:10.1001/archpsyc.63.10.1121CrossRefGoogle ScholarPubMed
Mei, J, Muller, E, Ramaswamy, S (2022). Informing deep neural networks by multiscale principles of neuromodulatory systems. Trends Neurosci 45(3): 237250. doi: 10.1016/j.tins.2021.12.008CrossRefGoogle ScholarPubMed
Mesulam, MM, Mufson, EJ, Wainer, BH, Levey, AI (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10(4): 11851201. doi:10.1016/0306-4522(83)90108-2CrossRefGoogle Scholar
Morales, I, Berridge, KC (2020). ‘Liking’ and ‘wanting’ in eating and food reward: brain mechanisms and clinical implications. Physiol Behav 227: 113152. doi:10.1016/j.physbeh.2020.113152CrossRefGoogle ScholarPubMed
Moruzzi, G, Magou, HW (1949). Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1(4): 455473. www.ncbi.nlm.nih.gov/pubmed/18421835CrossRefGoogle ScholarPubMed
Perry, EK (1986). The cholinergic hypothesis ten years on. Br Med Bull 42(1): 6369. doi:10.1093/oxfordjournals.bmb.a072100CrossRefGoogle Scholar
Poe, GR, Foote, S, Eschenk, O et al. (2020). Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci 21(11): 644659. doi:10.1038/s41583-020-0360-9CrossRefGoogle Scholar
Sara, SJ (2009). The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3): 211223. doi:10.1038/nrn2573CrossRefGoogle ScholarPubMed
Schultz, W (2007). Behavioral dopamine signals. Trends Neurosci 30(5): 203210. doi:10.1016/j.tins.2007.03.007CrossRefGoogle ScholarPubMed
Segal, M, Bloom, FE (1976). The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Res 107(3): 513525. doi:10.1016/0006-8993(76)90141-4CrossRefGoogle ScholarPubMed
Sharp, T, Barnes, NM (2020). Central 5-HT receptors and their function: present and future. Neuropharmacology 177: 108155. doi:10.1016/j.neuropharm.2020.108155CrossRefGoogle ScholarPubMed
Soubrie, P (1986). [Serotonergic neurons and behavior]. J Pharmacol 17(2): 107112. www.ncbi.nlm.nih.gov/pubmed/2875217Google ScholarPubMed
Steinberg, LJ, Rubin-Falcone, H, Galfalvy, HC et al. (2019). Cortisol stress response and in vivo PET imaging of human brain serotonin 1A receptor binding. Int J Neuropsychopharmacol 22(5): 329338. doi:10.1093/ijnp/pyz009CrossRefGoogle ScholarPubMed
Svob Strac, D, Pivac, N, Muck-Seler, D (2016). The serotonergic system and cognitive function. Transl Neurosci 7(1): 3549. doi:10.1515/tnsci-2016-0007CrossRefGoogle ScholarPubMed
Weiss, JM, Stone, EA, Harrell, N (1970). Coping behavior and brain norepinephrine level in rats. J Comp Physiol Psychol 72(1) 153160. doi:10.1037/h0029311CrossRefGoogle ScholarPubMed
Yu, AJ, Dayan, P (2005). Uncertainty, neuromodulation, and attention. Neuron 46(4): 681692. doi:10.1016/j.neuron.2005.04.026CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×