Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:01:56.818Z Has data issue: false hasContentIssue false

21 - Motivated Memory

Integrating Cognitive and Affective Neuroscience

from Part V - Goals and Values

Published online by Cambridge University Press:  15 February 2019

K. Ann Renninger
Affiliation:
Swarthmore College, Pennsylvania
Suzanne E. Hidi
Affiliation:
University of Toronto
Get access

Summary

A growing body of literature indicates that motivation can critically shape long-term memory formation in the service of adaptive behavior. In the present chapter, we review recent cognitive neuroscience evidence of motivational influences on memory, with a focus on anatomical pathways by which neuromodulatory networks support encoding-related activity in distinct subregions of the medial temporal lobe. We argue that engagement of distinct neural circuits as a function of motivational context at encoding leads to formation of different memory representations, supporting different patterns of adaptive behavior. We present a novel neurocognitive model, the Interrogative/Imperative model of information-seeking, to account for pursuit of learning goals. Interrogative or imperative modes of information-seeking are often, but not necessarily, associated with approach or avoidance motivation, respectively. We also discuss additional influences on motivated memory encoding, including intrinsic motivation, curiosity, choice, and cognitive control processes. Taken together, this body of research suggests that the nature of memory representations depends on an individual's neurophysiological response to, rather than extrinsic qualities of, a given motivational manipulation or context at the time of encoding. Finally, we discuss potential applications of these research findings to real-life educational settings and directions for future research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–17. doi: 10.1016/j.neuron.2006.03.036.Google Scholar
Amaral, D. G. & Cowan, W. M. (1980). Subcortical afferents to the hippocampal formation in the monkey. The Journal of Comparative Neurology, 189(4), 573–91. doi: 10.1002/cne.901890402.Google Scholar
Aston-Jones, G. & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. Journal of Neuroscience, 1(8), 876–86.Google Scholar
Aston-Jones, G. & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–50. Retrieved from www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt= Citation&list_uids=16022602.Google Scholar
Ballard, I. C., Murty, V. P., Carter, R. M., MacInnes, J. J., Huettel, S. A., & Adcock, R. A. (2011). Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. Journal of Neuroscience, 31(28), 10340–6. doi: 10.1523/JNEUROSCI.0895-11.2011.Google Scholar
Baumeister, R. F. (1984). Choking under pressure: Self-consciousness and paradoxical effects of incentives on skillful performance. Journal of Personality and Social Psychology, 46(3), 610–20. Retrieved from www.ncbi.nlm.nih.gov/pubmed/6707866.CrossRefGoogle ScholarPubMed
Beilock, S. L. & Carr, T. H. (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130(4), 701–25. doi: 10.1037/0096-3445.130.4.701.Google Scholar
Berridge, C. W. & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42(1), 3384.Google Scholar
Berridge, K. C. (2007). The debate over dopamine's role in reward: The case for incentive salience. Psychopharmacology, 191(3), 391431. doi: 10.1007/s00213-006-0578-x.Google Scholar
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–69. doi: 10.1016/S0165-0173(98)00019-8.Google Scholar
Blumenfeld, R. S. & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13(3), 280–91. doi: 10.1177/1073858407299290.Google Scholar
Botvinick, M. & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66, 83113. doi: 10.1146/annurev-psych-010814-015044.Google Scholar
Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 7351–6. Retrieved from www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19380750.Google ScholarPubMed
Briand, L. A., Gritton, H., Howe, W. M., Young, D. A., & Sarter, M. (2007). Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Progress in Neurobiology, 83(2), 6991. doi: 10.1016/j.pneurobio.2007.06.007.Google Scholar
Bromberg-Martin, E. S. & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63(1), 119–26. doi: 10.1016/j.neuron.2009.06.009.Google Scholar
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815834. doi: 10.1016/j.neuron.2010.11.022.Google Scholar
Burgess, N., Maguire, E. A., & O'Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625–41.CrossRefGoogle ScholarPubMed
Carter, R. M., MacInnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3, 21. doi: 10.3389/neuro.08.021.2009.Google Scholar
Chiew, K. S. & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontiers in Psychology, 4, 15. Retrieved from www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db= PubMed&dopt=Citation&list_uids=23372557.Google Scholar
Chiew, K. S., Stanek, J. K., & Adcock, R. A. (2016). Reward anticipation dynamics during cognitive control and episodic encoding: Implications for dopamine. Frontiers in Human Neuroscience, 10, 555. doi: 10.3389/fnhum.2016.00555.Google Scholar
Choi, J.-S., Cain, C. K., & LeDoux, J. E. (2010). The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learning & Memory (Cold Spring Harbor, NY), 17(3), 139–47. doi: 10.1101/lm.1676610.Google ScholarPubMed
Chun, M. M. & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177–84. doi: 10.1016/j.conb.2007.03.005.Google Scholar
Cohen, M. S., Rissman, J., Suthana, N. A., Castel, A. D., & Knowlton, B. J. (2014). Value-based modulation of memory encoding involves strategic engagement of fronto-temporal semantic processing regions. Cognitive, Affective & Behavioral Neuroscience, 14(2), 578–92. doi: 10.3758/s13415-014-0275-x.Google Scholar
Colwill, R. M. & Rescorla, R. A. (1986). Associative structures in instrumental learning. Psychology of Learning and Motivation, 20, 55104.CrossRefGoogle Scholar
Cools, R. (2008). Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist, 14(4), 381–95. doi: 10.1177/1073858408317009.Google Scholar
Davachi, L. (2006). Item, context, and relational episodic encoding in humans. Current Opinion in Neurobiology, 16(6), 693700. doi: 10.1016/j.conb.2006.10.012.Google Scholar
Davis, M. (1992). The role of the amygdala in fear and anxiety. Annual Review of Neuroscience, 15(1), 353–75. doi: 10.1146/annurev.ne.15.030192.002033.Google Scholar
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105–15. doi: 10.1037/h0030644.Google Scholar
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–68. doi: 10.1037/0033-2909.125.6.627.CrossRefGoogle ScholarPubMed
Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: Effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 2738. doi: 10.3758/CABN.3.1.27.Google Scholar
Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84(6). Retrieved from http://jn.physiology.org/content/84/6/3072.short.Google Scholar
Düzel, E., Bunzeck, N., Guitart-Masip, M., & Düzel, S. (2010). Novelty-related motivation of anticipation and exploration by dopamine (NOMAD): Implications for healthy aging. Neuroscience & Biobehavioral Reviews, 34(5), 660–9. doi: 10.1016/j.neubiorev.2009.08.006.Google Scholar
Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41(10), 1040–8. doi: 10.1037/0003-066X.41.10.1040.Google Scholar
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 4150.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30(1), 123–52. doi: 10.1146/annurev.neuro.30.051606.094328.Google Scholar
Everitt, B. J., Dickinson, A., & Robbins, T. W. (2001). The neuropsychological basis of addictive behaviour. Brain Research Reviews, 36(2), 129–38. doi: 10.1016/S0165-0173(01)00088-1.Google Scholar
Flagel, S. B., Akil, H., & Robinson, T. E. (2009). Individual differences in the attribution of incentive salience to reward-related cues: Implications for addiction. Neuropharmacology, 56, 139–48. doi: 10.1016/j.neuropharm.2008.06.027.Google Scholar
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–15. doi: 10.1073/pnas.1319030111.Google Scholar
Goldman-Rakic, P. S., & Friedman, H. R. (1991). The circuitry of working memory revealed by anatomy and metabolic imaging. In Levin, H. S., Eisenberg, H. M. & Benton, A. L. (Eds.) Frontal lobe function and dysfunction (pp. 7290). Oxford: Oxford University Press.Google Scholar
Gottlieb, J., Oudeyer, P.-Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and attention: Computational and neural mechanisms. Trends in Cognitive Sciences, 17(11), 585–93.Google Scholar
Grossnickle, E. M. (2016). Disentangling curiosity: Dimensionality, definitions, and distinctions from interest in educational contexts. Educational Psychology Review, 28(1), 2360.Google Scholar
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–96. doi: 10.1016/j.neuron.2014.08.060.Google Scholar
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 6474.CrossRefGoogle Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27. doi: 10.1207/s15326985ep4102_4.Google Scholar
Higgins, E. T. (1998). Promotion and prevention: Regulatory focus as A motivational principle (pp. 146). Washington, DC: The National Academy of Sciences. doi: 10.1016/S0065-2601(08)60381-0.Google Scholar
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–73. doi: 10.1111/j.1467-9280.2009.02402.x.Google Scholar
Knutson, B., Taylor, J., Kaufman, M., Peterson, R., & Glover, G. (2005). Distributed neural representation of expected value. Journal of Neuroscience, 25(19). Retrieved from www.jneurosci.org/content/25/19/4806.short.Google Scholar
Konkel, A. & Cohen, N. J. (2009). Relational memory and the hippocampus: Representations and methods. Frontiers in Neuroscience, 3, 23.Google Scholar
Krebs, R. M., Boehler, C. N., De Belder, M., & Egner, T. (2015). Neural conflict–control mechanisms improve memory for target stimuli. Cerebral Cortex, 25(3), 833–43. doi: 10.1093/cercor/bht283.Google Scholar
Kumaran, D., Summerfield, J. J., Hassabis, D., & Maguire, E. A. (2009). Tracking the emergence of conceptual knowledge during human decision-making. Neuron, 63(6), 889901. doi: 10.1016/j.neuron.2009.07.030.Google Scholar
LaBar, K. S., Gatenby, J. C., Gore, J. C., LeDoux, J. E., & Phelps, E. A. (1998). Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron, 20(5), 937–45. doi: 10.1016/S0896-6273(00)80475-4.Google Scholar
LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23(4/5), 727–38. doi: 10.1023/A:1025048802629.Google Scholar
Leotti, L. A. & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22(10), 1310–18. doi: 10.1177/0956797611417005.Google Scholar
Lisman, J. E. & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46(5), 703–13. doi: 10.1016/j.neuron.2005.05.002.Google Scholar
MacInnes, J. J., Dickerson, K. C., Chen, N., & Adcock, R. A. (2016). Cognitive neurostimulation: Learning to volitionally sustain ventral tegmental area activation. Neuron, 89(6), 1331–42. doi: 10.1016/j.neuron.2016.02.002.Google Scholar
Mackintosh, N. J. (1983). Conditioning and associative learning. Oxford: Clarendon Press.Google Scholar
Mahler, S. V. & Berridge, K. C. (2009). Which cue to “want”? Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(20), 6500–13. doi: 10.1523/JNEUROSCI.3875-08.2009.Google Scholar
Mahler, S. V. & Berridge, K. C. (2012). What and when to “want”? Amygdala-based focusing of incentive salience upon sugar and sex. Psychopharmacology, 221(3), 407–26. doi: 10.1007/s00213-011-2588-6.Google Scholar
Maia, T. V. & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2), 154–62. doi: 10.1038/nn.2723.Google Scholar
Markant, D., DuBrow, S., Davachi, L., & Gureckis, T. M. (2014). Deconstructing the effect of self-directed study on episodic memory. Memory & Cognition, 42(8), 1211–24. doi: 10.3758/s13421-014-0435-9.Google Scholar
Miller, E. K. & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167202. doi: 10.1146/annurev.neuro.24.1.167.Google Scholar
Mobbs, D., Hassabis, D., Seymour, B., Marchant, J. L., Weiskopf, N., Dolan, R. J., & Frith, C. D. (2009). Choking on the money: Reward-based performance decrements are associated with midbrain activity. Psychological Science, 20(8), 955–62. doi: 10.1111/j.1467-9280.2009.02399.x.Google Scholar
Morilak, D. A., Barrera, G., Echevarria, D. J., Garcia, A. S., Hernandez, A., Ma, S., & Petre, C. O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 1214–24.Google Scholar
Murayama, K. & Kuhbandner, C. (2011). Money enhances memory consolidation – But only for boring material. Cognition, 119(1), 120–4. doi: 10.1016/j.cognition.2011.01.001.Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. Proceedings of the National Academy of Sciences of the United States of America, 107(49), 20 911–6. doi: 10.1073/pnas.1013305107.Google Scholar
Murty, V. P. & Adcock, R. A. (2014). Enriched encoding: reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160–8. doi: 10.1093/cercor/bht063.CrossRefGoogle ScholarPubMed
Murty, V. P. & Adcock, R. A. (2017). Distinct medial temporal lobe network states as neural contexts for motivated memory formation. In Hannula, D. E. & M. Duff, C., (Eds.), The hippocampus from cells to systems (pp. 467501). Cold Spring, NY: Springer International Publishing.Google Scholar
Murty, V. P., DuBrow, S., & Davachi, L. (2015). The simple act of choosing influences declarative memory. Journal of Neuroscience, 35(16), 6255–64. Retrieved from www.jneurosci.org/content/35/16/6255.short.Google Scholar
Murty, V. P., LaBar, K. S., & Adcock, R. A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience, 32(26), 8969–76. Retrieved from www.jneurosci.org/content/32/26/8969.short.Google Scholar
Murty, V. P., LaBar, K. S., & Adcock, R. A. (2016). Distinct medial temporal networks encode surprise during motivation by reward versus punishment. Neurobiology of Learning and Memory, 134, 5564. doi: 10.1016/j.nlm.2016.01.018.CrossRefGoogle ScholarPubMed
Murty, V. P., LaBar, K. S., Hamilton, D. A., & Adcock, R. A. (2011). Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory. Learning & Memory (Cold Spring Harbor, NY), 18(11), 712–7. doi: 10.1101/lm.023549.111.Google Scholar
Neugebauer, F., Korz, V., & Frey, J. U. (2009). Modulation of extracellular monoamine transmitter concentrations in the hippocampus after weak and strong tetanization of the perforant path in freely moving rats. Brain Research, 1273, 2938. doi: 10.1016/j.brainres.2009.03.055.Google Scholar
O'Carroll, C. M., Martin, S. J., Sandin, J., Frenguelli, B., & Morris, R. G. M. (2006). Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory. Learning & Memory, 13(6), 760–9. doi: 10.1101/lm.321006.Google Scholar
Olds, J. & Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. Journal of Comparative and Physiological Psychology, 47(6), 419–27. doi: 10.1037/h0058775.Google Scholar
Oleson, E. B., Gentry, R. N., Chioma, V. C., & Cheer, J. F. (2012). Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. Journal of Neuroscience, 32(42). Retrieved from www.jneurosci.org/content/32/42/14804.short.Google Scholar
Parkin, A. J. (1997). Human memory: Novelty, association and the brain. Current Biology. doi: 10.1016/S0960-9822(06)00400-3.Google Scholar
Phillips, A. G., Vacca, G., & Ahn, S. (2008). A top-down perspective on dopamine, motivation and memory. Pharmacology Biochemistry and Behavior, 90(2), 236–49.Google Scholar
Ranganath, C. (2010). Binding items and contexts: The cognitive neuroscience of episodic memory. Current Directions in Psychological Science, 19(3), 131–7.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory, 2, 6499.Google Scholar
Richter, F. R. & Yeung, N. (2015). Corresponding influences of top-down control on task switching and long-term memory. Quarterly Journal of Experimental Psychology (Hove), 68(6), 1124–47. doi: 10.1080/17470218.2014.976579.Google Scholar
Ryan, R. M. & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 5467. doi: 10.1006/ceps.1999.1020.Google Scholar
Samson, Y., Wu, J. J., Friedman, A. H., & Davis, J. N. (1990). Catecholaminergic innervation of the hippocampus in the cynomolgus monkey. The Journal of Comparative Neurology, 298(2), 250–63. doi: 10.1002/cne.902980209.Google Scholar
Sawaguchi, T. & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: Involvement in working memory. Science, 251(4996), 947–50. Retrieved from www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db= PubMed&dopt=Citation&list_uids=1825731.Google Scholar
Schunk, D. H., Meece, J. L., & Pintrich, P. R. (2014). Motivation in education: Theory, research, and applications. London: Pearson Education Limited.Google Scholar
Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–72.CrossRefGoogle ScholarPubMed
Shohamy, D. & Turk-Browne, N. B. (2013). Mechanisms for widespread hippocampal involvement in cognition. Journal of Experimental Psychology: General, 142(4), 1159–70. doi: 10.1037/a0034461.Google ScholarPubMed
Squire, L. R., Zola-Morgan, , & Stuart, . (1991). The medial temporal lobe memory system. Science, 253(5026). Retrieved from http://search.proquest.com/docview/213549918?pq-origsite=gscholar.Google Scholar
Strauman, T. J. & Wilson, W. A. (2010). Behavioral activation/inhibition and regulatory focus as distinct levels of analysis. In Hoyle, R. H. (Ed.), Handbook of personality and self-regulation (pp. 447–73). New York, NY: Guilford Press.Google Scholar
Stürmer, B., Nigbur, R., Schacht, A., & Sommer, W. (2011). Reward and punishment effects on error processing and conflict control. Frontiers in Psychology, 2, 335.Google Scholar
Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281–92. doi: 10.1016/S0896-6273(03)00848-1.Google Scholar
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 125.Google Scholar
Tulving, E. & Kroll, N. (1995). Novelty assessment in the brain and long-term memory encoding. Psychonomic Bulletin & Review, 2(3), 387–90. doi: 10.3758/BF03210977.Google Scholar
Tulving, E. & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of the hippocampus. Hippocampus, 8(3), 198204. doi: 10.1002/(SICI) 1098-1063(1998)8:3<198::AID-HIPO2>3.0.CO;2-G.Google Scholar
Tulving, E. & Murray, D. (1985). Elements of episodic memory. Canadian Psychology, 26(3), 235–8.Google Scholar
Utman, C. H. (1997). Performance effects of motivational state: A meta-analysis. Personality and Social Psychology Review, 1(2), 170–82. doi: 10.1207/s15327957pspr0102_4.Google Scholar
Verguts, T. & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Sciences, 13(6), 252257. doi: 10.1016/j.tics.2009.02.007.Google Scholar
Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011a). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14(1), 115–20. doi: 10.1038/nn.2693.Google Scholar
Voss, J. L., Warren, D. E., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011b). Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 108(31), E402-9. doi: 10.1073/pnas.1100225108.Google Scholar
Wang, S.-H. & Morris, R. G. M. (2010). Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annual Review of Psychology, 61, 4979.Google Scholar
Willner, P. & Scheel-Krüger, J. (1991). The mesolimbic dopamine system: From motivation to action. Wiley Chichester. Washington, DC: The National Academy of Sciences.Google Scholar
Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H.-J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–67. doi: 10.1016/j.neuron.2005.01.010.Google Scholar
Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24(7), 1532–47. doi: 10.1162/jocn_a_00237.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×