Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T03:03:31.011Z Has data issue: false hasContentIssue false

16 - Neurological Foundations of Phonetic Sciences

from Section IV - Audition and Perception

Published online by Cambridge University Press:  11 November 2021

Rachael-Anne Knight
Affiliation:
City, University of London
Jane Setter
Affiliation:
University of Reading
Get access

Summary

In this chapter, we provide a historical and a contemporary overview of the hearing brain. We will review how various brain-imaging methods are employed to study how sounds and meanings are represented in the brain. These studies have provided the foundation from which network models of the brain are built. We will conclude with a discussion of the practical aspects of the neuroscience of language, such as how it will further our understanding of the brain and lead to clinical applications.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

16.7 References

Abutalebi, J. (2008). Neural aspects of second language representation and language control. Acta Psychologica, 128(3), 466–78.Google Scholar
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R. et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 2076–86.Google Scholar
Arantes, M., Arantes, J. & Ferreira, M. A. (2018). Tools and resources for neuroanatomy education: A systematic review. BMC Medical Education, 18(1), 94.Google Scholar
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system: A technical review. NMR in Biomedicine, 15(7–8), 435–55.CrossRefGoogle ScholarPubMed
Beaulieu, C. (2014). The biological basis of diffusion anisotropy BT – diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. In Johansen-Berg, H. & Behrens, T. E. J., eds., Diffusion MRI: From Quantitative Measurement to In-vivo Neuroanatomy. San Diego, CA: Academic Press, pp. 155–83.Google Scholar
Bidelman, G. M. (2018). Subcortical sources dominate the neuroelectric auditory frequency-following response to speech. NeuroImage, 175, 5669.Google Scholar
Binder, J. R. (2015). The Wernicke area: Modern evidence and a reinterpretation. Neurology, 85(24), 2170–5.Google Scholar
Binder, J. R., Frost, J. A., Hammeke, T. A., Bellgowan, P. S., Springer, J. A., Kaufman, J. N. et al. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512–28.Google Scholar
Bopp, K. L. & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 60(5), P223P233.Google Scholar
Brauer, J., Anwander, A. & Friederici, A. D. (2011). Neuroanatomical prerequisites for language functions in the maturing brain. Cerebral Cortex, 21(2), 459–66.Google Scholar
Burke, D. M. & Shafto, M. A. (2004). Aging and language production. Current Directions in Psychological Science, 13(1), 21–4.Google Scholar
Catani, M. & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex, 44(8), 953–61.Google Scholar
Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T. & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–19.Google Scholar
Chandrasekaran, B., Chan, A. H. D. & Wong, P. C. M. (2011). Neural processing of what and who information in speech. Journal of Cognitive Neuroscience, 23(10), 2690–700.Google Scholar
Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. (2018). Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron, 98(5), 1042–54.Google Scholar
Chee, M. W. L., Hon, N., Lee, H. L. & Soon, C. S. (2001). Relative language proficiency modulates BOLD signal change when bilinguals perform semantic judgments. NeuroImage, 13(6), 1155–63.Google Scholar
Chodosh, J., Reuben, D. B., Albert, M. S. & Seeman, T. E. (2002). Predicting cognitive impairment in high-functioning community-dwelling older persons: MacArthur studies of successful aging. Journal of the American Geriatrics Society, 50(6), 1051–60.Google Scholar
Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S. & Zatorre, R. J. (2016). Cortical contributions to the auditory frequency-following response revealed by MEG. Nature Communications, 7, 11070.Google Scholar
Cullum, S., Huppert, F. A., Mcgee, M., Dening, T. O. M., Ahmed, A., Paykel, E. S. et al. (2000). Decline across different domains of cognitive function in normal ageing: Results of a longitudinal population-based study using CAMCOG. International Journal of Geriatric Psychiatry, 15(9), 853–62.Google Scholar
Davis, M. H. & Johnsrude, I. S. (2003). Hierarchical processing in spoken language comprehension. The Journal of Neuroscience, 23(8), 3423–31.Google Scholar
Diamond, M. C., Scheibel, A. B. & Elson, L. M. (1985). The Human Brain Coloring Book: Coloring Concepts. New York: HarperCollins.Google Scholar
Drachman, D. A. (2006). Aging of the brain, entropy, and Alzheimer disease. Neurology, 67(8), 1340–52.Google Scholar
Eckert, M. A., Keren, N. I., Roberts, D. R., Calhoun, V. D. & Harris, K. C. (2010). Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex. Frontiers in Human Neuroscience, 4, 10.Google Scholar
Federmeier, K. D., Van Petten, C., Schwartz, T. J. & Kutas, M. (2003). Sounds, words, sentences: Age-related changes across levels of language processing. Psychology and Aging, 18(4), 858–72.Google Scholar
Feng, G., Ingvalson, E. M., Grieco-Calub, T. M., Roberts, M. Y., Ryan, M. E., Birmingham, P. et al. (2018). Neural preservation underlies speech improvement from auditory deprivation in young cochlear implant recipients. Proceedings of the National Academy of Sciences of the United States of America, 115(5), E1022E1031.Google Scholar
Flinker, A., Korzeniewska, A., Shestyuk, A. Y., Franaszczuk, P. J., Dronkers, N. F., Knight, R. T. et al. (2015). Redefining the role of Broca’s area in speech. Proceedings of the National Academy of Sciences of the United States of America, 112(9), 2871–5.Google Scholar
Formisano, E., De Martino, F., Bonte, M. & Goebel, R. (2008). ‘Who’ is saying ‘what’? Brain-based decoding of human voice and speech. Science, 322(5903), 970–3.Google Scholar
Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6(2), 7884.Google Scholar
Friederici, A. D. (2009). Allocating functions to fiber tracts: Facing its indirectness. Trends in Cognitive Sciences, 13(9), 370–1.Google Scholar
Giles, J. (2010). Clinical neuroscience attachments: A student’s view of ‘neurophobia’. The Clinical Teacher, 7(1), 913.Google Scholar
Glasser, M. F. & Rilling, J. K. (2008). DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–82.Google Scholar
Goebel, R. (2008). Brain Tutor 3D. Retrieved from www.brainvoyager.com.Google Scholar
Golestani, N., Molko, N., Dehaene, S., LeBihan, D. & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17(3), 575–82.Google Scholar
Grady, C. L. & Craik, F. I. (2000). Changes in memory processing with age. Current Opinion in Neurobiology, 10(2), 224–31.Google Scholar
Green, D. W. (2003). Neural basis of lexicon and grammar in L2 acquisition: The convergence hypothesis. In van Hout, R., Hulk, A., Kuiken, F. & Towell, R. J., eds., The Interface Between Syntax and the Lexicon in Second Language Acquisition. Amsterdam: John Benjamins, pp. 197218.Google Scholar
Greenwood, P. M. (2007). Functional plasticity in cognitive aging: Review and hypothesis. Neuropsychology, 21(6), 657–73.Google Scholar
Hagoort, P. (2005). On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences, 9(9), 416–23.Google Scholar
Harrington, D. L. & Haaland, K. Y. (1992). Skill learning in the elderly: Diminished implicit and explicit memory for a motor sequence. Psychology and Aging, 7(3), 425–34.Google Scholar
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393402.Google Scholar
Hirayasu, Y., McCarley, R. W., Salisbury, D. F., Tanaka, S., Kwon, J. S., Frumin, M. et al. (2000). Planum temporale and Heschl’s gyrus volume reduction in schizophrenia: A magnetic resonance imaging study of first-episode patients. Archives of General Psychiatry, 57(7), 692–99.Google Scholar
Johnson, K. & Mullennix, J. W. (1997). Talker Variability in Speech Processing. San Diego, CA: Academic Press.Google Scholar
Kraus, N. & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews Neuroscience, 11(8), 599605.Google Scholar
Krishnan, A., Xu, Y., Gandour, J. & Cariani, P. (2005). Encoding of pitch in the human brainstem is sensitive to language experience. Brain Research. Cognitive Brain Research, 25(1), 161–8.Google Scholar
Leonard, M. K., Desai, M., Hungate, D., Cai, R., Singhal, N. S., Knowlton, R. C. et al. (2019). Direct cortical stimulation of inferior frontal cortex disrupts both speech and music production in highly trained musicians. Cognitive Neuropsychology, 36(3–4), 158–66.Google Scholar
Liberman, A. M. & Mattingly, I. G. (1985). The motor theory of speech perception revisited. Cognition, 21, 136.Google Scholar
Mechelli, A., Crinion, J. T., Noppeney, U., O’Doherty, J., Ashburner, J., Frackowiak, R. S. et al. (2004). Structural plasticity in the bilingual brain. Nature, 431(7010), 757–757.Google Scholar
Menjot de Champfleur, N., Lima Maldonado, I., Moritz-Gasser, S., Machi, P., Le Bars, E., Bonafé, A. et al. (2013). Middle longitudinal fasciculus delineation within language pathways: A diffusion tensor imaging study in human. European Journal of Radiology, 82(1), 151–7.Google Scholar
Mitchell, D. B. & Bruss, P. J. (2003). Age differences in implicit memory: Conceptual, perceptual, or methodological? Psychology and Aging, 18(4), 807–22.Google Scholar
Morse, C. K. (1993). Does variability increase with age? An archival study of cognitive measures. Psychology and Aging, 8(2), 156–64.Google Scholar
Neef, N. E., Müller, B., Liebig, J., Schaadt, G., Grigutsch, M., Gunter, T. C. et al. (2017). Dyslexia risk gene relates to representation of sound in the auditory brainstem. Developmental Cognitive Neuroscience, 24, 6371.Google Scholar
Nelson, D. L., Schreiber, T. A. & McEvoy, C. L. (1992). Processing implicit and explicit representations. Psychological Review, 99(2), 322–48.Google Scholar
Okada, K., Rong, F., Venezia, J., Matchin, W., Hsieh, I.-H., Saberi, K. et al. (2010). Hierarchical organization of human auditory cortex: Evidence from acoustic invariance in the response to intelligible speech. Cerebral Cortex, 20(10), 2486–95.Google Scholar
Otto-Meyer, S., Krizman, J., White-Schwoch, T. & Kraus, N. (2018). Children with autism spectrum disorder have unstable neural responses to sound. Experimental Brain Research, 32(11), 14111–56.Google Scholar
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D. & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299320.Google Scholar
Peelle, J. E., Johnsrude, I. S. & Davis, M. H. (2010). Hierarchical processing for speech in human auditory cortex and beyond. Frontiers in Human Neuroscience, 4, 51.Google Scholar
Peelle, J. E., Troiani, V., Wingfield, A. & Grossman, M. (2010). Neural processing during older adults’ comprehension of spoken sentences: Age differences in resource allocation and connectivity. Cerebral Cortex, 20(4), 773–82.Google Scholar
Perani, D. & Abutalebi, J. (2005). The neural basis of first and second language processing. Current Opinion in Neurobiology, 15(2), 202–6.Google Scholar
Poeppel, D. (2012). The maps problem and the mapping problem: Two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology, 29(1–2), 3455.Google Scholar
Poeppel, D. (2014). The neuroanatomic and neurophysiological infrastructure for speech and language. Current Opinion in Neurobiology, 28, 142–9.Google Scholar
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197(3), 335–59.Google Scholar
Pulvermuller, F., Huss, M., Kherif, F., Moscoso del Prado Martin, F., Hauk, O. & Shtyrov, Y. (2006). Motor cortex maps articulatory features of speech sounds. Proceedings of the National Academy of Sciences, 103(20), 7865–70.Google Scholar
Rauschecker, J. P. & Scott, S. K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718–24.Google Scholar
Röder, B., Stock, O., Neville, H., Bien, S. & Rösler, F. (2002). Brain activation modulated by the comprehension of normal and pseudo-word sentences of different processing demands: A functional magnetic resonance imaging study. NeuroImage, 15(4), 1003–14.Google Scholar
Saur, D., Kreher, B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M.-S. et al. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 18035–40.Google Scholar
Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Küpper, H., Kellmeyer, P. et al. (2010). Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. NeuroImage, 49(4), 3187–97.Google Scholar
Schacter, D. L. (1992). Priming and multiple memory systems: Perceptual mechanisms of implicit memory. Journal of Cognitive Neuroscience, 4(3), 244–56.Google Scholar
Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A. & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–94.Google Scholar
Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123(12), 2400–6.Google Scholar
Skoe, E., Chandrasekaran, B., Spitzer, E. R., Wong, P. C. M. & Kraus, N. (2014). Human brainstem plasticity: The interaction of stimulus probability and auditory learning. Neurobiology of Learning and Memory, 109, 8293.Google Scholar
Slevc, L. R. & Miyake, A. (2006). Individual differences in second-language proficiency. Psychological Science, 17(8), 675–81.Google Scholar
Smith, P. A. (2010). Ageing, auditory distraction, and grammaticality judgement. Aphasiology, 24(11), 1342–53.Google Scholar
Staeren, N., Renvall, H., De Martino, F., Goebel, R. & Formisano, E. (2009). Sound categories are represented as distributed patterns in the human auditory cortex. Current Biology, 19(6), 498502.Google Scholar
Tremblay, P. & Dick, A. S. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language, 162, 6071.Google Scholar
Vaden, K. I., Piquado, T. & Hickok, G. (2011). Sublexical properties of spoken words modulate activity in Broca’s area but not superior temporal cortex: Implications for models of speech recognition. Journal of Cognitive Neuroscience, 23(10), 2665–74.Google Scholar
Veroude, K., Norris, D. G., Shumskaya, E., Gullberg, M. & Indefrey, P. (2010). Functional connectivity between brain regions involved in learning words of a new language. Brain and Language, 113(1), 21–7.Google Scholar
Vigneau, M., Beaucousin, V., Hervé, P. Y., Duffau, H., Crivello, F., Houdé, O. et al. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage, 30(4), 1414–32.Google Scholar
Vigneau, M., Beaucousin, V., Hervé, P.-Y., Jobard, G., Petit, L., Crivello, F. et al. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. NeuroImage, 54(1), 577–93.Google Scholar
Warrier, C., Wong, P. C. M., Penhune, V., Zatorre, R., Parrish, T., Abrams, D. et al. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. The Journal of Neuroscience, 29(1), 61–9.Google Scholar
Weber, M. J. & Thompson-Schill, S. L. (2010). Functional neuroimaging can support causal claims about brain function. Journal of Cognitive Neuroscience, 22(11), 2415–16.Google Scholar
Weiller, C., Musso, M., Rijntjes, M. & Saur, D. (2009). Please don’t underestimate the ventral pathway in language. Trends in Cognitive Sciences, 13(9), 361–9.Google Scholar
Whalley, L. J., Deary, I. J., Appleton, C. L. & Starr, J. M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Ageing Research Reviews, 3(4), 369–82.Google Scholar
White-Schwoch, T., Woodruff Carr, K., Thompson, E. C., Anderson, S., Nicol, T., Bradlow, A. R. et al. (2015). Auditory processing in noise: A preschool biomarker for literacy. PLOS Biology, 13(7), e1002196.Google Scholar
Wingfield, A., Peelle, J. E. & Grossman, M. (2003). Speech rate and syntactic complexity as multiplicative factors in speech comprehension by young and older adults. Aging, Neuropsychology, and Cognition, 10(4), 310–22.Google Scholar
Wise, R., Chollet, F., Hadar, U., Friston, K., Hoffner, E. & Frackowiak, R. (1991). Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain, 114(4), 1803–17.Google Scholar
Wong, F. C. K., Chandrasekaran, B., Garibaldi, K. & Wong, P. C. M. (2011). White matter anisotropy in the ventral language pathway predicts sound-to-word learning success. The Journal of Neuroscience, 31(24), 8780–5.Google Scholar
Wong, P. C. M., Perrachione, T. K. & Parrish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28, 9951006.Google Scholar
Wong, P. C. M., Skoe, E., Russo, N. M., Dees, T. & Kraus, N. (2007). Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nature Neuroscience, 10(4), 420–2.Google Scholar
Wong, P. C. M., Warrier, C. M., Penhune, V. B., Roy, A. K., Sadehh, A., Parrish, T. B. et al. (2008). Volume of left Heschl’s Gyrus and linguistic pitch learning. Cerebral Cortex, 18(4), 828–36.Google Scholar
Wong, P. C. M., Jin, J. X., Gunasekera, G. M., Abel, R., Lee, E. R. & Dhar, S. (2009). Aging and cortical mechanisms of speech perception in noise. Neuropsychologia, 47(3), 693703.Google Scholar
Yang, J. & Li, P. (2012). Brain networks of explicit and implicit learning. PLOS ONE, 7(8), e42993.Google Scholar
Yetkin, O., Yetkin, F. Z., Haughton, V. M. & Cox, R. W. (1996). Use of functional MR to map language in multilingual volunteers. American Journal of Neuroradiology, 17(3), 473–7.Google Scholar
Zhang, F., Wang, J.-P., Kim, J., Parrish, T. & Wong, P. C. M. (2015). Decoding multiple sound categories in the human temporal cortex using high-resolution fMRI. PloS One, 10(2), e0117303.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×