Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T05:48:10.289Z Has data issue: false hasContentIssue false

42 - Aphantasia

from Part VI - Altered States of the Imagination

Published online by Cambridge University Press:  26 May 2020

Anna Abraham
Affiliation:
University of Georgia
Get access

Summary

Writing in the 1880s, Galton recognized that some healthy individuals lack visual imagery. This phenomenon has been relatively neglected since then. In 2015 we coined the term “aphantasia” to describe the lack of the mind’s eye, reporting on twenty-one individuals with a lifelong lack of imagery. Since then we have been contacted by many thousands of people lying at both the aphantasic and the hyperphantasic extremes of the vividness spectrum. Preliminary evidence suggests that lifelong aphantasia is associated variably with prosopagnosia and reduction in autobiographical memory; hyperphantasia is associated with synaesthesia. Over 50 percent of people with aphantasia report visual dreaming. In around 50 percent of our aphantasic participants, all modalities of imagery are affected, while in others some modalities of imagery are preserved. Aphantasia often runs in families. Functional imaging studies of imagery suggest a range of hypotheses for the neural correlates of aphantasia; the few functional imaging studies specifically examining imagery vividness point to positive correlations with brain activity in higher visual and memory-related areas. The study of aphantasia reminds us how easily invisible differences can escape detection. Visualization is only one of many ways of representing things in their absence, and individuals lacking visual imagery can be highly imaginative.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D. R., Moscovitch, M., Crawley, A. P., and McAndrews, M. P. (2004). Recollective Qualities Modulate Hippocampal Activation during Autobiographical Memory Retrieval. Hippocampus, 14(6), 752762.CrossRefGoogle ScholarPubMed
Allen, P., Laroi, F., McGuire, P. K., and Aleman, A. (2008). The Hallucinating Brain: A Review of Structural and Functional Neuroimaging Studies of Hallucinations. Neuroscience & Biobehavioral Reviews, 32(1), 175191.CrossRefGoogle Scholar
Amedi, A., Malach, R., and Pascual-Leone, A. (2005). Negative BOLD Differentiates Visual Imagery and Perception. Neuron, 48(5), 859872.CrossRefGoogle ScholarPubMed
Aristotle, . (1968). De Anima. Books II and III (with certain passages from Book I). Translated by D. W. Hamlyn. Oxford, UK: Clarendon Press.Google Scholar
Barnett, K. J., and Newell, F. N. (2008). Synaesthesia is Associated with Enhanced Self-Rated Visual Imagery. Consciousness and Cognition, 17(3), 10321039.Google Scholar
Bartolomeo, P. (2002). The Relationship between Visual Perception and Visual Mental Imagery: A Reappraisal of the Neuropsychological Evidence. Cortex, 38(3), 357378.Google Scholar
Bartolomeo, P., Bachoud-Levi, A.-C., de Gelder, B., et al. (1998). Multiple-Domain Dissociation Between Impaired Visual Perception and Preserved Mental Imagery in a Patient with Bilateral Extrastriate Lesions. Neuropsychologia, 36, 239249.Google Scholar
Behrmann, M., Moscovitch, M., and Winocur, G. (1994). Intact Visual Imagery and Impaired Visual Perception in a Patient with Visual Agnosia. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 10681087.Google Scholar
Behrmann, M., Winocur, G., and Moscovitch, M. (1992). Dissociation Between Mental Imagery and Object Recognition in a Brain-Damaged Patient. Nature, 359(6396), 636637.Google Scholar
Bergmann, J., Genc, E., Kohler, A., Singer, W., and Pearson, J. (2016). Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cerebral Cortex, 26(9), 38383850.Google Scholar
Beschin, N., Basso, A., and Della Sala, S. (2000). Perceiving Left and Imagining Right: Dissociation in Neglect. Cortex, 36(3), 401414.CrossRefGoogle ScholarPubMed
Bickerton, D. (2014). More than Nature Needs: Language, Mind and Evolution. Cambridge, MA.: Harvard University Press.Google Scholar
Bischof, M., and Bassetti, C. L. (2004). Total Dream Loss: A Distinct Neuropsychological Dysfunction after Bilateral PCA Stroke. Annals of Neurology, 56(4), 583586.Google Scholar
Bisiach, E., Capitani, E., Luzzatti, C., and Perani, D. (1981). Brain and Conscious Representation of Outside Reality. Neuropsychologia, 19(4), 543551.CrossRefGoogle ScholarPubMed
Bisiach, E., and Luzzatti, C. (1978). Unilateral Neglect of Representational Space. Cortex, 14, 129133.CrossRefGoogle ScholarPubMed
Blazhenkova, O. (2016). Vividness of Object and Spatial Imagery. Perceptual and Motor Skills, 122(2), 490508.CrossRefGoogle ScholarPubMed
Botez, M. I., Olivier, M., Vezina, J. L., Botez, T., and Kaufman, B. (1985). Defective Revisualization: Dissociation between Cognitive and Imagistic Thought Case Report and Short Review of the Literature. Cortex, 21(3), 375389.Google Scholar
Brewer, W. F., and Schommer-Aikins, M. (2006). Scientists Are Not Deficient in Visual Imagery: Galton Revisited. Review of General Psychology, 10(2), 130146.CrossRefGoogle Scholar
Bridge, H., Harrold, S., Holmes, E. A., Stokes, M., and Kennard, C. (2012). Vivid Visual Mental Imagery in the Absence of the Primary Visual Cortex. Journal of Neurology, 259(6), 10621070.CrossRefGoogle ScholarPubMed
Cabeza, R., and St, J. P. (2007). Functional Neuroimaging of Autobiographical Memory. Trends in Cognitive Sciences, 11(5), 219227.CrossRefGoogle ScholarPubMed
Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., et al. (2016). Neural Correlates of the LSD Experience Revealed by Multimodal Neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 48534858.Google Scholar
Charcot, J. M. (1889). Clinical Lectures on Diseases of the Nervous System. Volume 3. London, UK: The New Sydenham Society.Google Scholar
Chatterjee, A., and Southwood, M. H. (1995). Cortical Blindness and Visual Imagery. Neurology, 45(12), 21892195.Google Scholar
Clemens, A. (2018). When the Eye’s Mind is Blind. Scientific American, August 1. www.scientificamerican.com/article/when-the-minds-eye-is-blind1/.Google Scholar
Cotard, J. (1882). Du delire des negations. Archives de Neurologie, 4, 152170; 282296.Google Scholar
Cotard, J.(1884). Perte de la vision mentale dans la melancolie anxieuse. Archives de Neurologie, 7, 289295.Google Scholar
D’Aloisio-Montilla, N. (2017). Imagery and Overflow: We See More than We Report. Philosophical Psychology, 30(5), 545570.Google Scholar
Daselaar, S. M., Porat, Y., Huijbers, W., and Pennartz, C. M. (2010). Modality-Specific and Modality-Independent Components of the Human Imagery System. Neuroimage, 52(2), 677685.CrossRefGoogle ScholarPubMed
de Araujo, D. B., Ribeiro, S., Cecchi, G. A., et al. (2012). Seeing with the Eyes Shut: Neural Basis of Enhanced Imagery following Ayahuasca Ingestion. Human Brain Mapping, 33(11), 25502560.Google Scholar
de Borst, A. W., Sack, A. T., Jansma, B. M., et al. (2012). Integration of “What” and “Where” in Frontal Cortex during Visual Imagery of Scenes. Neuroimage, 60(1), 4758.CrossRefGoogle Scholar
de Vito, S., and Bartolomeo, P. (2016). Refusing to Imagine? On the Possibility of Psychogenic Aphantasia. A Commentary on Zeman et al. (2015). Cortex, 74, 334335.Google Scholar
Dunbar, R. (2004). The Human Story: A New History of Mankind’s Evolution. London, UK: Faber and Faber.Google Scholar
Eddy, J. K., and Glass, A. L. (1981). Reading and Listening to High and Low Imagery Sentences. Journal of Verbal Learning and Verbal Behavior, 20(3), 333345.Google Scholar
Farah, M. J. (1984). The Neurological Basis of Mental Imagery: A Componential Analysis. Cognition, 18, 245272.CrossRefGoogle ScholarPubMed
Faw, B. (2009). Conflicting Intuitions May Be Based on Differing Abilities – Evidence from Mental Imaging Research. Journal of Consciousness Studies, 16, 4568.Google Scholar
Fulford, J., Milton, F., Salas, D., et al. (2018). The Neural Correlates of Visual Imagery Vividness – An fMRI Study and Literature Review. Cortex, 105, 2640.Google Scholar
Galton, F. (1880). Statistics of Mental Imagery. Mind, 5, 301318.CrossRefGoogle Scholar
Gardini, S., Concari, L., Pagliara, S., et al. (2011). Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study. Behavioural Neurology, 24(2), 123132.CrossRefGoogle ScholarPubMed
Gardini, S., Cornoldi, C., De, B. R., and Venneri, A. (2006). Left Mediotemporal Structures Mediate the Retrieval of Episodic Autobiographical Mental Images. Neuroimage, 30(2), 645655.Google Scholar
Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J., and Moscovitch, M. (2004). Remembering our Past: Functional Neuroanatomy of Recollection of Recent and Very Remote Personal Events. Cerebral Cortex, 14(11), 12141225.Google Scholar
Greenberg, D. L., and Knowlton, B. J. (2014). The Role of Visual Imagery in Autobiographical Memory. Memory and Cognition, 42(6), 922934.Google Scholar
Grüter, T., and Carbon, C. C. (2010). Escaping Attention. Science, 328(5977), 435436.CrossRefGoogle ScholarPubMed
Grüter, T., Grüter, M., Bell, V., and Carbon, C. C. (2009). Visual Mental Imagery in Congenital Prosopagnosia. Neuroscience Letters, 453(3), 135140.CrossRefGoogle ScholarPubMed
Guillot, A., Collet, C., Nguyen, V. A., et al. (2008). Functional Neuroanatomical Networks Associated with Expertise in Motor Imagery. Neuroimage, 41(4), 14711483.Google Scholar
Jacobs, C., Schwarzkopf, D. S., and Silvanto, J. (2018). Visual Working Memory Performance in Aphantasia. Cortex, 105, 6173.CrossRefGoogle ScholarPubMed
Keogh, R., Bergmann, J., and Pearson, J. (2016). Cortical Excitability Controls the Strength of Mental Imagery. BioRxiv. org. doi.org/10.1101/093690.Google Scholar
Keogh, R., and Pearson, J. (2018). The Blind Mind: No Sensory Visual Imagery in Aphantasia. Cortex, 105, 5360.Google Scholar
Lambert, M. V., Senior, C., Phillips, M. L., et al. (2001). Visual Imagery and Depersonalisation. Psychopathology, 34(5), 259264.CrossRefGoogle ScholarPubMed
Lorey, B., Pilgramm, S., Bischoff, M., et al. (2011). Activation of the Parieto-Premotor Network Is Associated with Vivid Motor Imagery – A Parametric FMRI Study. PLoS. One, 6(5), e20368.Google Scholar
MacKisack, M., Aldworth, S., Macpherson, F., et al. (2016). On Picturing a Candle: The Prehistory of Imagery Science. Frontiers in Psychology, 7, 515.Google Scholar
McKelvie, S. (1995). The VVIQ as a Psychometric Test of Individual Differences in Visual Imagery Vividness: A Critical Quantitative Review and Plea for Direction. Journal of Mental Imagery, 19, 1106.Google Scholar
Miller, L. (2017). All Things New. Los Angeles, CA: Three Saints Press.Google Scholar
Milton, F., Muhlert, N., Butler, C. R., Benattayallah, A., and Zeman, A. Z. (2011). The Neural Correlates of Everyday Recognition Memory. Brain and Cognition, 76(3), 369381.Google Scholar
Moro, V., Berlucchi, G., Lerch, J., Tomaiuolo, F., and Aglioti, S. M. (2008). Selective Deficit of Mental Visual Imagery with Intact Primary Visual Cortex and Visual Perception. Cortex, 44(2), 109118.Google Scholar
Nielsen, J. (1946). Agnosia, Apraxia, Aphasia: Their Value in Cerebral Localisation. 2nd edition. New York, NY: Hoeber.Google Scholar
Palmiero, M., Belardinelli, M. O., Nardo, D., et al. (2009). Mental Imagery Generation in Different Modalities Activates Sensory-Motor Areas. Cognitive Processing, 10(Suppl 2), S268271.Google Scholar
Pearson, J., Clifford, C. W., and Tong, F. (2008). The Functional Impact of Mental Imagery on Conscious Perception. Current Biology, 18(13), 982986.Google Scholar
Pearson, J., Rademaker, R. L., and Tong, F. (2011). Evaluating the Mind’s Eye: The Metacognition of Visual Imagery. Psychological Science, 22(12), 15351542.Google Scholar
Phillips, M. L., Medford, N., Senior, C., et al. (2001). Depersonalization Disorder: Thinking without Feeling. Psychiatry Research, 108(3), 145160.Google Scholar
Reisberg, D., Pearson, D. G., and Kosslyn, S. M. (2003). Intuitions and Introspections about Imagery: The Role of Imagery Experience in Shaping an Investigator’s Theoretical Views. Applied Cognitive Psychology, 17, 147160.Google Scholar
Rubin, D. C., and Greenberg, D. L. (1998). Visual Memory-Deficit Amnesia: A Distinct Amnesic Presentation and Etiology. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 54135416.Google Scholar
Servos, P., and Goodale, M. A. (1995). Preserved Visual Imagery in Visual Form Agnosia. Neuropsychologia, 33, 13831394.Google Scholar
Shuren, J. E., Brott, T. G., Schefft, B. K., and Houston, W. (1996). Preserved Colour Imagery in an Achromatopsic. Neuropsychologia, 34, 485489.CrossRefGoogle Scholar
Solms, M. (2009). The Neuropsychology of Dreams. New York, NY: Psychology Press.Google Scholar
Watkins, N. W. (2017). (A)phantasia and SDAM: Scientific and Personal Perspectives. psyarxiv.com/d7av9/.Google Scholar
Winlove, C. I. P., Milton, F., Ranson, J., et al. (2018). The Neural Correlates of Visual Imagery: A Co-ordinate-Based Meta-Analysis. Cortex, 105, 425.Google Scholar
Zago, S., Allegri, N., Cristoffanini, M., et al. (2011). Is the Charcot and Bernard Case (1883) of Loss of Visual Imagery Really Based on Neurological Impairment? Cognitive Neuropsychiatry, 16(6), 481504.Google Scholar
Zatorre, R. J., Halpern, A. R., and Bouffard, M. (2010). Mental Reversal of Imagined Melodies: A Role for the Posterior Parietal Cortex. Journal of Cognitive Neuroscience, 22(4), 775789.CrossRefGoogle ScholarPubMed
Zeman, A., Dewar, M., and Della Sala, S. (2015). Lives without Imagery – Congenital Aphantasia. Cortex, 73, 378380.Google Scholar
Zeman, A., Dewar, M., and Della Sala, S.(2016). Reflections on Aphantasia. Cortex, 74, 336337.CrossRefGoogle ScholarPubMed
Zeman, A. Z., Della Sala, S., Torrens, L. A., et al. (2010). Loss of Imagery Phenomenology with Intact Visuo-Spatial Task Performance: A Case of “Blind Imagination”. Neuropsychologia, 48(1), 145155.CrossRefGoogle ScholarPubMed
Zimmer, C. (2010). The Brain. Discover, 2829.Google Scholar
Zmigrod, L., Garrison, J. R., Carr, J., and Simons, J. S. (2016). The Neural Mechanisms of Hallucinations: A Quantitative Meta-Analysis of Neuroimaging Studies. Neuroscience & Biobehavioral Reviews, 69, 113123.CrossRefGoogle ScholarPubMed
Zvyagintsev, M., Clemens, B., Chechko, N., et al. (2013). Brain Networks Underlying Mental Imagery of Auditory and Visual Information. The European Journal of Neuroscience, 37(9), 14211434.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Aphantasia
  • Edited by Anna Abraham, University of Georgia
  • Book: The Cambridge Handbook of the Imagination
  • Online publication: 26 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108580298.042
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Aphantasia
  • Edited by Anna Abraham, University of Georgia
  • Book: The Cambridge Handbook of the Imagination
  • Online publication: 26 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108580298.042
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Aphantasia
  • Edited by Anna Abraham, University of Georgia
  • Book: The Cambridge Handbook of the Imagination
  • Online publication: 26 May 2020
  • Chapter DOI: https://doi.org/10.1017/9781108580298.042
Available formats
×