Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T10:51:25.618Z Has data issue: false hasContentIssue false

8 - The Development of Neurobiology Underlying Stress and Coping

from Part III - Neurophysiological and Experiential Bases of the Development of Coping

Published online by Cambridge University Press:  22 June 2023

Ellen A. Skinner
Affiliation:
Portland State University
Melanie J. Zimmer-Gembeck
Affiliation:
Griffith University, Queensland
Get access

Summary

Though stress is a ubiquitous experience across the lifespan, exposure to stress during infancy, childhood, and adolescence – when development is especially pronounced – has particularly salient effects on the developing brain and behavior. We review current theory regarding typical development of the neurobiological systems underlying the stress response in humans. Against this backdrop, we highlight ways in which exposure to stress can manifest in altered neurobiological development, focusing on implications for the development of frontolimbic circuitry. We emphasize the importance of harnessing a dimensional approach to investigating the impact of stress exposure and describe three features of stress exposure – stressor type, caregiver involvement, and developmental timing – as particularly important factors that may help to elucidate more precise mechanisms by which stress affects the developing brain. Finally, we review methodological considerations for further study of the neurobiological systems underlying stress and coping, and briefly review implications for both clinical practice and policy.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ainsworth, M. D. S. (1969). Object relations, dependency, and attachment: A theoretical review of the infant-mother relationship. Child Development, 40, 9691025.CrossRefGoogle ScholarPubMed
Antontseva, E., Bondar, N., Reshetnikov, V., & Merkulova, T. (2020). The effects of chronic stress on brain myelination in humans and in various rodent models. Neuroscience, 441, 226238. https://doi.org/10.1016/j.neuroscience.2020.06.013CrossRefGoogle ScholarPubMed
Baldwin, J. R., Reuben, A., Newbury, J. B., & Danese, A. (2019). Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis. JAMA Psychiatry, 76(6), 584593. https://doi.org/10.1001/jamapsychiatry.2019.0097CrossRefGoogle ScholarPubMed
Bandoli, G., Campbell-Sills, L., Kessler, R. C., Heeringa, S. G., Nock, M. K., Rosellini, A. J., Sampson, N. A., Schoenbaum, M., Ursano, R. J., & Stein, M. B. (2017). Childhood adversity, adult stress, and the risk of major depression or generalized anxiety disorder in US soldiers: A test of the stress sensitization hypothesis. Psychological Medicine, 47(13), 23792392. https://doi.org/10.1017/S0033291717001064Google Scholar
Belsky, J. (2019). Early-life adversity accelerates child and adolescent development. Current Directions in Psychological Science, 28(3), 241246. https://doi.org/10.1177/0963721419837670Google Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62(4), 647670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.xGoogle Scholar
Bick, J., Zhu, T., Stamoulis, C., Fox, N. A., Zeanah, C., & Nelson, C. A. (2015). Effect of early institutionalization and foster care on long-term white matter development: A randomized clinical trial. JAMA Pediatrics, 169(3), 211219. https://doi.org/10.1001/jamapediatrics.2014.3212CrossRefGoogle ScholarPubMed
Bonnefil, V., Dietz, K., Amatruda, M., Wentling, M., Aubry, A. V., Dupree, J. L., Temple, G., Park, H.-J., Burghardt, N. S., Casaccia, P., & Liu, J. (2019). Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. ELife, 8, e40855. https://doi.org/10.7554/eLife.40855Google Scholar
Bowlby, J. (1958). The nature of the child’s tie to his mother. International Journal of Psychoanalysis, 39, 350373.Google Scholar
Boyce, T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In Masten, A. S. (Ed.), Multilevel dynamics in developmental psychopathology: Pathways to the future. Psychology Press.Google Scholar
Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., Capelli, S., McCarthy, G., Innis, R. B., & Charney, D. S. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – A preliminary report. Biological Psychiatry, 41(1), 2332. https://doi.org/10.1016/s0006-3223(96)00162-xCrossRefGoogle ScholarPubMed
Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., Fox, M. E., Hayes, A. S., Kalin, N. H., Essex, M. J., Davidson, R. J., & Birn, R. M. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 15(12), 17361741. https://doi.org/10.1038/nn.3257Google Scholar
Busso, D. S., McLaughlin, K. A., & Sheridan, M. A. (2017). Dimensions of adversity, physiological reactivity, and externalizing psychopathology in adolescence: Deprivation and threat. Psychosomatic Medicine, 79(2), 162171. https://doi.org/10.1097/PSY.0000000000000369CrossRefGoogle ScholarPubMed
Callaghan, B., Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., Flannery, J., Lumian, D. S., Fareri, D. S., Caldera, C., & Tottenham, N. (2019). Decreased amygdala reactivity to parent cues protects against anxiety following early adversity: An examination across 3-years. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(7), 664671. https://doi.org/10.1016/j.bpsc.2019.02.001Google Scholar
Callaghan, B. L., & Tottenham, N. (2016). The stress acceleration hypothesis: Effects of early-life adversity on emotion circuits and behavior. Current Opinion in Behavioral Sciences, 7, 7681. https://doi.org/10.1016/j.cobeha.2015.11.018Google Scholar
Cameron, J. L. (2001). Critical periods for social attachment: Deprivation and neural systems in rhesus monkeys. Social Research in Child Development Abstr, 2, 054.Google Scholar
Cameron, J. L., Eagleson, K. L., Fox, N. A., Hensch, T. K., & Levitt, P. (2017). Social origins of developmental risk for mental and physical illness. Journal of Neuroscience, 37(45), 1078310791. https://doi.org/10.1523/JNEUROSCI.1822-17.2017Google Scholar
Carrion, V. G., Weems, C. F., Eliez, S., Patwardhan, A., Brown, W., Ray, R. D., & Reiss, A. L. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50(12), 943951. https://doi.org/10.1016/s0006-3223(01)01218-5CrossRefGoogle ScholarPubMed
Casey, B. J., Heller, A. S., Gee, D. G., & Cohen, A. O. (2019). Development of the emotional brain. Neuroscience Letters, 693, 2934. https://doi.org/10.1016/j.neulet.2017.11.055Google Scholar
Cassidy, J., & Shaver, P. R. (2002). Handbook of attachment: Theory, research, and clinical applications. Rough Guides.Google Scholar
Cohodes, E. M., Kitt, E. R., Baskin‐Sommers, A., & Gee, D. G. (2021). Influences of early-life stress on frontolimbic circuitry: Harnessing a dimensional approach to elucidate the effects of heterogeneity in stress exposure. Developmental Psychobiology, 63(2), 153172. https://doi.org/10.1002/dev.21969CrossRefGoogle ScholarPubMed
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764. https://doi.org/10.1037/bul0000270CrossRefGoogle ScholarPubMed
Collins, N. L., & Feeney, B. C. (2004). An attachment theory perspective on closeness and intimacy. In Mashek, D. J. & Aron, A. P. (Eds.), Handbook of closeness and intimacy (pp. 163187). Lawrence Erlbaum Associates Publishers.Google Scholar
Cook, S. C., & Wellman, C. L. (2004). Chronic stress alters dendritic morphology in rat medial prefrontal cortex. Journal of Neurobiology, 60(2), 236248. https://doi.org/10.1002/neu.20025Google Scholar
D’Andrea, W., Ford, J., Stolbach, B., Spinazzola, J., & van der Kolk, B. A. (2012). Understanding interpersonal trauma in children: Why we need a developmentally appropriate trauma diagnosis. American Journal of Orthopsychiatry, 82(2), 187200. https://doi.org/10.1111/j.1939-0025.2012.01154.xGoogle Scholar
Dannlowski, U., Kugel, H., Huber, F., Stuhrmann, A., Redlich, R., Grotegerd, D., Dohm, K., Sehlmeyer, C., Konrad, C., Baune, B. T., Arolt, V., Heindel, W., Zwitserlood, P., & Suslow, T. (2013). Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Human Brain Mapping, 34(11), 28992909. https://doi.org/10.1002/hbm.22112CrossRefGoogle ScholarPubMed
Dannlowski, U., Stuhrmann, A., Beutelmann, V., Zwanzger, P., Lenzen, T., Grotegerd, D., Domschke, K., Hohoff, C., Ohrmann, P., & Bauer, J. (2012). Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biological Psychiatry, 71(4), 286293. https://doi.org/10.1016/j.biopsych.2011.10.021Google Scholar
De Bellis, M. D., Keshavan, M. S., Clark, D. B., Casey, B. J., Giedd, J. N., Boring, A. M., Frustaci, K., & Ryan, N. D. (1999). Developmental traumatology part II: Brain development. Biological Psychiatry, 45(10), 12711284. https://doi.org/10.1016/S0006-3223(99)00045-1CrossRefGoogle ScholarPubMed
de Kloet, E. R., Joëls, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews. Neuroscience, 6(6), 463475. https://doi.org/10.1038/nrn1683Google Scholar
Dennison, M. J., Rosen, M. L., Sambrook, K. A., Jenness, J. L., Sheridan, M. A., & McLaughlin, K. A. (2019). Differential associations of distinct forms of childhood adversity with neurobehavioral measures of reward processing: A developmental pathway to depression. Child Development, 90(1), e96e113. https://doi.org/10.1111/cdev.13011Google Scholar
Dobrova-Krol, N. A., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Cyr, C., & Juffer, F. (2008). Physical growth delays and stress dysregulation in stunted and non-stunted Ukrainian institution-reared children. Infant Behavior and Development, 31(3), 539553. https://doi.org/10.1016/j.infbeh.2008.04.001Google Scholar
Dong, M., Anda, R. F., Felitti, V. J., Dube, S. R., Williamson, D. F., Thompson, T. J., Loo, C. M., & Giles, W. H. (2004). The interrelatedness of multiple forms of childhood abuse, neglect, and household dysfunction. Child Abuse & Neglect, 28(7), 771784. https://doi.org/10.1016/j.chiabu.2004.01.008Google Scholar
Edmiston, E. E., Wang, F., Mazure, C. M., Guiney, J., Sinha, R., Mayes, L. C., & Blumberg, H. P. (2011). Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Archives of Pediatrics & Adolescent Medicine, 165(12), 10691077. https://doi.org/10.1001/archpediatrics.2011.565CrossRefGoogle ScholarPubMed
Eiland, L., & Romeo, R. D. (2013). Stress and the developing adolescent brain. Neuroscience, 249, 162171. https://doi.org/10.1016/j.neuroscience.2012.10.048Google Scholar
Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Human Nature, 20(2), 204268.Google Scholar
Eschenbeck, H., Schmid, S., Schröder, I., Wasserfall, N., & Kohlmann, C.-W. (2018). Development of coping strategies from childhood to adolescence. European Journal of Health Psychology, 25(1), 1830. https://doi.org/10.1027/2512-8442/a000005Google Scholar
Espejo, E. P., Hammen, C. L., Connolly, N. P., Brennan, P. A., Najman, J. M., & Bor, W. (2007). Stress sensitization and adolescent depressive severity as a function of childhood adversity: A link to anxiety disorders. Journal of Abnormal Child Psychology, 35(2), 287299. https://doi.org/10.1007/s10802-006-9090-3Google Scholar
Evans, G. W., Swain, J. E., King, A. P., Wang, X., Javanbakht, A., Ho, S. S., Angstadt, M., Phan, K. L., Xie, H., & Liberzon, I. (2016). Childhood cumulative risk exposure and adult amygdala volume and function. Journal of Neuroscience Research, 94(6), 535543. https://doi.org/10.1002/jnr.23681Google Scholar
Fan, Y., Herrera-Melendez, A. L., Pestke, K., Feeser, M., Aust, S., Otte, C., Pruessner, J. C., Böker, H., Bajbouj, M., & Grimm, S. (2014). Early life stress modulates amygdala-prefrontal functional connectivity: Implications for oxytocin effects: Early life stress and amygdala functional connectivity. Human Brain Mapping, 35(10), 53285339. https://doi.org/10.1002/hbm.22553CrossRefGoogle Scholar
Finkelhor, D., Ormrod, R. K., & Turner, H. A. (2007). Poly-victimization: A neglected component in child victimization. Child Abuse & Neglect, 31(1), 726. https://doi.org/10.1016/j.chiabu.2006.06.008CrossRefGoogle ScholarPubMed
Flannery, J. E., Gabard-Durnam, L. J., Shapiro, M., Goff, B., Caldera, C., Louie, J., Gee, D. G., Telzer, E. H., Humphreys, K. L., Lumian, D. S., & Tottenham, N. (2017). Diurnal cortisol after early institutional care – Age matters. Developmental Cognitive Neuroscience, 25, 160166. https://doi.org/10.1016/j.dcn.2017.03.006Google Scholar
Gabard-Durnam, L. J., Flannery, J., Goff, B., Gee, D. G., Humphreys, K. L., Telzer, E., Hare, T., & Tottenham, N. (2014). The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. NeuroImage, 95, 193207. https://doi.org/10.1016/j.neuroimage.2014.03.038Google Scholar
Gabard-Durnam, L., & McLaughlin, K. A. (2020). Sensitive periods in human development: Charting a course for the future. Current Opinion in Behavioral Sciences, 36, 120128. https://doi.org/10.1016/j.cobeha.2020.09.003Google Scholar
Gabbay, V., Oatis, M. D., Silva, R. R., & Hirsch, G. S. (2004). Epidemiological aspects of PTSD in children and adolescents. In Silva, R. R. (Ed.), Posttraumatic stress disorders in children and adolescents: Handbook (pp. 117). W. W. Norton & Co.Google Scholar
Ganzel, B. L., Kim, P., Gilmore, H., Tottenham, N., & Temple, E. (2013). Stress and the healthy adolescent brain: Evidence for the neural embedding of life events. Development and Psychopathology, 25(4 Pt. 1), 879889. https://doi.org/10.1017/S0954579413000242Google Scholar
Garrett, A. S., Carrion, V., Kletter, H., Karchemskiy, A., Weems, C. F., & Reiss, A. (2012). Brain activation to facial expressions in youth with PTSD symptoms. Depression and Anxiety, 29(5), 449459. https://doi.org/10.1002/da.21892Google Scholar
Gee, D. G. (2016). Sensitive periods of emotion regulation: Influences of parental care on frontoamygdala circuitry and plasticity: Sensitive periods of emotion regulation. New Directions for Child and Adolescent Development, 2016(153), 87110. https://doi.org/10.1002/cad.20166Google Scholar
Gee, D. G. (2020). Caregiving influences on emotional learning and regulation: Applying a sensitive period model. Current Opinion in Behavioral Sciences, 36, 177184. https://doi.org/10.1016/j.cobeha.2020.11.003Google Scholar
Gee, D. G. (2021). Early-life trauma and resilience: Insights from developmental neuroscience for policy. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(2), 141143. https://doi.org/10.1016/j.bpsc.2020.07.005Google Scholar
Gee, D. G., Bath, K. G., Johnson, C. M., Meyer, H. C., Murty, V. P., Bos, W. van Den, , & Hartley, C. A. (2018). Neurocognitive development of motivated behavior: Dynamic changes across childhood and adolescence. Journal of Neuroscience, 38(44), 94339445. https://doi.org/10.1523/JNEUROSCI.1674-18.2018Google Scholar
Gee, D. G., & Casey, B. J. (2015). The impact of developmental timing for stress and recovery. Neurobiology of Stress, 1, 184194. https://doi.org/10.1016/j.ynstr.2015.02.001Google Scholar
Gee, D. G., & Cohodes, E. M. (2021). Influences of caregiving on development: A sensitive period for biological embedding of predictability and safety cues. Current Directions in Psychological Science, 30(5), 376383. https://doi.org/10.1177/09637214211015673Google Scholar
Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 1563815643. https://doi.org/10.1073/pnas.1307893110Google Scholar
Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., Shapiro, M., Flannery, J., Lumian, D. S., Fareri, D. S., Caldera, C., & Tottenham, N. (2014). Maternal buffering of human amygdala-prefrontal circuitry during childhood but not during adolescence. Psychological Science, 25(11), 20672078. https://doi.org/10.1177/0956797614550878Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33(10), 45844593. https://doi.org/10.1523/JNEUROSCI.3446-12.2013Google Scholar
Glynn, L. M., & Baram, T. Z. (2019). The influence of unpredictable, fragmented parental signals on the developing brain. Frontiers in Neuroendocrinology, 53, 100736. https://doi.org/10.1016/j.yfrne.2019.01.002Google Scholar
Godinez, D. A., McRae, K., Andrews-Hanna, J. R., Smolker, H., & Banich, M. T. (2016). Differences in frontal and limbic brain activation in a small sample of monozygotic twin pairs discordant for severe stressful life events. Neurobiology of Stress, 5, 2636. https://doi.org/10.1016/j.ynstr.2016.10.002Google Scholar
Green, J. G., McLaughlin, K. A., Berglund, P. A., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2010). Childhood adversities and adult psychopathology in the National Comorbidity Survey Replication (NCS-R) I: Associations with first onset of DSM-IV disorders. Archives of General Psychiatry, 67(2), 113123. https://doi.org/10.1001/archgenpsychiatry.2009.186CrossRefGoogle Scholar
Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10–12-year-old children. Psychoneuroendocrinology, 34(1), 6275. https://doi.org/10.1016/j.psyneuen.2008.08.013Google Scholar
Gunnar, M. R., Morison, S. J., Chisholm, K., & Schuder, M. (2001). Salivary cortisol levels in children adopted from Romanian orphanages. Development and Psychopathology, 13(3), 611628. https://doi.org/10.1017/S095457940100311XGoogle Scholar
Hackman, D. A., Betancourt, L. M., Brodsky, N. L., Hurt, H., & Farah, M. J. (2012). Neighborhood disadvantage and adolescent stress reactivity. Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00277Google Scholar
Hanson, J. L., Adluru, N., Chung, M. K., Alexander, A. L., Davidson, R. J., & Pollak, S. D. (2013). Early neglect is associated with alterations in white matter integrity and cognitive functioning. Child Development, 84(5), 15661578. https://doi.org/10.1111/cdev.12069Google Scholar
Hanson, J. L., Knodt, A. R., Brigidi, B. D., & Hariri, A. R. (2015). Lower structural integrity of the uncinate fasciculus is associated with a history of child maltreatment and future psychological vulnerability to stress. Development and Psychopathology, 27(4 Pt. 2), 16111619. https://doi.org/10.1017/S0954579415000978Google Scholar
Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., Shirtcliff, E. A., Pollak, S. D., & Davidson, R. J. (2015). Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biological Psychiatry, 77(4), 314323. https://doi.org/10.1016/j.biopsych.2014.04.020Google Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63(10), 927934. https://doi.org/10.1016/j.biopsych.2008.03.015Google Scholar
Harlow, H. F. (1958). The nature of love. American Psychologist, 13(12), 673685. https://doi.org/10.1037/h0047884CrossRefGoogle Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 29(8), 12011213. https://doi.org/10.1016/j.pnpbp.2005.08.006Google Scholar
Herringa, R. J. (2017). Trauma, PTSD, and the developing brain. Current Psychiatry Reports, 19(10), Article 69. https://doi.org/10.1007/s11920-017-0825-3Google Scholar
Herringa, R. J., Birn, R. M., Ruttle, P. L., Burghy, C. A., Stodola, D. E., Davidson, R. J., & Essex, M. J. (2013). Childhood maltreatment is associated with altered fear circuitry and increased internalizing symptoms by late adolescence. Proceedings of the National Academy of Sciences, 110(47), 1911919124. https://doi.org/10.1073/pnas.1310766110Google Scholar
Herzberg, M. P., McKenzie, K. J., Hodel, A. S., Hunt, R. H., Mueller, B. A., Gunnar, M. R., & Thomas, K. M. (2021). Accelerated maturation in functional connectivity following early life stress: Circuit specific or broadly distributed? Developmental Cognitive Neuroscience, 48, Article 100922. https://doi.org/10.1016/j.dcn.2021.100922Google Scholar
Heyn, S. A., Keding, T. J., Ross, M. C., Cisler, J. M., Mumford, J. A., & Herringa, R. J. (2018). Abnormal prefrontal development in pediatric posttraumatic stress disorder: A longitudinal structural and functional magnetic resonance imaging study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(2), 171179. https://doi.org/10.1016/j.bpsc.2018.07.013Google Scholar
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638647. https://doi.org/10.1016/j.biopsych.2017.10.030Google Scholar
Ho, T. C., King, L. S., Leong, J. K., Colich, N. L., Humphreys, K. L., Ordaz, S. J., & Gotlib, I. H. (2017). Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence. Social Cognitive and Affective Neuroscience, 12(9), 14601469. https://doi.org/10.1093/scan/nsx065Google Scholar
Hofer, M. A., & Sullivan, R. M. (2001). Toward a neurobiology of attachment. In Nelson, C. A. & Lucian, M. (Eds.), Handbook of developmental cognitive neuroscience (pp. 599616). The MIT Press.Google Scholar
Hoffman, E. A., Clark, D. B., Orendain, N., Hudziak, J., Squeglia, L. M., & Dowling, G. J. (2019). Stress exposures, neurodevelopment and health measures in the ABCD study. Neurobiology of Stress, 10, Article 100157. https://doi.org/10.1016/j.ynstr.2019.100157Google Scholar
Hofstetter, S., Tavor, I., Moryosef, S. T., & Assaf, Y. (2013). Short-term learning induces white matter plasticity in the fornix. Journal of Neuroscience, 33(31), 1284412850. https://doi.org/10.1523/JNEUROSCI.4520-12.2013Google Scholar
Hölzel, B. K., Carmody, J., Evans, K. C., Hoge, E. A., Dusek, J. A., Morgan, L., Pitman, R. K., & Lazar, S. W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 1117. https://doi.org/10.1093/scan/nsp034Google Scholar
Honkaniemi, J., Pelto-Huikko, M., Rechardt, L., Isola, J., Lammi, A., Fuxe, K., Gustafsson, J.-Å., Wikström, A.-C., & Hökfelt, T. (1992). Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nucleus. Neuroendocrinology, 55(4), 451459. https://doi.org/10.1159/000126156Google Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic–pituitary–adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140(1), 256282. https://doi.org/10.1037/a0032671CrossRefGoogle Scholar
Humphreys, K. L., Miron, D., McLaughlin, K. A., Sheridan, M. A., Nelson, C. A., Fox, N. A., & Zeanah, C. H. (2018). Foster care promotes adaptive functioning in early adolescence among children who experienced severe, early deprivation. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 59(7), 811821. https://doi.org/10.1111/jcpp.12865Google Scholar
Humphreys, K. L., & Zeanah, C. H. (2015). Deviations from the expectable environment in early childhood and emerging psychopathology. Neuropsychopharmacology, 40(1), 154170. https://doi.org/10.1038/npp.2014.165Google Scholar
Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine Reviews, 12(2), 118134. https://doi.org/10.1210/edrv-12-2-118Google Scholar
Jedd, K., Hunt, R. H., Cicchetti, D., Hunt, E., Cowell, R. A., Rogosch, F. A., Toth, S. L., & Thomas, K. M. (2015). Long-term consequences of childhood maltreatment: Altered amygdala functional connectivity. Development and Psychopathology, 27(4 Pt. 2), 15771589. https://doi.org/10.1017/S0954579415000954Google Scholar
Johnson, F. K., Delpech, J.-C., Thompson, G. J., Wei, L., Hao, J., Herman, P., Hyder, F., & Kaffman, A. (2018). Amygdala hyper-connectivity in a mouse model of unpredictable early life stress. Translational Psychiatry, 8(1), Article 49. https://doi.org/10.1038/s41398-018-0092-zGoogle Scholar
Joos, C. M., McDonald, A., & Wadsworth, M. E. (2019). Extending the toxic stress model into adolescence: Profiles of cortisol reactivity. Psychoneuroendocrinology, 107, 4658. https://doi.org/10.1016/j.psyneuen.2019.05.002Google Scholar
Kaiser, R. H., Clegg, R., Goer, F., Pechtel, P., Beltzer, M., Vitaliano, G., Olson, D. P., Teicher, M. H., & Pizzagalli, D. A. (2018). Childhood stress, grown-up brain networks: Corticolimbic correlates of threat-related early life stress and adult stress response. Psychological Medicine, 48(7), 11571166. https://doi.org/10.1017/S0033291717002628Google Scholar
Kamigaki, T. (2019). Prefrontal circuit organization for executive control. Neuroscience Research, 140, 2336. https://doi.org/10.1016/j.neures.2018.08.017Google Scholar
Keding, T. J., & Herringa, R. J. (2015). Abnormal structure of fear circuitry in pediatric post-traumatic stress disorder. Neuropsychopharmacology, 40(3), 537545. https://doi.org/10.1038/npp.2014.239Google Scholar
Kircanski, K., Sisk, L. M., Ho, T. C., Humphreys, K. L., King, L. S., Colich, N. L., Ordaz, S. J., & Gotlib, I. H. (2019). Early life stress, cortisol, frontolimbic connectivity, and depressive symptoms during puberty. Development and Psychopathology, 31(3), 10111022. https://doi.org/10.1017/S0954579419000555Google Scholar
Koss, K. J., & Gunnar, M. R. (2018). Annual Research Review: Early adversity, the hypothalamic–pituitary–adrenocortical axis, and child psychopathology. Journal of Child Psychology and Psychiatry, 59(4), 327346. https://doi.org/10.1111/jcpp.12784Google Scholar
Koss, K. J., Mliner, S. B., Donzella, B., & Gunnar, M. R. (2016). Early adversity, hypocortisolism, and behavior problems at school entry: A study of internationally adopted children. Psychoneuroendocrinology, 66, 3138. https://doi.org/10.1016/j.psyneuen.2015.12.018Google Scholar
Lambert, H. K., King, K. M., Monahan, K. C., & McLaughlin, K. A. (2017). Differential associations of threat and deprivation with emotion regulation and cognitive control in adolescence. Development and Psychopathology, 29(3), 929940. https://doi.org/10.1017/S0954579416000584Google Scholar
Lambert, H. K., Sheridan, M. A., Sambrook, K. A., Rosen, M. L., Askren, M. K., & McLaughlin, K. A. (2017). Hippocampal contribution to context encoding across development is disrupted following early-life adversity. Journal of Neuroscience, 37(7), 19251934. https://doi.org/10.1523/JNEUROSCI.2618-16.2017Google Scholar
Lange, I., Goossens, L., Bakker, J., Michielse, S., van Winkel, R., Lissek, S., Leibold, N., Marcelis, M., Wichers, M., van Os, J., van Amelsvoort, T., & Schruers, K. (2019). Neurobehavioural mechanisms of threat generalization moderate the link between childhood maltreatment and psychopathology in emerging adulthood. Journal of Psychiatry & Neuroscience, 44(3), 185194. https://doi.org/10.1503/jpn.180053Google Scholar
Lautarescu, A., Pecheva, D., Nosarti, C., Nihouarn, J., Zhang, H., Victor, S., Craig, M., Edwards, A. D., & Counsell, S. J. (2020). Maternal prenatal stress is associated with altered uncinate fasciculus microstructure in premature neonates. Biological Psychiatry, 87(6), 559569. https://doi.org/10.1016/j.biopsych.2019.08.010Google Scholar
Lebel, C., & Deoni, S. (2018). The development of brain white matter microstructure. NeuroImage, 182, 207218. https://doi.org/10.1016/j.neuroimage.2017.12.097Google Scholar
Lieberman, A. F. (2017). The emotional life of the toddler. Simon & Schuster.Google Scholar
Loman, M. M., & Gunnar, M. R. (2010). Early experience and the development of stress reactivity and regulation in children. Neuroscience & Biobehavioral Reviews, 34(6), 867876. https://doi.org/10.1016/j.neubiorev.2009.05.007Google Scholar
Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biological Psychiatry, 48(10), 976980. https://doi.org/10.1016/S0006-3223(00)00965-3Google Scholar
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434445. https://doi.org/10.1038/nrn2639Google Scholar
Machlin, L., Miller, A. B., Snyder, J., McLaughlin, K. A., & Sheridan, M. A. (2019). Differential associations of deprivation and threat with cognitive control and fear conditioning in early childhood. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00080Google Scholar
Magalhães, R., Bourgin, J., Boumezbeur, F., Marques, P., Bottlaender, M., Poupon, C., Djemaï, B., Duchesnay, E., Mériaux, S., Sousa, N., Jay, T. M., & Cachia, A. (2017). White matter changes in microstructure associated with a maladaptive response to stress in rats. Translational Psychiatry, 7(1), e1009e1009. https://doi.org/10.1038/tp.2016.283Google Scholar
Magarinos, A. M., Verdugo, J. M. G., & McEwen, B. S. (1997). Chronic stress alters synaptic terminal structure in hippocampus. Proceedings of the National Academy of Sciences, 94(25), 1400214008.Google Scholar
Marusak, H. A., Martin, K. R., Etkin, A., & Thomason, M. E. (2015). Childhood trauma exposure disrupts the automatic regulation of emotional processing. Neuropsychopharmacology, 40(5), 12501258. https://doi.org/10.1038/npp.2014.311Google Scholar
Mason, G. M., Goldstein, M. H., & Schwade, J. A. (2019). The role of multisensory development in early language learning. Journal of Experimental Child Psychology, 183, 4864. https://doi.org/10.1016/j.jecp.2018.12.011Google Scholar
McCrory, E. J., De Brito, S. A., Kelly, P. A., Bird, G., Sebastian, C. L., Mechelli, A., Samuel, S., & Viding, E. (2013). Amygdala activation in maltreated children during pre-attentive emotional processing. British Journal of Psychiatry, 202(4), 269276. https://doi.org/10.1192/bjp.bp.112.116624Google Scholar
McEwen, B. S. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 20932101. https://doi.org/10.1001/archinte.1993.00410180039004Google Scholar
McEwen, B. S. (2012). Brain on stress: How the social environment gets under the skin. Proceedings of the National Academy of Sciences of the United States of America, 109(Suppl. 2), 1718017185. https://doi.org/10.1073/pnas.1121254109Google Scholar
McEwen, B. S., & Akil, H. (2020). Revisiting the stress concept: Implications for affective disorders. Journal of Neuroscience, 40(1), 1221. https://doi.org/10.1523/JNEUROSCI.0733-19.2019Google Scholar
McEwen, B. S., Albeck, D., Cameron, H., Chao, H. M., Gould, E., Hastings, N., Kuroda, Y., Luine, V., Magarinos, A. M., Mckittrick, C. R., Orchinik, M., Pavlides, C., Vaher, P., Watanabe, Y., & Weiland, N. (1995). Stress and the brain: A paradoxical role for adrenal steroids. In Litwack, G. (Ed.), Vitamins & hormones (Vol. 51, pp. 371402). Academic Press. https://doi.org/10.1016/S0083-6729(08)61045-6Google Scholar
McEwen, B. S., Bowles, N. P., Gray, J. D., Hill, M. N., Hunter, R. G., Karatsoreos, I. N., & Nasca, C. (2015). Mechanisms of stress in the brain. Nature Neuroscience, 18(10), 13531363. https://doi.org/10.1038/nn.4086Google Scholar
McEwen, B. S., & Magarinos, A. M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Sciences, 821(1), 271284. https://doi.org/10.1111/j.1749-6632.1997.tb48286.xGoogle Scholar
McEwen, B., & Milner, T. (2007). Hippocampal formation: Shedding light on the influence of sex and stress on the brain. Brain Research Review, 55(2), 343355. https://doi.org/10.1016/j.brainresrev.2007.02.006Google Scholar
McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 1629. https://doi.org/10.1016/j.neuron.2013.06.028Google Scholar
McEwen, B. S., Nasca, C., & Gray, J. D. (2016). Stress effects on neuronal structure: Hippocampus, amygdala, and prefrontal cortex. Neuropsychopharmacology, 41(1), 323. https://doi.org/10.1038/npp.2015.171Google Scholar
McGoron, L., Gleason, M. M., Smyke, A. T., Drury, S. S., Nelson, C. A., Gregas, M. C., Fox, N. A., & Zeanah, C. H. (2012). Recovering from early deprivation: Attachment mediates effects of caregiving on psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 51(7), 683693. https://doi.org/10.1016/j.jaac.2012.05.004Google Scholar
McLaughlin, K. A., Conron, K. J., Koenen, K. C., & Gilman, S. E. (2010). Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: A test of the stress sensitization hypothesis in a population-based sample of adults. Psychological Medicine, 40(10), 16471658. https://doi.org/10.1017/S0033291709992121Google Scholar
McLaughlin, K. A., Greif Green, J., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2012). Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. Archives of General Psychiatry, 69(11), 11511160. https://doi.org/10.1001/archgenpsychiatry.2011.2277Google Scholar
McLaughlin, K. A., & Sheridan, M. A. (2016). Beyond cumulative risk: A dimensional approach to childhood adversity. Current Directions in Psychological Science, 25(4), 239245. https://doi.org/10.1177/0963721416655883Google Scholar
McLaughlin, K. A., Sheridan, M. A., Gold, A. L., Duys, A., Lambert, H. K., Peverill, M., Heleniak, C., Shechner, T., Wojcieszak, Z., & Pine, D. S. (2016). Maltreatment exposure, brain structure, and fear conditioning in children and adolescents. Neuropsychopharmacology, 41(8), 19561964. https://doi.org/10.1038/npp.2015.365Google Scholar
McLaughlin, K. A., Sheridan, M. A., & Lambert, H. K. (2014). Childhood adversity and neural development: Deprivation and threat as distinct dimensions of early experience. Neuroscience and Biobehavioral Reviews, 47, 578591. https://doi.org/10.1016/j.neubiorev.2014.10.012Google Scholar
McLaughlin, K. A., Sheridan, M. A., & Nelson, C. A. (2017). Neglect as a violation of species-expectant experience: Neurodevelopmental consequences. Biological Psychiatry, 82(7), 462471. https://doi.org/10.1016/j.biopsych.2017.02.1096Google Scholar
McLaughlin, K. A., Sheridan, M. A., Tibu, F., Fox, N. A., Zeanah, C. H., & Nelson, C. A. (2015). Causal effects of the early caregiving environment on development of stress response systems in children. Proceedings of the National Academy of Sciences, 112(18), 56375642. https://doi.org/10.1073/pnas.1423363112Google Scholar
Mehta, M. A., Golembo, N. I., Nosarti, C., Colvert, E., Mota, A., Williams, S. C. R., Rutter, M., & Sonuga-Barke, E. J. S. (2009). Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: The English and Romanian Adoptees Study Pilot. Journal of Child Psychology and Psychiatry, 50(8), 943951. https://doi.org/10.1111/j.1469-7610.2009.02084.xGoogle Scholar
Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A., & Chattarji, S. (2005). Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proceedings of the National Academy of Sciences, 102(26), 93719376. https://doi.org/10.1073/pnas.0504011102Google Scholar
Morey, R. A., Haswell, C. C., Hooper, S. R., & De Bellis, M. D. (2016). Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. Neuropsychopharmacology, 41(3), 791801. https://doi.org/10.1038/npp.2015.205Google Scholar
Moriceau, S., & Sullivan, R. M. (2006). Maternal presence serves as a switch between learning fear and attraction in infancy. Nature Neuroscience, 9(8), 10041006. https://doi.org/10.1038/nn1733Google Scholar
Nelson, C. A. (2007). A neurobiological perspective on early human deprivation. Child Development Perspectives, 1(1), 1318. https://doi.org/10.1111/j.1750-8606.2007.00004.xGoogle Scholar
Nelson, C. A., & Gabard-Durnam, L. J. (2020). Early adversity and critical periods: Neurodevelopmental consequences of violating the expectable environment. Trends in Neurosciences, 43(3), 133143. https://doi.org/10.1016/j.tins.2020.01.002CrossRefGoogle ScholarPubMed
Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest Early Intervention Project. Science, 318(5858), 19371940. https://doi.org/10.1126/science.1143921Google Scholar
Opendak, M., Robinson-Drummer, P., Blomkvist, A., Zanca, R. M., Wood, K., Jacobs, L., Chan, S., Tan, S., Woo, J., Venkataraman, G., Kirschner, E., Lundström, J. N., Wilson, D. A., Serrano, P. A., & Sullivan, R. M. (2019). Neurobiology of maternal regulation of infant fear: The role of mesolimbic dopamine and its disruption by maltreatment. Neuropsychopharmacology, 44, 12471257. https://doi.org/10.1038/s41386-019-0340-9Google Scholar
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., Botteron, K. N., Harms, M. P., & Barch, D. M. (2015). Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulation. Journal of Abnormal Psychology, 124(4), 817833. https://doi.org/10.1037/abn0000094Google Scholar
Park, A. T., Leonard, J. A., Saxler, P. K., Cyr, A. B., Gabrieli, J. D. E., & Mackey, A. P. (2018). Amygdala–medial prefrontal cortex connectivity relates to stress and mental health in early childhood. Social Cognitive and Affective Neuroscience, 13(4), 430439. https://doi.org/10.1093/scan/nsy017Google Scholar
Pechtel, P., Lyons-Ruth, K., Anderson, C. M., & Teicher, M. H. (2014). Sensitive periods of amygdala development: The role of maltreatment in preadolescence. NeuroImage, 97, 236244. https://doi.org/10.1016/j.neuroimage.2014.04.025Google Scholar
Peckins, M. K., Dockray, S., Eckenrode, J. L., Heaton, J., & Susman, E. J. (2012). The longitudinal impact of exposure to violence on cortisol reactivity in adolescents. Journal of Adolescent Health, 51(4), 366372. https://doi.org/10.1016/j.jadohealth.2012.01.005Google Scholar
Perry, R., & Sullivan, R. M. (2014). Neurobiology of attachment to an abusive caregiver: Short-term benefits and long-term costs. Developmental Psychobiology, 56(8), 16261634. https://doi.org/10.1002/dev.21219Google Scholar
Peverill, M., Sheridan, M. A., Busso, D. S., & McLaughlin, K. A. (2019). Atypical prefrontal–amygdala circuitry following childhood exposure to abuse: links with adolescent psychopathology. Child Maltreatment, 24(4), 411423. https://doi.org/10.1177/1077559519852676Google Scholar
Plotsky, P. M., Thrivikraman, K. V., Nemeroff, C. B., Caldji, C., Sharma, S., & Meaney, M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology, 30(12), 21922204. https://doi.org/10.1038/sj.npp.1300769Google Scholar
Radley, J. J., Arias, C. M., & Sawchenko, P. E. (2006). Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. Journal of Neuroscience, 26(50), 1296712976. https://doi.org/10.1523/JNEUROSCI.4297-06.2006Google Scholar
Rickard, I. J., Frankenhuis, W. E., & Nettle, D. (2014). Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspectives on Psychological Science, 9(1), 315. https://doi.org/10.1177/1745691613513467Google Scholar
Robinson-Drummer, P. A., Opendak, M., Blomkvist, A., Chan, S., Tan, S., Delmer, C., Wood, K., Sloan, A., Jacobs, L., Fine, E., Chopra, D., Sandler, C., Kamenetzky, G., & Sullivan, R. M. (2019). Infant trauma alters social buffering of threat learning: Emerging role of prefrontal cortex in preadolescence. Frontiers in Behavioral Neuroscience, 13. https://doi.org/10.3389/fnbeh.2019.00132Google Scholar
Rutter, M. (1998). Developmental catch-up, and deficit, following adoption after severe global early privation. Journal of Child Psychology and Psychiatry, 39(4), 465476. https://doi.org/10.1111/1469-7610.00343Google Scholar
Sabatini, M. J., Ebert, P., Lewis, D. A., Levitt, P., Cameron, J. L., & Mirnics, K. (2007). Amygdala gene expression correlates of social behavior in monkeys experiencing maternal separation. Journal of Neuroscience, 27(12), 32953304. https://doi.org/10.1523/JNEUROSCI.4765-06.2007Google Scholar
Sanchez, M. M., McCormack, K. M., & Howell, B. R. (2015). Social buffering of stress responses in nonhuman primates: Maternal regulation of the development of emotional regulatory brain circuits. Social Neuroscience, 10(5), 512526. https://doi.org/10.1080/17470919.2015.1087426Google Scholar
Schaffer, H. R., & Emerson, P. E. (1964). The development of social attachments in infancy. Monographs of the Society for Research in Child Development, 29(3), 177. https://doi.org/10.2307/1165727Google Scholar
Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. Proceedings of the National Academy of Sciences, 109(32), 1292712932. https://doi.org/10.1073/pnas.1200041109Google Scholar
Sheridan, M. A., & McLaughlin, K. A. (2014). Dimensions of early experience and neural development: Deprivation and threat. Trends in Cognitive Sciences, 18(11), 580585. https://doi.org/10.1016/j.tics.2014.09.001Google Scholar
Sheridan, M. A., Peverill, M., Finn, A. S., & McLaughlin, K. A. (2017). Dimensions of childhood adversity have distinct associations with neural systems underlying executive functioning. Development and Psychopathology, 29(5), 17771794. https://doi.org/10.1017/S0954579417001390Google Scholar
Shonkoff, J. P., The Committee on Psychosocial Aspects of Child and Family Health, Committee on Early Childhood Adoption, and Dependent Care, and Section on Developmental and Behavioral Pediatrics, Siegel, B. S., Dobbins, M. I., Earls, M. F., Garner, A. S., McGuinn, L., Pascoe, J., & Wood, D. L. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129(1), e232e246. https://doi.org/10.1542/peds.2011-2663Google Scholar
Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50(4), 632639. https://doi.org/10.1016/j.yhbeh.2006.06.010Google Scholar
Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., & Navalta, C. P. (2002). Developmental neurobiology of childhood stress and trauma. The Psychiatric Clinics of North America, 25(2), 397426, vii–viii. https://doi.org/10.1016/s0193-953x(01)00003-xGoogle Scholar
Teicher, M. H., Anderson, C. M., Ohashi, K., Khan, A., McGreenery, C. E., Bolger, E. A., Rohan, M. L., & Vitaliano, G. D. (2018). Differential effects of childhood neglect and abuse during sensitive exposure periods on male and female hippocampus. NeuroImage, 169, 443452. https://doi.org/10.1016/j.neuroimage.2017.12.055Google Scholar
Tottenham, N. (2012). Human amygdala development in the absence of species-expected caregiving. Developmental Psychobiology, 54(6), 598611. https://doi.org/10.1002/dev.20531Google Scholar
Tottenham, N. (2015). Social scaffolding of human amygdala-mPFCcircuit development. Social Neuroscience, 10(5), 489499. https://doi.org/10.1080/17470919.2015.1087424Google Scholar
Tottenham, N., Hare, T. A., Millner, A., Gilhooly, T., Zevin, J. D., & Casey, B. J. (2011). Elevated amygdala response to faces following early deprivation. Developmental Science, 14(2), 190204. https://doi.org/10.1111/j.1467-7687.2010.00971.xGoogle Scholar
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., Millner, A., Galvan, A., Davidson, M. C., Eigsti, I.-M., Thomas, K. M., Freed, P. J., Booma, E. S., Gunnar, M. R., Altemus, M., Aronson, J., & Casey, B. J. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13(1), 4661. https://doi.org/10.1111/j.1467-7687.2009.00852.xGoogle Scholar
Uematsu, A., Matsui, M., Tanaka, C., Takahashi, T., Noguchi, K., Suzuki, M., & Nishijo, H. (2012). Developmental trajectories of amygdala and hippocampus from infancy to early adulthood in healthy individuals. PLoS ONE, 7(10), e46970. https://doi.org/10.1371/journal.pone.0046970Google Scholar
Uno, H., Tarara, R., Else, J. G., Suleman, M. A., & Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. Journal of Neuroscience, 9(5), 17051711. https://doi.org/10.1523/JNEUROSCI.09-05-01705.1989Google Scholar
van der Kolk, B. A. (2003). The neurobiology of childhood trauma and abuse. Child and Adolescent Psychiatric Clinics of North America, 12(2), 293317. https://doi.org/10.1016/S1056-4993(03)00003-8Google Scholar
van der Kolk, B. A., McFarlane, A. C., & Weiseth, L. (2012). Traumatic stress: The effects of overwhelming experience on mind, body, and society. Guilford Press.Google Scholar
van Harmelen, A.-L., van Tol, M.-J., Demenescu, L. R., van der Wee, A. N. J., Veltman, D. J., Aleman, A., van Buchem, A. M., Spinhoven, P., Penninx, B. W. J. H., & Elzinga, B. M. (2013). Enhanced amygdala reactivity to emotional faces in adults reporting childhood emotional maltreatment. Social Cognitive and Affective Neuroscience, 8(4), 362369. https://doi.org/10.1093/scan/nss007Google Scholar
Vasung, L., Abaci Turk, E., Ferradal, S. L., Sutin, J., Stout, J. N., Ahtam, B., Lin, P.-Y., & Grant, P. E. (2019). Exploring early human brain development with structural and physiological neuroimaging. NeuroImage, 187, 226254. https://doi.org/10.1016/j.neuroimage.2018.07.041Google Scholar
Vyas, A., Bernal, S., & Chattarji, S. (2003). Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Research, 965(1), 290294. https://doi.org/10.1016/S0006-8993(02)04162-8Google Scholar
Vyas, A., Mitra, R., Rao, B. S., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22(15), 68106818. https://doi.org/10.1523/JNEUROSCI.22-15-06810.2002Google Scholar
Vyas, S., Rodrigues, A. J., Silva, J. M., Tronche, F., Almeida, O. F. X., Sousa, N., & Sotiropoulos, I. (2016). Chronic stress and glucocorticoids: From neuronal plasticity to neurodegeneration [Review Article]. Neural Plasticity, 2016, Article 6391686. https://doi.org/10.1155/2016/6391686Google Scholar
Wade, M., Zeanah, C. H., Fox, N. A., Tibu, F., Ciolan, L. E., & Nelson, C. A. (2019). Stress sensitization among severely neglected children and protection by social enrichment. Nature Communications, 10(1), Article 5771. https://doi.org/10.1038/s41467-019-13622-3Google Scholar
Wang, Q., Verweij, E. W. E., Krugers, H. J., Joels, M., Swaab, D. F., & Lucassen, P. J. (2014). Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Structure and Function, 219(5), 16151626. https://doi.org/10.1007/s00429-013-0589-4Google Scholar
Weems, C. F., Klabunde, M., Russell, J. D., Reiss, A. L., & Carrión, V. G. (2015). Post-traumatic stress and age variation in amygdala volumes among youth exposed to trauma. Social Cognitive and Affective Neuroscience, 10(12), 16611667. https://doi.org/10.1093/scan/nsv053Google Scholar
Wolf, R. C., & Herringa, R. J. (2016). Prefrontal–amygdala dysregulation to threat in pediatric posttraumatic stress disorder. Neuropsychopharmacology, 41(3), 822831. https://doi.org/10.1038/npp.2015.209Google Scholar
Woolley, C. S., Gould, E., & McEwen, B. S. (1990). Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research, 531(1–2), 225231. https://doi.org/10.1016/0006-8993(90)90778-AGoogle Scholar
Wu, M., Kujawa, A., Lu, L. H., Fitzgerald, D. A., Klumpp, H., Fitzgerald, K. D., Monk, C. S., & Phan, K. L. (2016). Age-related changes in amygdala–frontal connectivity during emotional face processing from childhood into young adulthood. Human Brain Mapping, 37(5), 16841695. https://doi.org/10.1002/hbm.23129Google Scholar
Yan, C.-G., Rincón-Cortés, M., Raineki, C., Sarro, E., Colcombe, S., Guilfoyle, D. N., Yang, Z., Gerum, S., Biswal, B. B., Milham, M. P., Sullivan, R. M., & Castellanos, F. X. (2017). Aberrant development of intrinsic brain activity in a rat model of caregiver maltreatment of offspring. Translational Psychiatry, 7(1), e1005e1005. https://doi.org/10.1038/tp.2016.276Google Scholar
Yehuda, R., Daskalakis, N. P., Bierer, L. M., Bader, H. N., Klengel, T., Holsboer, F., & Binder, E. B. (2016). Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biological Psychiatry, 80(5), 372380. https://doi.org/10.1016/j.biopsych.2015.08.005Google Scholar
Zeanah, C., Nelson, C., Fox, N., Smyke, A., Marshall, P., Parker, S., & Koga, S. (2003). Designing research to study the effects of institutionalization on brain and behavioral development: The Bucharest Early Intervention Project. Development and Psychopathology, 15, 885907. https://doi.org/10.1017/S0954579403000452Google Scholar
Zhu, J., Lowen, S. B., Anderson, C. M., Ohashi, K., Khan, A., & Teicher, M. H. (2019). Association of prepubertal and postpubertal exposure to childhood maltreatment with adult amygdala function. JAMA Psychiatry, 76(8), 843853. https://doi.org/10.1001/jamapsychiatry.2019.0931Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×