Skip to main content Accessibility help
  • Print publication year: 2020
  • Online publication date: March 2020

27 - Models for Dyadic Data

from Part VI - Intensive Longitudinal Designs


This chapter revises and describes statistical models for analyzing data from dyadic systems such as therapist-client, mother-children, or romantic partners, among others. It defines interdependence as the key characteristic of dyadic systems, and then identifies clinical research questions related to dyadic systems and processes that unfold over time. These questions are used to select a set of statistical models and data-analytic techniques for answering clinical research questions related to dyadic research. Emphasis is placed on dynamic models that allow transitioning from asking questions about the outcomes (i.e., Did the therapy work?) to questions about the processes and mechanisms (i.e., How did it work?).

Related content

Powered by UNSILO
Anker, M. G., Owen, J., Duncan, B. L., & Sparks, J. A. (2010). The Alliance in Couple Therapy: Partner Influence, Early Change, and Alliance Patterns in a Naturalistic Sample. Journal of Consulting and Clinical Psychology, 78(5), 635645.
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1). Retrieved from
Baucom, B. R., Dickenson, J. A., Atkins, D. C., Baucom, D. H., Fischer, M. S., Weusthoff, S., … Zimmermann, T. (2015a). The Interpersonal Process Model of Demand/Withdraw Behavior. Journal of Family Psychology, 29(1), 8090.
Baucom, B. R., Sheng, E., Christensen, A., Georgiou, P. G., Narayanan, S. S., & Atkins, D. C. (2015b). Behaviorally-Based Couple Therapies Reduce Emotional Arousal during Couple Conflict. Behaviour Research and Therapy, 72, 4955.
Berghuis, J. P., & Stanton, A. L. (2002). Adjustment to a Dyadic Stressor: A Longitudinal Study of Coping and Depressive Symptoms in Infertile Couples over an Insemination Attempt. Journal of Consulting and Clinical Psychology, 70(2), 433438.
Bisgaard, S., & Kulahci, M. (2011). Time Series Analysis and Forecasting by Example. Hoboken, NJ: Wiley.
Bodenmann, G., Hilpert, P., Nussbeck, F. W., & Bradbury, T. N. (2014). Enhancement of Couples’ Communication and Dyadic Coping by a Self-Directed Approach: A Randomized Controlled Trial. Journal of Consulting and Clinical Psychology, 82(4), 580591.
Boker, S. M., & Laurenceau, J.-P. (2006). Dynamical Systems Modeling: An Application to the Regulation of Intimacy and Disclosure in Marriage. In Walls, T. A. & Schafer, J. L. (Eds.), Models for Intensive Longitudinal Data (pp. 195218). New York: Oxford University Press.
Boker, S. M., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., … Bates, T. (2011). OpenMx: An Open Source Extended Structural Equation Modeling Framework. Psychometrika, 76(2), 306317.
Bolger, N., & Laurenceau, J.-P. (2013). Design and Analysis of Intensive Longitudinal Studies of Distinguishable Dyads. In Intensive Longitudinal Methods: An Introduction to Diary and Experience Sampling Research (pp. 143175). New York: Guilford Press.
Bollen, K. A., & Curran, P. J. (2006). Latent Curve Models: A Structural Equation Perspective. Hoboken, N.J: Wiley-Interscience.
Bringmann, L. F., Hamaker, E. L., Vigo, D. E., Aubert, A., Borsboom, D., & Tuerlinckx, F. (2017). Changing Dynamics: Time-Varying Autoregressive Models Using Generalized Additive Modeling. Psychological Methods, 22(3), 409425.
Bringmann, L. F., Pe, M. L., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W., … Kuppens, P. (2016). Assessing Temporal Emotion Dynamics Using Networks. Assessment, 23(4), 425435.
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data. PLOS ONE, 8(4), e60188.
Browne, M. W., & Nesselroade, J. R. (2005). Representing Psychological Processes with Dynamic Factor Models: Some Promising Uses and Extensions of Arma Time Series Models. In Maydeu-Olivares, A & McArdle, J. J (Eds.), Advances in Psychometrics: A Festschrift for Roderick P. McDonald (pp. 415452). Mahwah, NJ: Lawrence Erlbaum Associates.
Browne, M. W., & Zhang, G. (2003). DyFA 2.03 User Guide. Retrieved from
Browne, M. W., & Zhang, G. (2007). Developments in the Factor Analysis of Individual Time Series. In Cudeck, R & MacCallum, R. C (Eds.), Factor Analysis at 100: Time Series in Psychology. Historical Developments and Future Directions (pp. 265291). Mahwah, NJ: Lawrence Erlbaum Associates.
Butler, E. A. (2017). Emotions Are Temporal Interpersonal Systems. Current Opinion in Psychology, 17(Supplement C), 129134.
Butner, J., Diamond, L. M., & Hicks, A. M. (2007). Attachment Style and Two Forms of Affect Coregulation between Romantic Partners. Personal Relationships, 14(3), 431455.
Butterfield, R. M., & Lewis, M. A. (2002). Health-Related Social Influence: A Social Ecological Perspective on Tactic Use. Journal of Social and Personal Relationships, 19(4), 505526.
Cabrieto, J., Tuerlinckx, F., Kuppens, P., Grassmann, M., & Ceulemans, E. (2017). Detecting Correlation Changes in Multivariate Time Series: A Comparison of Four Non-Parametric Change Point Detection Methods. Behavior Research Methods, 49(3), 9881005.
Campbell, L., Simpson, J. A., Kashy, D. A., & Rholes, W. S. (2001). Attachment Orientations, Dependence, and Behavior in a Stressful Situation: An Application of the Actor-Partner Interdependence Model. Journal of Social and Personal Relationships, 18(6), 821843.
Castro-Schilo, L., & Ferrer, E. (2013). Comparison of Nomothetic Versus Idiographic-Oriented Methods for Making Predictions about Distal Outcomes from Time Series Data. Multivariate Behavioral Research, 48(2), 175207.
Chow, S.-M., Ferrer, E., & Hsieh, F. (2011a). Statistical Methods for Modeling Human Dynamics: An Interdisciplinary Dialogue. New York: Taylor & Francis.
Chow, S.-M., Ferrer, E., & Nesselroade, J. R. (2007). An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models. Multivariate Behavioral Research, 42(2), 283321.
Chow, S.-M., Mattson, W. I., & Messinger, D. S. (2014). Representing Trends and Moment-to-Moment Variability in Dyadic and Family Processes Using State-Space Modeling Techniques. In Emerging Methods in Family Research (pp. 3955). Cham: Springer.
Chow, S.-M., Nesselroade, J. R., Shifren, K., & McArdle, J. J. (2004). Dynamic Structure of Emotions among Individuals with Parkinson’s Disease. Structural Equation Modeling: A Multidisciplinary Journal, 11(4), 560582.
Chow, S.-M., Ou, O., Cohn, J. F., & Messinger, D. S. (2017). Representing Self-Organization and Non-Stationarities in Dyadic Interaction Processes Using Dynamic Systems Modeling Techniques. In Von Davier, A., Kyllonen, P. C., & Zhu, M. (Eds.), Innovative Assessment of Collaboration. New York: Springer.
Chow, S.-M., Zu, J., Shifren, K., & Zhang, G. (2011b). Dynamic Factor Analysis Models with Time-Varying Parameters. Multivariate Behavioral Research, 46(2), 303339.
Cook, W. L., & Snyder, D. K. (2005). Analyzing Nonindependent Outcomes in Couple Therapy Using the Actor-Partner Interdependence Model. Journal of Family Psychology, 19(1), 133141.
Crowell, S. E., Baucom, B. R., Yaptangco, M., Bride, D., Hsiao, R., McCauley, E., & Beauchaine, T. P. (2014). Emotion Dysregulation and Dyadic Conflict in Depressed and Typical Adolescents: Evaluating Concordance across Psychophysiological and Observational Measures. Biological Psychology, 98(Supplement C), 5058.
Curran, P. J., & Bollen, K. A. (2001). The Best of Both Worlds: Combining Autoregressive and Latent Curve Models. In Collins, L. M. & Sayer, A. G (Eds.), New Methods for the Analysis of Change (pp. 107135). Washington, DC: American Psychological Association.
Driscoll, K. A., Schatschneider, C., McGinnity, K., & Modi, A. C. (2012). Application of Dyadic Data Analysis in Pediatric Psychology: Cystic Fibrosis Health-Related Quality of Life and Anxiety in Child-Caregiver Dyads. Journal of Pediatric Psychology, 37(6), 605611.
Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous Time Structural Equation Modeling with R Package ctsem. Journal of Statistical Software, 77(5). Retrieved from
Engle, R., & Watson, M. (1981). A One-Factor Multivariate Time Series Model of Metropolitan Wage Rates. Journal of the American Statistical Association, 76(376), 774781.
Felmlee, D. H. (2006). Application of Dynamic Systems Analysis to Dyadic Interactions. In Ong, D & van Dulmen, M (Eds.), Oxford Handbook of Methods in Positive Psychology (pp. 409422). New York: Oxford University Press.
Felmlee, D. H., & Greenberg, D. F. (1999). A Dynamic Systems Model of Dyadic Interaction. Journal of Mathematical Sociology, 23(3), 155180.
Ferrer, E. (2016). Exploratory Approaches for Studying Social Interactions, Dynamics, and Multivariate Processes in Psychological Science. Multivariate Behavioral Research, 51(2–3), 240256.
Ferrer, E., & Helm, J. L. (2013). Dynamical Systems Modeling of Physiological Coregulation in Dyadic Interactions. International Journal of Psychophysiology, 88(3), 296308.
Ferrer, E., & McArdle, J. J. (2003). Alternative Structural Models for Multivariate Longitudinal Data Analysis. Structural Equation Modeling: A Multidisciplinary Journal, 10(4), 493524.
Ferrer, E., & McArdle, J. J. (2004). An Experimental Analysis of Dynamic Hypotheses about Cognitive Abilities and Achievement from Childhood to Early Adulthood. Developmental Psychology, 40(6), 935952.
Ferrer, E., & McArdle, J. J. (2010). Longitudinal Modeling of Developmental Changes in Psychological Research. Current Directions in Psychological Science, 19(3), 149154.
Ferrer, E., & Nesselroade, J. R. (2003). Modeling Affective Processes in Dyadic Relations via Dynamic Factor Analysis. Emotion, 3(4), 344360.
Ferrer, E., & Rast, P. (2017). Partitioning the Variability of Daily Emotion Dynamics in Dyadic Interactions with a Mixed-Effects Location Scale Model. Current Opinion in Behavioral Sciences, 15(Supplement C), 1015.
Ferrer, E., & Steele, J. (2013). Differential Equations for Evaluating Theoretical Models of Dyadic Interactions. In Molenaar, P. C. M., Lerner, R. M., & Newell, K. M. (Eds.), Handbook of Developmental Systems Theory and Methodology (pp. 345368). New York: Guilford.
Ferrer, E., & Steele, J. (2014). Differential Equations for Evaluating Theoretical Models of Dyadic Interactions: Handbook of Developmental Systems Theory and Methodology. New York: Guilford.
Ferrer, E., & Steele, J. S. (2012). Dynamic Systems Analysis of Affective Processes in Dyadic Interactions Using Differential Equations. In Hancock, G & Harrings, J (Eds.), Advances in Longitudinal Methods in the Social and Behavioral Sciences (pp. 111134). Charlotte, NC: Information Age Publishing.
Ferrer, E., & Widaman, K. F. (2008). Dynamic Factor Analysis of Dyadic Affective Processes with Inter-Group Differences. In Card, N. A, Selig, J. P., & Little, T. D. (Eds.), Modeling Dyadic and Interdependent Data in the Developmental and Behavioral Sciences (pp. 107137). New York: Routledge.
Ferrer, E., & Zhang, G. (2009). Time Series Models for Examining Psychological Processes: Applications and New Developments. In Millsap, R. E. & Maydeu-Olivares, A. (Eds.), Modeling Dyadic and Interdependent Data in the Developmental and Behavioral Sciences (pp. 107137). London: Sage Publications.
Ferrer, E., Balluerka, N., & Widaman, K. F. (2008). Factorial Invariance and the Specification of Second-Order Latent Growth Models. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 4(1), 2236.
Ferrer, E., Chen, S., Chow, S.-M., & Hsieh, F. (2010). Exploring Intra-Individual, Inter-Individual and Inter-Variable Dynamics in Dyadic Interactions. In Chow, S.-M., Ferrer, E., & Hsieh, F. (Eds.), Statistical Methods for Modeling Human Dynamics: An Interdisciplinary Dialogue (pp. 381411). New York: Taylor and Francis.
Ferrer, E., McArdle, J. J., Shaywitz, B. A., Holahan, J. M., Marchione, K., & Shaywitz, S. E. (2007). Longitudinal Models of Developmental Dynamics between Reading and Cognition from Childhood to Adolescence. Developmental Psychology, 43(6), 14601473.
Ferrer, E., Steele, J. S., & Hsieh, F. (2012). Analyzing the Dynamics of Affective Dyadic Interactions Using Patterns of Intra- and Interindividual Variability. Multivariate Behavioral Research, 47(1), 136171.
Fisher, A. J., Newman, M. G., & Molenaar, P. C. M. (2011). A Quantitative Method for the Analysis of Nomothetic Relationships between Idiographic Structures: Dynamic Patterns Create Attractor States for Sustained Posttreatment Change. Journal of Consulting and Clinical Psychology, 79(4), 552563.
Franks, M. M., Wendorf, C. A., Gonzalez, R., & Ketterer, M. (2004). Aid and Influence: Health-Promoting Exchanges of Older Married Partners. Journal of Social and Personal Relationships, 21(4), 431445.
Garcia-Lopez, L. J., Díaz-Castela, M. del M., Muela-Martinez, J. A., & Espinosa-Fernandez, L. (2014). Can Parent Training for Parents with High Levels of Expressed Emotion Have a Positive Effect on Their Child’s Social Anxiety Improvement? Journal of Anxiety Disorders, 28(8), 812822.
Girard, J., Wright, A., Beeney, J., Lazarus, S., Scott, L., Stepp, S., & Pilkonis, P. (2017). Interpersonal Problems across Levels of the Psychopathology Hierarchy. Comprehensive Psychiatry, 79, 5369.
Goldfried, M. R., Greenberg, L. S., & Marmar, C. (1990). Individual Psychotherapy: Process and Outcome. Annual Review of Psychology, 41(1), 659688.
Gonzalez, R., & Griffin, D. (1997). On the Statistics of Interdependence: Treating Dyadic Data with Respect. In Duck, S. (Ed.), Handbook of Personal Relationships: Theory, Research and Interventions (pp. 271302). Hoboken, NJ: John Wiley.
Gottman, J. M., & Notarius, C. I. (2000). Decade Review: Observing Marital Interaction. Journal of Marriage and Family, 62(4), 927947.
Gottman, J. M., Murray, J. D., Swanson, C. C., Tyson, R., & Swanson, K. R. (2002). The Mathematics of Marriage: Dynamic Nonlinear Models. Cambridge, MA: MIT Press.
Gottman, J. M., Swanson, C., & Murray, J. (1999). The Mathematics of Marital Conflict: Dynamic Mathematical Nonlinear Modeling of Newlywed Marital Interaction. Journal of Family Psychology, 13(1), 319.
Granic, I., & Patterson, G. R. (2006). Toward a Comprehensive Model of Antisocial Development: A Dynamic Systems Approach. Psychological Review, 113(1), 101131.
Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. Journal of Statistical Software, 33(2). Retrieved from
Hagedoorn, M., Kuijer, R. G., Buunk, B. P., DeJong, G. M., Wobbes, T., & Sanderman, R. (2000). Marital Satisfaction in Patients with Cancer: Does Support from Intimate Partners Benefit Those Who Need It Most? Health Psychology, 19(3), 274282.
Hamaker, E. L., Zhang, Z., & van der Maas, H. L. J. (2009). Using Threshold Autoregressive Models to Study Dyadic Interactions. Psychometrika, 74(4), 727745.
Hawrilenko, M., Gray, T. D., & Córdova, J. V. (2016). The Heart of Change: Acceptance and Intimacy Mediate Treatment Response in a Brief Couples Intervention. Journal of Family Psychology, 30(1), 93103.
Hayes, A. M., & Strauss, J. L. (1998). Dynamic Systems Theory as a Paradigm for the Study of Change in Psychotherapy: An Application to Cognitive Therapy for Depression. Journal of Consulting and Clinical Psychology, 66(6), 939947.
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data. Biometrics, 64(2), 627634.
Helm, J. L., Sbarra, D., & Ferrer, E. (2012). Assessing Cross-Partner Associations in Physiological Responses via Coupled Oscillator Models. Emotion, 12(4), 748762.
Helm, J. L., Sbarra, D. A., & Ferrer, E. (2014). Coregulation of Respiratory Sinus Arrhythmia in Adult Romantic Partners. Emotion, 14(3), 522531.
Hollon, S. D., Muñoz, R. F., Barlow, D. H., Beardslee, W. R., Bell, C. C., Bernal, G., … Sommers, D. (2002). Psychosocial Intervention Development for the Prevention and Treatment of Depression: Promoting Innovation and Increasing Access. Biological Psychiatry, 52(6), 610630.
Hsieh, F., Ferrer, E., Chen, S.-C., & Chow, S.-M. (2010). Exploring the Dynamics of Dyadic Interactions via Hierarchical Segmentation. Psychometrika, 75(2), 351372.
Kenny, D. A. (1996). Models of Non-Independence in Dyadic Research. Journal of Social and Personal Relationships, 13(2), 279294.
Kenny, D. A., & Judd, C. M. (1986). Consequences of Violating the Independence Assumption in Analysis of Variance. Psychological Bulletin, 99(3), 422431.
Kenny, D. A., Kashy, D. A., & Bolger, N. (1998). Data Analysis in Social Psychology. In Gilbert, D., Fiske, S., & Lindzey, G. (Eds.), Handbook of Social Psychology (4th edn., Vol. 1, pp. 233265). Boston: McGraw-Hill.
Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). Dyadic Data Analysis. New York: Guilford Press.
Kivlighan, D. M., Clements, L., Blake, C., Arnzen, A., & Brady, L. (1993). Counselor Sex Role Orientation, Flexibility, and Working Alliance Formation. Journal of Counseling & Development, 72(1), 95100.
Kivlighan, D. M., Marmarosh, C. L., & Hilsenroth, M. J. (2014). Client and Therapist Therapeutic Alliance, Session Evaluation, and Client Reliable Change: A Moderated Actor-Partner Interdependence Model. Journal of Counseling Psychology, 61(1), 1523.
Kline, R. B. (2016). Computer Tools. In Principles and Practice of Structural Equation Modeling (4th edn., pp. 97113). New York: Guilford Press.
Kopta, S. M., Lueger, R. J., Saunders, S. M., & Howard, K. I. (1999). Individual Psychotherapy Outcome and Process Research: Challenges Leading to Greater Turmoil or a Positive Transition? Annual Review of Psychology, 50(1), 441469.
Kouros, C. D., & Cummings, E. M. (2010). Longitudinal Associations Between Husbands’ and Wives’ Depressive Symptoms. Journal of Marriage and Family, 72(1), 135147.
Laurenceau, J.-P., & Bolger, N. (2005). Using Diary Methods to Study Marital and Family Processes. Journal of Family Psychology, 19(1), 8697.
Laurenceau, J.-P., Hayes, A. M., & Feldman, G. C. (2007). Some Methodological and Statistical Issues in the Study of Change Processes in Psychotherapy. Clinical Psychology Review, 27(6), 682695.
Lawrence, E., Yoon, J., Langer, A., & Ro, E. (2009). Is Psychological Aggression as Detrimental as Physical Aggression? The Independent Effects of Psychological Aggression on Depression and Anxiety Symptoms. Violence and Victims, 24(1), 2035.
Ledermann, T., & Kenny, D. A. (2012). The Common Fate Model for Dyadic Data: Variations of a Theoretically Important but Underutilized Model. Journal of Family Psychology, 26(1), 140148.
Ledermann, T., & Macho, S. (2014). Analyzing Change at the Dyadic Level: The Common Fate Growth Model. Journal of Family Psychology, 28(2), 204213.
Ledermann, T., Macho, S., & Kenny, D. A. (2011). Assessing Mediation in Dyadic Data Using the Actor-Partner Interdependence Model. Structural Equation Modeling: A Multidisciplinary Journal, 18(4), 595612.
Levenson, R. W., & Gottman, J. M. (1983). Marital Interaction: Physiological Linkage and Affective Exchange. Journal of Personality and Social Psychology, 45(3), 587597.
Madhyastha, T. M., Hamaker, E. L., & Gottman, J. M. (2011). Investigating Spousal Influence Using Moment-to-Moment Affect Data from Marital Conflict. Journal of Family Psychology, 25(2), 292300.
Marmarosh, C. L., Kivlighan, D. M., Bieri, K., LaFauci Schutt, J. M., Barone, C., & Choi, J. (2014). The Insecure Psychotherapy Base: Using Client and Therapist Attachment Styles to Understand the Early Alliance. Psychotherapy, 51(3), 404412.
McArdle, J. J. (1982). Structural Equation Modeling of an Individual System: Preliminary Results from “A Case Study in Episodic Alcoholism.” Unpublished Manuscript, Department of Psychology, University of Denver.
McArdle, J. J. (1988). Dynamic but Structural Equation Modeling of Repeated Measures Data. In Nesselroade, J. R. & Cattell, R. B. (Eds.), Handbook of Multivariate Experimental Psychology (pp. 561614). Boston, MA: Springer.
McArdle, J. J. (2001). A Latent Difference Score Approach to Longitudinal Dynamic Structural Analysis. In Cudeck, R., du Toit, S., & Sörbom, D. (Eds.), Structural Equation Modeling, Present and Future: A Festschrift in Honor of Karl Jöreskog (pp. 746). Lincolnwood, IL: Scientific Software International.
McArdle, J. J. (2009). Latent Variable Modeling of Differences and Changes with Longitudinal Data. Annual Review of Psychology, 60(1), 577605.
McArdle, J. J., & Epstein, D. (1987). Latent Growth Curves within Developmental Structural Equation Models. Child Development, 58(1), 110133.
McArdle, J. J., & Hamagami, F. (2001). Latent Difference Score Structural Models for Linear Dynamic Analyses with Incomplete Longitudinal Data. In Collins, L. M. & Sayer, A. G. (Eds.), New Methods for the Analysis of Change (pp. 139175). Washington, DC: American Psychological Association.
McArdle, J. J., Hamagami, F., Meredith, W., & Bradway, K. P. (2000). Modeling the Dynamic Hypotheses of Gf–Gc Theory Using Longitudinal Life-Span Data. Learning and Individual Differences, 12(1), 5379.
Medina-Pradas, C., Navarro, J. B., López, S. R., Grau, A., & Obiols, J. E. (2011). Dyadic View of Expressed Emotion, Stress, and Eating Disorder Psychopathology. Appetite, 57(3), 743748.
Meredith, W. (1993). Measurement Invariance, Factor Analysis And Factorial Invariance. Psychometrika, 58(4), 525543.
Meredith, W., & Tisak, J. (1990). Latent Curve Analysis. Psychometrika, 55(1), 107122.
Molenaar, P. C. M. (1985). A Dynamic Factor Model for the Analysis of Multivariate Time Series. Psychometrika, 50(2), 181202.
Molenaar, P. C. M., & Nesselroade, J. R. (2001). Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series. Psychometrika, 66(1), 99107.
Molenaar, P. C. M., Gooijer, J. G. D., & Schmitz, B. (1992). Dynamic Factor Analysis of Nonstationary Multivariate Time Series. Psychometrika, 57(3), 333349.
Muthén, L. K., & Muthén, B. O. (1998). Mplus User’s Guide (6th edn.). Los Angeles, CA: Muthén & Muthén.
Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., … Boker, S. M. (2016). OpenMx 2.0: Extended Structural Equation and Statistical Modeling. Psychometrika, 81(2), 535549.
Nesselroade, J. R., & Boker, S. M. (1994). Assessing Constancy and Change. In Heatherton, T. & Weinberg, J. (Eds.), Can Personality Change? (pp. 121147). Washington, DC: American Psychological Association.
Nestler, S., Grimm, K. J., & Schönbrodt, F. D. (2015). The Social Consequences and Mechanisms of Personality: How to Analyse Longitudinal Data from Individual, Dyadic, Round-Robin and Network Designs. European Journal of Personality, 29(2), 272295.
Ou, L., Hunter, M. D., & Chow, S.-M. (2017). What’s for dynr. A Package for Linear and Nonlinear DYNamic Modeling in R. Retrieved from
Perry, N. S., Baucom, K. J. W., Bourne, S., Butner, J., Crenshaw, A. O., Hogan, J. N., … Baucom, B. R. W. (2017). Graphic Methods for Interpreting Longitudinal Dyadic Patterns from Repeated-Measures Actor-Partner Interdependence models. Journal of Family Psychology, 31(5), 592603.
Proulx, C. M., & Snyder-Rivas, L. A. (2013). The Longitudinal Associations between Marital Happiness, Problems, and Self-Rated Health. Journal of Family Psychology, 27(2), 194202.
Przeworski, A., Zoellner, L. A., Franklin, M. E., Garcia, A., Freeman, J., March, J. S., & Foa, E. B. (2012). Maternal and Child Expressed Emotion as Predictors of Treatment Response in Pediatric Obsessive-Compulsive Disorder. Child Psychiatry & Human Development, 43(3), 337353.
Core Team, R. (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ram, N., Shiyko, M., Lunkenheimer, E. S., Doerksen, S., & Conroy, D. (2014). Families as Coordinated Symbiotic Systems: Making Use of Nonlinear Dynamic Models. In Emerging Methods in Family Research (pp. 1937). Cham: Springer.
Rao, C. R. (1958). Some Statistical Methods for Comparison of Growth Curves. Biometrics, 14(1), 117.
Rast, P., Hofer, S. M., & Sparks, C. (2012). Modeling Individual Differences in Within-Person Variation of Negative and Positive Affect in a Mixed Effects Location Scale Model Using BUGS/JAGS. Multivariate Behavioral Research, 47(2), 177200.
Reed, R. G., Barnard, K., & Butler, E. A. (2015). Distinguishing Emotional Coregulation from Codysregulation: An Investigation of Emotional Dynamics and Body Weight in Romantic Couples. Emotion, 15(1), 4560.
Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2). Retrieved from
Sbarra, D. A., & Ferrer, E. (2006). The Structure and Process of Emotional Experience following Nonmarital Relationship Dissolution: Dynamic Factor Analyses of Love, Anger, and Sadness. Emotion, 6(2), 224238.
Sbarra, D. A., & Wishman, M. A. (2013). Marital and Relational Discord. In Castonguay, L. & Oltmans, T. C. (Eds.), Psychopathology: Bridging the Gap between Basic Empirical Findings and Clinical Practice (pp. 393418). New York: Guilford Press.
Shifren, K., Hooker, K., Wood, P., & Nesselroade, J. R. (1997). Structure and Variation of Mood in Individuals with Parkinson’s Disease: A Dynamic Factor Analysis. Psychology and Aging, 12(2), 328339.
Shumway, R. H., & Stoffer, D. S. (2011). Time Series Analysis and Its Applications: With R Examples (3rd edn.). New York: Springer.
Steele, J. S., & Ferrer, E. (2011). Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes. Multivariate Behavioral Research, 46(6), 956984.
Steele, J. S., Gonzales, J. E., & Ferrer, E. (2018). Uses and Limitations of Continuous Time Models to Examine Dyadic Interactions. In van Montfort, K., Oud, J., & Voelkle, M. C. (Eds.), Continuous Time Modeling in the Behavioral and Related Sciences (pp. 135162). Cham: Springer International.
Thompson, A., & Bolger, N. (1999). Emotional Transmission in Couples under Stress. Journal of Marriage and the Family, 61(1), 3848.
Thorson, K., West, T., & Mendes, W. (2017). Measuring Physiological Influence in Dyads: A Guide to Designing, Implementing, and Analyzing Dyadic Physiological Studies. PsyArXiv. Retrieved from
Zhang, G., & Browne, M. W. (2008). DyFA Bootstrap: Dynamic Factor Analysis of Lagged Correlation Matrices with Bootstrap Standard Errors and Goodness of Fit Test. Version: Beta 1. Retrieved from