Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T20:37:20.970Z Has data issue: false hasContentIssue false

16 - Assessment of Mechanisms in Personality Disorders

from Part IV - Assessment

Published online by Cambridge University Press:  24 February 2020

Carl W. Lejuez
Affiliation:
University of Kansas
Kim L. Gratz
Affiliation:
University of Toledo, Ohio
Get access

Summary

The search for mechanisms in personality disorders (PDs) is of growing importance, because PDs are prevalent, costly, and challenging to treat. Unfortunately, there is a dearth of compelling mechanistic research on PDs and psychopathology more broadly, due to equivocal definitions of a “mechanism” and study designs that are atheoretical and/or ill-suited for causal inferences.This chapter defines mechanisms as elements of possible causal sequence, which not only increase the probability of observed outcomes but also reveal how the outcomes occur. In addition, the authors argue that it is not always necessary to break down a mechanism to its most elemental physical parts; rather, it is important to consider how mechanisms act as complex, interacting components of a causal chain, with a focus on those that could serve as viable targets for prevention and intervention. Considering this broader definition of a “mechanism,” it is crucial that PD researchers ground their work in testable theories, such as those considering dimensional, transdiagnostic precursors to PDs. In this chapter, the authors also address various design and statistical considerations in PD mechanistic research and highlight promising developments in identifying mechanisms of PDs across multiple levels of measurement (e.g., biological, contextual, environmental) and across the lifespan.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admon, R., Milad, M. R., & Hendler, T. (2013). A causal model of post-traumatic stress disorder: Disentangling predisposed from acquired neural abnormalities. Trends in Cognitive Sciences, 7, 337347.CrossRefGoogle Scholar
Ahn, H.-n., & Wampold, B. E. (2001). Where oh where are the specific ingredients? A meta-analysis of component studies in counseling and psychotherapyJournal of Counseling Psychology, 48, 251257.CrossRefGoogle Scholar
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Bamelis, L. L. M., Evers, S. M. A. A., Spinhoven, P., & Arntz, A. (2014). Results of a multicenter randomized controlled trial of the clinical effectiveness of schema therapy for personality disorders. American Journal of Psychiatry, 171, 305322.Google Scholar
Beauchaine, T. P. (2001). Vagal tone, development, and Gray’s motivational theory: Toward an integrated model of autonomic nervous system functioning in psychopathology. Development and Psychopathology, 13, 183214.CrossRefGoogle ScholarPubMed
Beauchaine, T. P. (2015). Future directions in emotion dysregulation and youth psychopathology. Journal of Clinical Child and Adolescent Psychology, 44, 875896.CrossRefGoogle ScholarPubMed
Beauchaine, T. P., Klein, D. N., Crowell, S. E., Derbidge, C., & Gatzke-Kopp, L. (2009). Multifinality in the development of personality disorders: A biology × sex × environment interaction model of antisocial and borderline traits. Development and Psychopathology, 21, 735770.Google Scholar
Beauchaine, T. P., & McNulty, T. (2013). Comorbidities and continuities as ontogenic processes: Toward a developmental spectrum model of externalizing psychopathology. Development and Psychopathology, 25, 15051528.Google Scholar
Belsky, D. W., Caspi, A., Arseneault, L., Bleidorn, W., Fonagy, P., Goodman, M., … Moffitt, T. E. (2012). Etiological features of borderline personality related characteristics in a birth cohort of 12-year-old children. Development and Psychopathology, 24, 251265.CrossRefGoogle Scholar
Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31, 419456.CrossRefGoogle Scholar
Bird, A. P. (1986). CpG-rich islands and the function of DNA methylationNature321, 209213.Google Scholar
Bird, A. P. (2002). DNA methylation patterns and epigenetic memoryGenes and Development16, 621.CrossRefGoogle ScholarPubMed
Bornovalova, M. A., Gratz, K. L., Delaney-Brumsey, A., Paulson, A., & Lejuez, C. W. (2006). Temperamental and environmental risk factors for borderline personality disorder among inner-city substance users in residential treatment. Journal of Personality Disorders, 20, 218231.CrossRefGoogle ScholarPubMed
Bornovalova, M. A., Hicks, B. M., Iacono, W. G., & McGue, M. (2009). Stability, change, and heritability of borderline personality disorder traits from adolescence to adulthood: A longitudinal twin studyDevelopment and Psychopathology21, 13351353.Google Scholar
Bornovalova, M. A., Huibregtse, B. M., Hicks, B. M., Keyes, M., McGue, M., & Iacono, W. (2013). Tests of a direct effect of childhood abuse on adult borderline personality disorder traits: A longitudinal discordant twin design. Journal of Abnormal Psychology, 122, 180194.CrossRefGoogle ScholarPubMed
Bornovalova, M. A., Lejuez, C. W., Daughters, S. B., Rosenthal, M. Z., & Lynch, T. R. (2005). Impulsivity as a common process across borderline personality and substance use disorders. Clinical Psychology Review, 25, 790812.Google Scholar
Bornovalova, M. A., Verhulst, B., Webber, T., McGue, M., Iacono, W. G., & Hicks, B. M. (2018). Genetic and environmental influences on the codevelopment among borderline personality disorder traits, major depression symptoms, and substance use disorder symptoms from adolescence to young adulthood. Development and Psychopathology30, 4965.CrossRefGoogle Scholar
Brewin, C. R., Andrews, B., & Valentine, J. D. (2000). Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adultsJournal of Consulting and Clinical Psychology, 68, 748766.CrossRefGoogle ScholarPubMed
Bridgett, D. J., Burt, N. M., Edwards, E. S., & Deater-Deckard, K. (2015). Intergenerational transmission of self-regulation: A multidisciplinary review and integrative conceptual framework. Psychological Bulletin, 141, 602654.Google Scholar
Bromet, E. J., Atwoli, L., Kawakami, N., & Navarro-Mateu, F. (2017). Post-traumatic stress disorder associated with natural and human-made disasters in the World Mental Health Surveys. Psychological Medicine, 47, 227241.CrossRefGoogle ScholarPubMed
Brunner, R., Henze, R., Richter, J., & Kaess, M. (2015). Neurobiological findings in youth with borderline personality disorderScandinavian Journal of Child and Adolescent Psychiatry and Psychology3, 2230.CrossRefGoogle Scholar
Butler, T. R., Ariwodola, O. J., & Weiner, J. L. (2014). The impact of social isolation on HPA axis function, anxiety-like behaviors, and ethanol-drinking. Frontiers in Integrative Neuroscience, 7, 102112.Google Scholar
Butler, T. R., Karkhanis, A. N., Jones, S. R., & Weiner, J. L. (2016). Adolescent social isolation as a model of heightened vulnerability to comorbid alcoholism and anxiety disorders. Alcoholism: Clinical and Experimental Research, 40, 12021214.CrossRefGoogle Scholar
Canli, T., Ferra, J., & Duman, E. A. (2009). Genetics of emotion regulation. Neuroscience, 164, 4354.CrossRefGoogle ScholarPubMed
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Isreal, S., … Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2, 119137.CrossRefGoogle Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Caspi, A., Taylor, A., Moffitt, T. E., & Plomin, R. (2000). Neighborhood deprivation affects children’s mental health: Environmental risks identified in a genetic design. Psychological Science, 11, 338342.Google Scholar
Chanen, A. M., & Kaess, M. (2012). Developmental pathways to borderline personality disorder. Current Psychiatry Reports, 14, 4553.CrossRefGoogle ScholarPubMed
Checknita, D., Maussion, G., Labonté, B., Comai, S., Tremblay, R. E., Vitaro, F., … Turecki, G. (2015). Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder. British Journal of Psychiatry, 206, 216222.Google Scholar
Chen, H., Cohen, P., Johnson, J. G., Kasen, S., Sneed, J. R., & Crawford, T. N. (2004). Adolescent personality disorders and conflict with romantic partners during the transition to adulthood. Journal of Personality Disorders, 18, 507525.Google Scholar
Clark, A. T., Ye, H., Isbell, F., Deyle, E. R., Cowles, J., Tilman, G., & Sugihara, G. (2015). Spatial convergent cross mapping to detect causal relationships from short time series. Ecology, 96, 11741181.Google Scholar
Clarkin, J. F., Levy, K. N., Lenzenweger, M. F., & Kernberg, O. F. (2007). Evaluating three treatments of borderline personality disorder: A multiwave study. American Journal of Psychiatry, 164, 922928.Google Scholar
Cohen, P., Chen, H., Gordon, K., Johnson, J., Brook, B., & Kasen, S. (2008). Socioeconomic background and the developmental course of schizotypal and borderline personality disorder symptoms. Development and Psychopathology, 20, 633650.Google Scholar
Conway, C. C., Hammen, C., & Brennan, P. A. (2015). Adolescent precursors of adult borderline personality pathology in a high-risk community sample. Journal of Personality Disorders, 29, 316333.Google Scholar
Crawford, T. N., Cohen, P. R., Chen, H., Anglin, D. M., & Ehrensaft, M. (2009). Early maternal separation and the trajectory of borderline personality disorder symptoms. Development and Psychopathology, 21, 10131030.Google Scholar
Crowell, S. E. (2016). Biting the hand that feeds: Current opinion on the interpersonal causes, correlates, and consequences of borderline personality disorder. F1000 Research, 5, 27962803.Google Scholar
Crowell, S. E., Baucom, B. R., McCauley, E., Potapova, N. V., Fitelson, M., Barth, H., … Beauchaine, T. P. (2013). Mechanisms of contextual risk for adolescent self-injury: Invalidation and conflict escalation in mother–child interactions. Journal of Clinical Child and Adolescent Psychology, 42, 467480.CrossRefGoogle ScholarPubMed
Crowell, S. E., Baucom, B. R., Yaptangco, M., Bride, D., Hsiao, R., McCauley, E., & Beauchaine, T. P. (2014). Emotion dysregulation and dyadic conflict in depressed and typical adolescents: Evaluating concordance across psychophysiological and observational measuresBiological Psychology98, 5058.Google Scholar
Crowell, S. E., Beauchaine, T. P., Hsiao, R. C., Vasilev, C. A., Yaptangco, M., Linehan, M. M., & McCauley, E. (2012). Differentiating adolescent self-injury from adolescent depression: Possible implications for borderline personality developmentJournal of Abnormal Child Psychology40, 4557.Google Scholar
Crowell, S. E., Beauchaine, T. P., & Linehan, M. (2009). A biosocial developmental model of borderline personality: Elaborating and extending Linehan’s theory. Psychological Bulletin, 135, 495510.Google Scholar
Crowell, S. E., Beauchaine, T. P., McCauley, E., Smith, C. J., Stevens, A. L., & Sylvers, P. (2005). Psychological, autonomic, and serotonergic correlates of parasuicide among adolescent girls. Development and Psychopathology, 17, 11051127.Google Scholar
Crowell, S. E., Butner, J. E., Wiltshire, T. J., Munion, A. K., Yaptangco, M., & Beauchaine, T. P. (2017). Evaluating emotional and biological sensitivity to maternal behavior among self-injuring and depressed adolescent girls using nonlinear dynamicsClinical Psychological Science5, 272285.Google Scholar
Crowell, S. E., & Kaufman, E. A. (2016). Borderline personality disorder and the emerging field of developmental neuroscience. Personality Disorders: Theory, Research, and Treatment, 7, 324333.Google Scholar
Crowell, S. E., Yaptangco, M., & Turner, S. L. (2016). Coercion, invalidation, and risk for self-injury and borderline personality traits. In Dishion, T. J. & Snyder, J. J. (Eds.), The Oxford Handbook of Coercive Relationship Dynamics (pp. 182193). New York: Oxford University Press.Google Scholar
Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Medicine, 11, 126133.Google Scholar
Dammann, G., Teschler, S., Haag, T., Altmüller, F., Tuczek, F., & Dammann, R. H. (2011). Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder. Epigenetics, 6, 14541462.Google Scholar
De Fruyt, F., & De Clercq, B. (2014). Antecedents of personality disorder in childhood and adolescence: Toward an integrative developmental model. Annual Review of Clinical Psychology, 10, 449476.CrossRefGoogle ScholarPubMed
Deckel, A. W., Hesselbrock, V., & Bauer, L. (1996). Antisocial personality disorder, childhood delinquency, and frontal brain functioning: EEG and neuropsychological findingsJournal of Clinical Psychology52, 639650.Google Scholar
Dishion, T. J., Duncan, T. E., Eddy, J. M., Fagot, B. I., & Fetrow, R. (1994). The world of parents and peers: Coercive exchanges and children’s social adaptation. Social Development, 3, 255268.Google Scholar
Dishion, T. J., McCord, J., & Poulin, F. (1999). When interventions harm: Peer groups and problem behavior. American Psychologist, 54, 755764.Google Scholar
Doll, A., Sorg, C., Manoliu, A., Wöller, A., Meng, C., Förstl, H., … Riedl, V. (2013). Shifted intrinsic connectivity of central executive and salience network in borderline personality disorderFrontiers in Human Neuroscience7, 113.CrossRefGoogle ScholarPubMed
Eme, R. F. (2007). Sex differences in child-onset, life-course-persistent conduct disorder: A review of biological influences. Clinical Psychology Reviews, 27, 607627.Google Scholar
Ensink, K., Biberdzic, M., Normandin, L., & Clarkin, J. (2015). A developmental psychopathology and neurobiological model of borderline personality disorder in adolescenceJournal of Infant, Child, and Adolescent Psychotherapy14, 4669.Google Scholar
Fervaha, G., & Remington, G. (2013). Neuroimaging findings in schizotypal personality disorder: A systematic review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 43, 96107.Google Scholar
Freud, S., & Breuer, J. (1893). On the psychical mechanism of hysterical phenomena: A preliminary communication. In Freud, S. Selected Papers on Hysteria and Other Psychoneuroses (Trans. Brill, A. A., 1912). New York: The Journal of Nervous and Mental Disease Publishing Company. Available at www.bartleby.com/280/1.htmlGoogle Scholar
Fruzzetti, A. E., Shenk, C., & Hoffman, P. D. (2005). Family interaction and the development of borderline personality disorder. Development and Psychopathology, 17, 10071030.Google Scholar
Garattini, S., Giacalone, E., & Valzelli, L. (1967). Isolation, aggressiveness and brain 5-hydroxytryptamine turnover. Journal of Pharmacy and Pharmacology, 19, 338339.CrossRefGoogle ScholarPubMed
Gartstein, M. A., & Skinner, M. K. (2018). Prenatal influences on temperament development: The role of environmental epigenetics. Development and Psychopathology, 30, 12691303.Google Scholar
Goodman, M., Mascitelli, K., & Triebwasser, J. (2013). The neurobiological basis of adolescent-onset borderline personality disorderJournal of the Canadian Academy of Child and Adolescent Psychiatry22, 212219.Google Scholar
Gratz, K. L., Bardeen, J. R., Levy, R., Dixon-Gordon, K. L., & Tull, M. T. (2015). Mechanisms of change in an emotion regulation group therapy for deliberate self-harm among women with borderline personality disorder. Behaviour Research and Therapy, 65, 2935.Google Scholar
Hajcak, G., MacNamara, A., & Olvet, D. M. (2010). Event-related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35, 129155.CrossRefGoogle ScholarPubMed
Hallquist, M. N., Hipwell, A. E., & Stepp, S. D. (2015). Poor self-control and harsh punishment in childhood prospectively predict borderline personality symptoms in adolescent girls. Journal of Abnormal Psychology, 124, 549564.CrossRefGoogle ScholarPubMed
Hedström, P., & Ylikoski, P. (2010). Causal mechanisms in the social sciences. Annual Review of Sociology, 36, 4967.Google Scholar
Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology, 30, 548557.Google Scholar
Hostinar, C. E., Sullivan, R. M., & Gunnar, M. R. (2014). Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychological Bulletin, 140, 256282.CrossRefGoogle Scholar
Hughes, A. E., Crowell, S. E., Uyeji, L., & Coan, J. A. (2012). A developmental neuroscience of borderline pathology: Emotion dysregulation and social baseline theory. Journal of Abnormal Child Psychology, 40, 2133.CrossRefGoogle ScholarPubMed
Ingoldsby, E. M., & Shaw, D. S. (2002). Neighborhood contextual factors and early-starting antisocial pathways. Clinical Child and Family Psychology Review, 5, 2155.Google Scholar
Joreskog, K. G., Sorbom, D., & Magidson, J. (1979). Advances in Factor Analysis and Structural Equation Models. New York: University Press of America.Google Scholar
Kaufman, E. A., & Crowell, S. E. (2018). Biological and behavioral mechanisms of identity pathology development: An integrative review. Review of General Psychology, 22, 245263.CrossRefGoogle Scholar
Kazdin, A. E. (2007). Mediators and mechanisms of change in psychotherapy research. Annual Review of Clinical Psychology, 3, 127.CrossRefGoogle ScholarPubMed
Kenna, G. A., Roder-Hanna, N., Leggio, L., Zywiak, W. H., Clifford, J., Edwards, S., … Swift, R. M. (2012). Association of the 5-HTT gene-linked promoter region (5-HTTLPR) polymorphism with psychiatric disorders: Review of psychopathology and pharmacotherapyPharmacogenomics and Personalized Medicine5, 1935.Google Scholar
Knoblich, N., Gundel, F., Brückmann, C., Becker-Sadzio, J., Frischholz, C., & Nieratschker, V. (2018). DNA methylation of APBA3 and MCF2 in borderline personality disorder: Potential biomarkers for response to psychotherapy. European Neuropsychopharmacology, 28, 252263.Google Scholar
Koenig, J., Kemp, A. H., Feeling, N. R., Thayer, J. F., & Kaess, M. (2016). Resting state vagal tone in borderline personality disorder: A meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 1826.Google Scholar
Kolla, N. J., Chiuccariello, L., Wilson, A. A., Houle, S., Links, P., Bagby, R. M., … Meyer, J. H. (2016). Elevated monoamine oxidase-A distribution volume in borderline personality disorder is associated with severity across mood symptoms, suicidality, and cognitionBiological Psychiatry79, 117126.Google Scholar
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … Zimmerman, M. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP): A dimensional alternative to traditional nosologiesJournal of Abnormal Psychology, 126, 454477.Google Scholar
Krueger, R. F., & Markon, K. E. (2014). The role of the DSM-5 personality trait model in moving toward a quantitative and empirically based approach to classifying personality and psychopathology. Annual Review of Clinical Psychology, 10, 477501.Google Scholar
Kumsta, R., Hummel, E., Chen, F. S., & Heinrichs, M. (2013). Epigenetic regulation of the oxytocin receptor gene: Implications for behavioral neuroscience. Frontiers in Neuroscience, 7, 16.Google Scholar
Kupfer, D. J., First, M. B., & Regier, D. A. (2002). Introduction. In Kupfer, D. J., First, M. B., & Regier, D. A. (Eds.), A Research Agenda for DSM-V (pp. xvxxiii). Washington, DC: American Psychiatric Association.Google Scholar
Larsson, H., Andershed, H., & Lichtenstein, P. (2006). A genetic factor explains most of the variation in the psychopathic personalityJournal of Abnormal Psychology, 115, 221230.Google Scholar
Lawrence, K. A., Allen, J. S., & Chanen, A. M. (2010). Impulsivity in borderline personality disorder: Reward-based decision-making and its relationship to emotional distress. Journal of Personality Disorders, 24, 785799.Google Scholar
Lee, R. (2006). Childhood trauma and personality disorder: Toward a biological model. Current Psychiatry Reports, 8, 4352.Google Scholar
Lejuez, C. W., Daughters, S. B., Nowak, J. A., Lynch, T., Rosenthal, M. Z., & Kosson, D. (2003). Examining the inventory of interpersonal problems as a tool for conducting analogue studies of mechanisms underlying borderline personality disorder. Journal of Behavior Therapy and Experimental Psychiatry, 34, 313324.Google Scholar
Lieb, K., Zanarini, M. C., Schmahl, C., Linehan, M. M., & Bohus, M. (2004). Borderline personality disorder. Lancet, 364, 453461.CrossRefGoogle ScholarPubMed
Linehan, M. (1993). Cognitive-Behavioral Treatment of Borderline Personality Disorder. New York: Guilford Press.Google Scholar
Lowry, P. B., & Gaskin, J. (2014). Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: When to choose it and how to use it. IEEE Transactions on Professional Communication, 57, 123146.Google Scholar
Lynam, D. R., Caspi, A., Moffitt, T. E., Wikström, P. H., Loeber, R., & Novak, S. (2000). The interaction between impulsivity and neighborhood context on offending: The effects of impulsivity are stronger in poorer neighborhoods. Journal of Abnormal Psychology, 109, 563574.Google Scholar
Lyons-Ruth, K. (2008). Contributions of the mother–infant relationship to dissociative, borderline, and conduct symptoms in young adulthood. Infant Mental Health Journal, 29, 203218.Google Scholar
Lyons-Ruth, K., Bureau, J., Easterbrooks, M. A., Obsuth, I., & Hennighausen, K. (2013). Parsing the construct of maternal insensitivity: Distinct longitudinal pathways associated with early maternal withdrawal. Attachment and Human Development, 15, 562582.Google Scholar
Lyons-Ruth, K., Bureau, J., Holmes, B., Easterbrooks, A., & Brooks, N. H. (2013). Borderline symptoms and suicidality/self-injury in late adolescence: Prospectively observed relationship correlates in infancy and childhood. Psychiatry Research, 206, 273281.Google Scholar
MacKinnon, D. F., & Pies, R. (2006). Affective instability as rapid cycling: Theoretical and clinical implications for borderline personality and bipolar spectrum disorders. Bipolar Disorders, 8, 114.Google Scholar
Mahoney, J. (2001). Beyond correlational analysis: Recent innovations in theory and method. Sociological Forum, 16, 575593.Google Scholar
Markon, K. E., & Jonas, K. G. (2016). Structure as cause and representation: Implications of descriptivist inference for structural modeling across multiple levels of analysis. Journal of Abnormal Psychology, 125, 11461157Google Scholar
Martin, E. I., Ressler, K. J., Binder, E., & Nemeroff, C. B. (2010). The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinologyClinics in Laboratory Medicine30, 865891.Google Scholar
McLaughlin, K. A., & Lambert, H. K. (2017). Child trauma exposure and psychopathology: Mechanisms of risk and resilience. Current Opinion in Psychology, 14, 2934.Google Scholar
Miller, J. D., Lyman, D. R., Widiger, T. A., & Leukefeld, C. (2001). Personality disorders as extreme variants of common personality dimensions: Can the five factor model adequately represent psychopathy? Journal of Personality, 69, 253276.Google Scholar
Mitchell, A. E., Dickens, G. L., & Picchioni, M. M. (2014). Facial emotion processing in borderline personality disorder: A systematic review and meta-analysis. Neuropsychology Review, 24, 166184.CrossRefGoogle ScholarPubMed
Monk, C., Spicer, J., & Champagne, F. A. (2012). Linking prenatal maternal adversity to developmental outcomes in infants: The role of epigenetic pathways. Development and Psychopathology, 24, 13611376.Google Scholar
Moul, C., Killcross, S., & Dadds, M. R. (2012). A model of differential amygdala activation in psychopathy. Psychological Review, 119, 789806.Google Scholar
Mushtaq, R., Shoib, S., Shah, T., & Mushtaq, S. (2014). Relationship between loneliness, psychiatric disorders and physical health: A review on the psychological aspects of loneliness. Journal of Clinical and Diagnostic Research, 8, 14.Google Scholar
Myers, C. S. (1915). A contribution to the study of shell shock: Being an account of three cases of loss of memory, vision, smell, and taste, admitted into the Duchess of Westminster’s war hospital, Le Touquet. Lancet, 185, 316320.Google Scholar
Nelson, S. E., & Dishion, T. J. (2004). From boys to men: Predicting adult adaptation from middle childhood sociometric status. Development and Psychopathology, 16, 441459.Google Scholar
Neuhaus, E., & Beauchaine, T. P. (2017). Impulsivity and vulnerability to psychopathology. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and Adolescent Psychopathology (pp. 178212). Hoboken, NJ: John Wiley.Google Scholar
Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3, 97106.CrossRefGoogle ScholarPubMed
Pagliaccio, D., Luby, J. L., Bogdan, R., Agrawal, A., Gaffrey, M. S., Belden, A. C., … Barch, D. M. (2015). Amygdala functional connectivity, HPA axis genetic variation, and life stress in children and relations to anxiety and emotion regulationJournal of Abnormal Psychology, 124, 817833.Google Scholar
Patterson, G. R. (1982). Coercive Family Processes (Vol. 3). Eugene, OR: Castalia Publishing Company.Google Scholar
Patterson, G. R., DeBaryshe, B., & Ramsey, E. (1990). A developmental perspective on antisocial behavior. American Psychologist, 44, 329335.Google Scholar
Perroud, N., Paoloni-Giacobino, A., Prada, P., Olié, E., Salzmann, A., Nicastro, R., … Malafosse, A. (2011). Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: A link with the severity and type of trauma. Translational Psychiatry, 1, 19.Google Scholar
Perroud, N., Salzmann, A., Prada, P., Nicastro, R., Hoeppli, M-E., Furrer, S., … Malafosse, A. (2013). Response to psychotherapy in borderline personality disorder and methylation status of the BDNF gene. Translational Psychiatry, 3, e207e214.Google Scholar
Piehler, T. F., & Dishion, T. J. (2008). Interpersonal dynamics within adolescent friendships: Dyadic mutuality, deviant talk, and patterns of antisocial behavior. Child Development, 78, 16111624.Google Scholar
Posner, M. I., Rothbart, M. K., Vizueta, N., Levy, K. N., Evans, D. E., Thomas, K. M., & Clarkin, J. F. (2002). Attentional mechanisms of borderline personality disorder. Proceedings of the National Academy of Sciences USA, 99, 1636616370.Google Scholar
Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, and Computers, 36, 717731.Google Scholar
Putnam, K. M., & Silk, K. R. (2005). Emotion dysregulation and the development of borderline personality disorder. Development and Psychopathology, 17, 899925.CrossRefGoogle ScholarPubMed
Raine, A., Venables, P. H., & Mednick, S. A. (1997). Low resting heart rate at age 3 years predisposes to aggression at age 11 years: Evidence from the Mauritius Child Health ProjectJournal of the American Academy of Child and Adolescent Psychiatry36, 14571464.Google Scholar
Saul, L. J. (1945). Psychological factors in combat fatigue: With special reference to hostility and the nightmares. Psychosomatic Medicine, 7, 257272.Google Scholar
Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. The New England Journal of Medicine, 376, 24592469.Google Scholar
Sharma, L., Markon, K. E., & Clark, L. A. (2014). Toward a theory of distinct types of “impulsive” behaviors: A meta-analysis of self-report and behavioral measures. Psychological Bulletin, 140, 374408.Google Scholar
Sharp, C., & Romero, C. (2007). Borderline personality disorder: A comparison between children and adults. Bulletin of the Menninger Clinic, 71, 85114.CrossRefGoogle ScholarPubMed
Skodol, A. E., Siever, L. J., Livesley, W. J., Gunderson, J. G., Pfohl, B., & Widiger, T. A. (2002). The borderline diagnosis II: Biology, genetics, and clinical course. Biological Psychiatry, 51, 951963.Google Scholar
Snyder, J., Schrepferman, L., McEachern, A., Barner, S., Johnson, K., & Provines, J. (2008). Peer deviancy training and peer coercion: Dual processes associated with early-onset conduct problemsChild Development79, 252268.Google Scholar
Snyder, J., Schrepferman, L., & St. Peter, C. (1997). Origins of antisocial behavior: Negative reinforcement and affect dysregulation of behavior as socialization mechanisms in family interaction. Behavior Modification, 21, 187215.Google Scholar
Steele, H., & Siever, L. (2010). An attachment perspective on borderline personality disorder: Advances in gene–environment considerations. Current Psychiatry Reports, 12, 6167.Google Scholar
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E. M., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49, 30993109.Google Scholar
Stepp, S. D., Lazarus, S. A., & Byrd, A. L. (2015). A systematic review of risk factors prospectively associated with borderline personality disorder: Taking stock and moving forward. Personality Disorders: Theory, Research, and Treatment, 7, 316323.CrossRefGoogle Scholar
Stepp, S. D., Scott, L. N., Jones, N. P., Whalen, D. J., & Hipwell., A. P. (2016). Negative emotional reactivity as a marker of vulnerability in the development of borderline personality disorder symptoms. Development and Psychopathology, 28, 213224.Google Scholar
Stetler, C., & Miller, G. E. (2011). Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosomatic Medicine, 73, 114126.Google Scholar
Strauman, T. J. (2017). Self-regulation and psychopathology: Toward an integrative translational paradigm. Annual Review of Clinical Psychology, 13, 497523.Google Scholar
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience and Biobehavioral Reviews, 30, 376389.Google Scholar
Thayer, J. F., & Sternberg, E. (2006). Beyond heart rate variability: Vagal regulation of allostatic systems. Annals of the New York Academy of Sciences, 1088, 361372.Google Scholar
Trull, T. J., Stepp, S. D., & Durrett, C. A. (2003). Research on borderline personality disorder: An update. Current Opinion in Psychiatry, 16, 7782.Google Scholar
Tyrer, P., Reed, G. M., & Crawford, M. J. (2015). Classification, assessment, prevalence, and effect of personality disorder. Lancet, 385, 2127.Google Scholar
van Zutphen, L., Siep, N., Jacob, G. A., Goebel, R., & Arntz, A. (2015). Emotional sensitivity, emotion regulation and impulsivity in borderline personality disorder: A critical review of fMRI studies. Neuroscience and Biobehavioral Reviews, 51, 6476.Google Scholar
Viding, E., Blair, R. J. R., Moffitt, T. E., & Plomin, R. (2005). Evidence for substantial genetic risk for psychopathy in 7-year-olds. Journal of Child Psychology and Psychiatry, 46, 592597.Google Scholar
Widiger, T. A., & Simonsen, E. (2005). Alternative dimensional models of personality disorder: Finding a common groundJournal of Personality Disorders, 19, 110130.Google Scholar
Winsper, C., Marwaha, S., Lereya, S. T., Thompson, A., Eyden, J., & Singh, S. P. (2016). A systematic review of the neurobiological underpinnings of borderline personality disorder (BPD) in childhood and adolescenceReviews in the Neurosciences27, 827847.Google Scholar
Wright, A. G. C., Thomas, K. M., Hopwood, C. J., Markon, K. E., Pincus, A. L., & Krueger, R. F. (2012). The hierarchical structure of DSM-5 pathological personality traits. Journal of Abnormal Psychology, 121, 951957.Google Scholar
Zuckerman, M., & Kuhlman, M. (2000). Personality and risk-tasking: Common biosocial factors. Journal of Personality, 68, 9991029.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×