Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-30T17:57:19.494Z Has data issue: false hasContentIssue false

29 - Artistic and Aesthetic Production: Progress and Limitations

from Part VIII - Artistic and Aesthetic Processes

Published online by Cambridge University Press:  19 January 2018

Rex E. Jung
Affiliation:
University of New Mexico
Oshin Vartanian
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., … Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. NeuroImage, 30, 917926.CrossRefGoogle ScholarPubMed
Baumann, S., Koeneke, S., Schmidt, C. F., Meyer, M., Lutz, K., & Jancke, L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 6578.CrossRefGoogle Scholar
Bengtsson, S. L., Csíkszentmihályi, M., & Ullén, F. (2007). Cortical regions involved in the generation of musical structures during improvisation in pianists. Journal of Cognitive Neuroscience, 19, 830842.CrossRefGoogle ScholarPubMed
Bengtsson, S. L., & Ullén, F. (2006). Dissociation between melodic and rhythmic processing during piano performance from musical scores. NeuroImage, 30, 272284.CrossRefGoogle ScholarPubMed
Berkowitz, A. L., & Ansari, D. (2008). Generation of novel motor sequences: The neural correlates of musical improvisation. NeuroImage, 41, 535543.CrossRefGoogle ScholarPubMed
Berkowitz, A. L., & Ansari, D. (2010). Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage, 49, 712719.CrossRefGoogle ScholarPubMed
Bhattacharya, J., & Petsche, H. (2002). Shadows of artistry: Cortical synchrony during perception and imagery of visual art. Cognitive Brain Research, 13, 179186.CrossRefGoogle ScholarPubMed
Boebinger, D., Evans, S., Rosen, S., Lima, C. F., Manly, T., & Scott, S. K. (2015). Musicians and non-musicians are equally adept at perceiving masked speech. The Journal of the Acoustical Society of America, 137, 378387.CrossRefGoogle ScholarPubMed
Brown, S., Martinez, M. J., & Parsons, L. M. (2006). Music and language side by side in the brain: A PET study of the generation of melodies and sentences. European Journal of Neuroscience, 23, 27912803.CrossRefGoogle Scholar
Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 4957.CrossRefGoogle ScholarPubMed
Chartrand, J. P., & Belin, P. (2006). Superior voice timbre processing in musicians. Neuroscience Letters, 405, 164167.CrossRefGoogle ScholarPubMed
Cross, I. (2008). Musicality and the human capacity for culture. Musicae Scientiae, 12(1 Suppl), 147167.CrossRefGoogle Scholar
Csikszentmihalyi, M., & Csikszentmihalyi, I. S. (Eds.). (1992). Optimal experience: Psychological studies of flow in consciousness. Cambridge: Cambridge University Press.Google Scholar
Davies, S. (1990). Functional and procedural definitions of art. Journal of Aesthetic Education, 24(2), 99106.CrossRefGoogle Scholar
Davies, S. (2010). Philosophical perspectives on art. Oxford: Oxford University Press.Google Scholar
de Manzano, Ö., & Ullén, F. (2012a). Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. NeuroImage, 63, 272280.CrossRefGoogle ScholarPubMed
de Manzano, Ö., & Ullén, F. (2012b). Goal-independent mechanisms for free response generation: Creative and pseudo-random performance share neural substrates. NeuroImage, 59, 772780.CrossRefGoogle ScholarPubMed
Dietrich, A. (2004). Neurocognitive mechanisms underlying the experience of flow. Consciousness and Cognition, 13, 746761.CrossRefGoogle ScholarPubMed
Dietrich, A. (2015). How creativity happens in the brain (1st ed.). New York, NY: Palgrave Macmillan.CrossRefGoogle Scholar
Dissanayake, E. (1992). Homo aestheticus: Where art comes from and why. Seattle, WA: University of Washington Press.Google Scholar
Dolan, D., Sloboda, J. A., Jensen, H. J., Cruts, B., & Feygelson, E. (2013). The improvisatory approach to classical music performance: An empirical investigation into its characteristics and impact. Music Performance Research, 6, 138.Google Scholar
Donnay, G. F., Rankin, S. K., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2014). Neural substrates of interactive musical improvisation: An fMRI study of “trading fours” in jazz. PLoS ONE, 9(2).CrossRefGoogle Scholar
Enquist, M., & Arak, A. (1994). Symmetry, beauty and evolution. Nature, 372, 169172.CrossRefGoogle ScholarPubMed
Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage, 46, 854862.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003a). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 92409245.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003b). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514517.CrossRefGoogle ScholarPubMed
Gaut, B., & Lopes, D. (Eds). (2013). The Routledge companion to aesthetics. London: Routledge.CrossRefGoogle Scholar
Hutchinson, S., Lee, L. H. L., Gaab, N., & Schlaug, G. (2003). Cerebellar volume of musicians. Cerebral Cortex, 13, 943949.CrossRefGoogle ScholarPubMed
Ishizu, T., & Zeki, S. (2011). Toward a brain-based theory of beauty. PLoS ONE, 6(7), e21852.CrossRefGoogle Scholar
Kishon-Rabin, L., Amir, O., Vexler, Y., & Zaltz, Y. (2001). Pitch discrimination: Are professional musicians better than non-musicians? Journal of Basic and Clinical Physiology and Pharmacology, 12(2 Suppl), 125143.CrossRefGoogle ScholarPubMed
Kowatari, Y., Hee Lee, S., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., & Yamamoto, M. (2009). Neural networks involved in artistic creativity. Human Brain Mapping, 30, 16781690.CrossRefGoogle ScholarPubMed
Lahav, A., Boulanger, A., Schlaug, G., & Saltzman, E. (2005). The power of listening: Auditory–motor interactions in musical training. Annals of the New York Academy of Sciences, 1060, 189194.CrossRefGoogle ScholarPubMed
Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic judgments. British Journal of Psychology, 95, 489508.CrossRefGoogle Scholar
Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An fMRI study of jazz improvisation. PLoS ONE, 3, e1679.CrossRefGoogle ScholarPubMed
Liu, S., Chow, H. M., Xu, Y., Erkkinen, M. G., Swett, K. E., Eagle, M. W., … Braun, A. R. (2012). Neural correlates of lyrical improvisation: An fMRI study of freestyle rap. Scientific Reports, 2(834).CrossRefGoogle ScholarPubMed
Manturzewska, M. (1990). A biographical study of the life-span development of professional musicians. Psychology of Music, 18, 112139.CrossRefGoogle Scholar
Marques, C., Moreno, S., Castro, S. L., & Besson, M. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: Behavioral and electrophysiological evidence. Journal of Cognitive Neuroscience, 19, 14531463.CrossRefGoogle Scholar
McPherson, M. J., Barrett, F. S., Lopez-Gonzalez, M., Jiradejvong, P., & Limb, C. J. (2016). Emotional intent modulates the neural substrates of creativity: An fMRI study of emotionally targeted improvisation in jazz musicians. Scientific Reports, 6(18460).CrossRefGoogle ScholarPubMed
McPherson, M., & Limb, C. J. (2013). Difficulties in the neuroscience of creativity: Jazz improvisation and the scientific method. Annals of the New York Academy of Sciences, 1303, 8083.CrossRefGoogle ScholarPubMed
Münte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews. Neuroscience, 3, 473478.CrossRefGoogle Scholar
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811814.CrossRefGoogle ScholarPubMed
Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. The Journal of Neuroscience, 34, 61566163.CrossRefGoogle ScholarPubMed
Pinho, A. L., Ullén, F., Castelo-Branco, , Fransson, M., , P., & de Manzano, Ö. (2015). Addressing a paradox: Dual strategies for creative performance in introspective and extrospective networks. Cerebral Cortex, 26(7), 10473211.CrossRefGoogle ScholarPubMed
Ramachandran, V. S., & Hirstein, W. (1999). The science of art. A neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, 1551.Google Scholar
Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W.-C., … Reiss, A. L. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5(10894).CrossRefGoogle Scholar
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5, 688694.CrossRefGoogle ScholarPubMed
Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: An fMRI study. Human Brain Mapping, 34, 10881101.CrossRefGoogle ScholarPubMed
Sternberg, R. J. (1999). Handbook of creativity (Vol. 1). Cambridge, MA: Cambridge University Press.Google Scholar
Tervaniemi, M., Just, V., Koelsch, S., Widmann, A., & Schröger, E. (2005). Pitch discrimination accuracy in musicians vs nonmusicians: An event-related potential and behavioral study. Experimental Brain Research, 161, 110.CrossRefGoogle ScholarPubMed
Tinio, P. P. (2013). From artistic creation to aesthetic reception: The mirror model of art. Psychology of Aesthetics, Creativity, and the Arts, 7, 265.CrossRefGoogle Scholar
Zatorre, R. J., Chen, J. L., & Penhune, V. B. (2007). When the brain plays music: Auditory–motor interactions in music perception and production. Nature Reviews Neuroscience, 8, 547558.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×