Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-23T21:52:12.006Z Has data issue: false hasContentIssue false

19 - Patient-Based Approaches to Understanding Intelligence and Problem-Solving

from Part V - Translating Research on the Neuroscience of Intelligence into Action

Published online by Cambridge University Press:  11 June 2021

Aron K. Barbey
Affiliation:
University of Illinois, Urbana-Champaign
Sherif Karama
Affiliation:
McGill University, Montréal
Richard J. Haier
Affiliation:
University of California, Irvine
Get access

Summary

One of the major achievements of psychology in the twentieth century is the establishment and implementation of standard measures of human intelligence. The use of these measures yielded a large body of research as well as many controversies and criticisms (for review see Nisbett et al., 2012). The relatively recent development of structural and functional brain imaging techniques led to attempts to identify the neural correlates of intelligence, as well as to the use of intelligence testing as a diagnostic and prognostic factor within clinical populations. Different syndromes are characterized by a unique pattern of performance on standard intelligence tests, with specific profiles reported for patients with developmental disorders (e.g., Down syndrome, autism spectrum disorder), for neurological and neurodegenerative disorders (e.g., epilepsy, multiple sclerosis, Parkinson’s disease, Alzheimer’s disease), and for acute neurological trauma (e.g., traumatic brain injury and stroke. See Hamburg et al., 2019; Wechsler, 2008a). In this chapter, we will highlight the clinical implications of studying intelligence in adults with traumatic brain injury (TBI), which has been a central research interest for our group over the years. When appropriate, we will also provide additional examples referring to other clinical populations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbula, S., Ambrosini, E., Della Puppa, A., De Pellegrin, S., Anglani, M., Denaro, L., … Vallesi, A. (2020). Focal left prefrontal lesions and cognitive impairment: A multivariate lesion-symptom mapping approach. Neuropsychologia, 136, 107253. doi: 10.1016/j.neuropsychologia.2019.107253.CrossRefGoogle ScholarPubMed
Axelrod, B. N., Vanderploeg, R. D., & Schinka, J. A. (1999). Comparing methods for estimating premorbid intellectual functioning. Archives of Clinical Neuropsychology, 14(4), 341346. doi: 10.1016/S0887–6177(98)00028-6.CrossRefGoogle ScholarPubMed
Aziz-Zadeh, L., Kaplan, J. T., & Iacoboni, M. (2009). “Aha!”: The neural correlates of verbal insight solutions. Human Brain Mapping, 30(3), 908916. doi: 10.1002/hbm.20554.Google Scholar
Barbey, A. K., Belli, A., Logan, A., Rubin, R., Zamroziewicz, M., & Operskalski, J. T. (2015). Network topology and dynamics in traumatic brain injury. Current Opinion in Behavioral Sciences, 4, 92102.Google Scholar
Barbey, A. K., Colom, R., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human intelligence. Neuropsychologia, 51(7), 13611369. doi: 10.1016/j.neuropsychologia.2012.05.017.Google Scholar
Barbey, A. K., Colom, R., & Grafman, J. (2014). Distributed neural system for emotional intelligence revealed by lesion mapping. Social Cognitive and Affective Neuroscience, 9(3), 265272. doi: 10.1093/scan/nss124.Google Scholar
Barbey, A. K., Colom, R., Paul, E. J., Chau, A., Solomon, J., & Grafman, J. H. (2014). Lesion mapping of social problem solving. Brain: A Journal of Neurology, 137(10), 28232833. doi: 10.1093/brain/awu207.Google Scholar
Barbey, A. K., Colom, R., Paul, E., Forbes, C., Krueger, F., Goldman, D., & Grafman, J. (2014). Preservation of general intelligence following traumatic brain injury: Contributions of the Met66 brain-derived neurotrophic factor. PLoS One, 9(2), e838733.CrossRefGoogle ScholarPubMed
Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid intelligence and working memory revealed by lesion mapping. Brain Structure & Function, 219(2), 485494. doi: 10.1007/s00429–013-0512-z.Google Scholar
Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012). An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain, 135(4), 11541164. doi: 10.1093/brain/aws021.CrossRefGoogle ScholarPubMed
Barona, A., Reynolds, C. R., & Chastain, R. (1984). A demographically based index of premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical Psychology, 52(5), 885.CrossRefGoogle Scholar
Benedictus, M. R., Spikman, J. M., & van der Naalt, J. (2010). Cognitive and behavioral impairment in traumatic brain injury related to outcome and return to work. Archives of Physical Medicine and Rehabilitation, 91(9), 14361441.Google Scholar
Bianchi, L. (1922). The mechanism of the brain and the function of the frontal lobes. Edinburgh: Livingstone. doi: 10.1192/bjp.68.283.402.Google Scholar
Blair, J. R., & Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. The Clinical Neuropsychologist, 3(2), 129136.Google Scholar
Boes, A. D., Prasad, S., Liu, H., Liu, Q., Pascual-Leone, A., Caviness, V. S. Jr, & Fox, M. D. (2015). Network localization of neurological symptoms from focal brain lesions. Brain, 138(10), 30613075.Google Scholar
Bright, P., & van der Linde, I. (2020). Comparison of methods for estimating premorbid intelligence. Neuropsychological Rehabilitation, 30(1), 114. doi: 10.1080/09602011.2018.1445650.Google Scholar
Cohen-Zimerman, S., Kachian, Z. R., Krueger, F., Gordon, B., & Grafman, J. (2019). Childhood socioeconomic status predicts cognitive outcomes across adulthood following traumatic brain injury. Neuropsychologia, 124, 18. doi: 10.1016/j.neuropsychologia.2019.01.001.CrossRefGoogle ScholarPubMed
Cohen-Zimerman, S., Salvi, C., Krueger, F., Gordon, B., & Grafman, J. (2018). Intelligence across the seventh decade in patients with brain injuries acquired in young adulthood. Trends in Neuroscience and Education, 13, 17. doi: 10.1016/j.tine.2018.08.001.Google Scholar
Colom, R., & Flores-Mendoza, C. E. (2007). Intelligence predicts scholastic achievement irrespective of SES factors: Evidence from Brazil. Intelligence, 35(3), 243251. doi: 10.1016/j.intell.2006.07.008.Google Scholar
Crawford, J. R., Deary, I. J., Starr, J., & Whalley, L. J. (2001). The NART as an index of prior intellectual functioning: A retrospective validity study covering a 66-year interval. Psychological Medicine, 31(3), 451458. doi: 10.1017/S0033291701003634.Google Scholar
Danek, A., & Salvi, C. (2018). Moment of truth: Why Aha! experiences are correct. Journal of Creative Behavior. doi: 10.1002/jocb.380.Google Scholar
Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., … Emslie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457460. doi: 10.1126/science.289.5478.457.Google Scholar
Eimontaite, I., Goel, V., Raymont, V., Krueger, F., Schindler, I., & Grafman, J. (2018). Differential roles of polar orbital prefrontal cortex and parietal lobes in logical reasoning with neutral and negative emotional content. Neuropsychologia, 119, 320329.Google Scholar
Gläscher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., & Adolphs, R. (2010). Distributed neural system for general intelligence revealed by lesion mapping. Proceedings of the National Academy of Sciences, 107(10), 47054709. Retrieved from www.pnas.org/content/107/10/4705.abstractGoogle Scholar
Goel, V., Grafman, J., Tajik, J., Gana, S., & Danto, D. (1997). A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain, 120(10), 18051822. doi: 10.1093/brain/120.10.1805.Google Scholar
Goel, V., Lam, E., Smith, K. W., Goel, A., Raymont, V., Krueger, F., & Grafman, J. (2017). Lesions to polar/orbital prefrontal cortex selectively impair reasoning about emotional material. Neuropsychologia, 99, 236245.Google Scholar
Goel, V., Makale, M., & Grafman, J. (2004). The hippocampal system mediates logical reasoning about familiar spatial environments. Journal of Cognitive Neuroscience, 16(4), 654664.CrossRefGoogle ScholarPubMed
Goel, V., Marling, M., Raymont, V., Krueger, F., & Grafman, J. (2019). Patients with lesions to left prefrontal cortex (BA 9 and BA 10) have less entrenched beliefs and are more skeptical reasoners. Journal of Cognitive Neuroscience, 31(11), 16741688.Google Scholar
Goel, V., Stollstorff, M., Nakic, M., Knutson, K., & Grafman, J. (2009). A role for right ventrolateral prefrontal cortex in reasoning about indeterminate relations. Neuropsychologia, 47(13), 27902797.Google Scholar
Gottfredson, L., & Saklofske, D. H. (2009). Intelligence: Foundations and issues in assessment. Canadian Psychology/Psychologie Canadienne, 50(3), 183.Google Scholar
Grafman, J., Jonas, B. S., Martin, A., Salazar, A. M., Weingartner, H., Ludlow, C., … Vance, S. C. (1988). Intellectual function following penetrating head-injury in Vietnam veterans. Brain, 111(1), 169184.Google Scholar
Hamburg, S., Lowe, B., Startin, C. M., Padilla, C., Coppus, A., Silverman, W., … Strydom, A. (2019). Assessing general cognitive and adaptive abilities in adults with Down syndrome: A systematic review. Journal of Neurodevelopmental Disorders, 11(1), 20. doi: 10.1186/s11689–019-9279-8.Google Scholar
Harlow, J. M. (1868). Recovery from the passage of an iron bar through the head. Publications of the Massachusetts Medical Society, 2, 327347. doi: 10.1177/0957154X9300401407.Google Scholar
Hillary, F. G., & Grafman, J. H. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385401. doi: 10.1016/j.tics.2017.03.003.Google Scholar
Ip, R. Y., Dornan, J., & Schentag, C. (1995). Traumatic brain injury: Factors predicting return to work or school. Brain Injury, 9(5), 517532. doi: 10.3109/02699059509008211.Google Scholar
Jouandet, M., & Gazzaniga, M. S. (1979). The frontal lobes. In Gazzaniga, M. S. (ed.), Neuropsychology. Handbook of behavioral neurobiology, vol 2 (pp. 2559). Boston, MA: Springer. doi: 10.1007/978-1-4613-3944-1_2Google Scholar
Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30(2), 135154.CrossRefGoogle ScholarPubMed
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., … Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLoS Biology, 2(4), 500510. doi: 10.1371/journal.pbio.0020097.Google Scholar
Kesler, S. R., Adams, H. F., Blasey, C. M., & Bigler, E. D. (2003). Premorbid intellectual functioning, education, and brain size in traumatic brain injury: An investigation of the cognitive reserve hypothesis. Applied Neuropsychology, 10(3), 153162.Google Scholar
Königs, M., Engenhorst, P. J., & Oosterlaan, J. (2016). Intelligence after traumatic brain injury: Meta-analysis of outcomes and prognosis. European Journal of Neurology, 23(1), 2129. doi: 10.1111/ene.12719.Google Scholar
Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65(1), 7193. doi: 10.1146/annurev-psych-010213-115154.CrossRefGoogle ScholarPubMed
Krueger, F., Pardini, M., Huey, E. D., Raymont, V., Solomon, J., Lipsky, R. H., … Grafman, J. (2011). The role of the Met66 brain-derived neurotrophic factor allele in the recovery of executive functioning after combat-related traumatic brain injury. The Journal of Neuroscience, 31(2), 598606.Google Scholar
Laukkonen, R., Webb, M., Salvi, C., Tange, J., and Shooler, J. (2020). Eureka heuristics: How feelings of insight signal the quality of a new idea. PsyArXiv. doi: 10.31234/osf.io/ez3tn.CrossRefGoogle Scholar
Luria, A. (1966). Higher cortical functions in man. Boston, MA: Springer. doi: 10.1007/978-1-4684-7741-2.Google Scholar
Mani, K., Cater, B., & Hudlikar, A. (2017). Cognition and return to work after mild/moderate traumatic brain injury: A systematic review. Work, 58(1), 5162.Google Scholar
Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D. F., & Turkheimer, E. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67(2), 130.CrossRefGoogle ScholarPubMed
Nunnari, D., Bramanti, P., & Marino, S. (2014). Cognitive reserve in stroke and traumatic brain injury patients. Neurological Sciences, 35(10), 15131518. doi: 10.1007/s10072–014-1897-z.Google Scholar
O’Connell, M. J. (2000). Prediction of return to work following traumatic brain injury: Intellectual, memory, and demographic variables. Rehabilitation Psychology, 45(2), 212217. doi: 10.1037/0090-5550.45.2.212.Google Scholar
Orme, D. R., Brehm, W., & Ree, M. J. (2001). Armed Forces Qualification Test as a measure of premorbid intelligence. Military Psychology, 13(4), 187197. doi: 10.1207/S15327876MP1304_1.Google Scholar
Palmiero, C., Piccardi, M., Nori, L., Palermo, R., Salvi, L., & Guariglia, C. (2019). Creativity: Education and rehabilitation. Frontiers in Psychology, 10, 1500. doi: 10.3389/fpsyg.2019.01500.Google Scholar
Raymont, V., Greathouse, A., Reding, K., Lipsky, R., Salazar, A., & Grafman, J. (2008). Demographic, structural and genetic predictors of late cognitive decline after penetrating head injury. Brain, 131(2), 543558. doi: 10.1093/brain/awm300.Google Scholar
Raymont, V., Salazar, A. M., Krueger, F., & Grafman, J. (2011). Studying injured minds – the Vietnam head injury study and 40 years of brain injury research. Frontiers in Neurology, 2, 15. doi: 10.3389/fneur.2011.00015CrossRefGoogle ScholarPubMed
Ree, M. J., & Earles, J. A. (1992). Intelligence is the best predictor of job performance. Current Directions in Psychological Science, 1(3), 8689.Google Scholar
Reverberi, C., Toraldo, A., D’Agostini, S., & Skrap, M. (2005). Better without (lateral) frontal cortex? Insight problems solved by frontal patients. Brain, 128(12), 28822890. doi: 10.1093/brain/awh577.Google Scholar
Rostami, E., Krueger, F., Zoubak, S., Dal Monte, O., Raymont, V., Pardini, M., … Grafman, J. (2011). BDNF polymorphism predicts general intelligence after penetrating traumatic brain injury. PLoS One, 6(11), e27389. doi: org/10.1371/journal.pone.0027389.Google Scholar
Salvi, C., Beeman, M., Bikson, M., McKinley, R., & Grafman, J. (2020). TDCS to the right anterior temporal lobe facilitates insight problem-solving. Science Reports, 10, 946. doi: 10.1038/s41598-020-57724-1.Google Scholar
Salvi, C., Bricolo, E., Franconeri, S., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting down visual inputs. Psychonomic Bulletin & Review, 22(6), 18141819. doi: 10.3758/s13423-015-0845-0.Google Scholar
Salvi, C., Bricolo, E., Kounios, J., Bowden, E. M., & Beeman, M. (2016). Insight solutions are correct more often than analytic solutions. Thinking & Reasoning, 22(4), 118. doi: 10.1080/13546783.2016.1141798.Google Scholar
Salvi, C., Simoncini, C., Grafman, J., & Beeman, M. (2020). Oculometric signature of switch into awareness? Pupil size predicts sudden insight whereas microsaccades predict problem-solving via analysis. Neuroimage, 217, 116933. doi: 10.1016/j.neuroimage.2020.116933.Google Scholar
Santarnecchi, E., Sprugnoli, G., Bricolo, E., Constantini, G., Liew, S. L., Musaeus, C. S., … Rossi, S. (2019). Gamma tACS over the temporal lobe increases the occurrence of Eureka! moments. Scientific Reports, 9, 5778. doi: 10.1038/s41598–019-42192-z.Google Scholar
Schoenberg, M. R., Lange, R. T., Brickell, T. A., & Saklofske, D. H. (2007). Estimating premorbid general cognitive functioning for children and adolescents using the American Wechsler Intelligence Scale for Children – Fourth edition: Demographic and current performance approaches. Journal of Child Neurology, 22(4), 379388. doi: 10.1177/0883073807301925.Google Scholar
Schwab, K., Grafman, J., Salazar, A. M., & Kraft, J. (1993). Residual impairments and work status 15 years after penetrating head injury. Neurology, 43(1 Part 1), 95. doi: 10.1212/WNL.43.1_Part_1.95.Google Scholar
Shallice, T. (1988). From neuropsychology to mental structure. Cambridge University Press. doi: 10.1017/CBO9780511526817.Google Scholar
Shuren, J. E., & Grafman, J. (2002). The neurology of reasoning. Archives of Neurology, 59(6), 916919.Google Scholar
Simon, H. A. (1973). The structure of ill structured problems. Artificial Intelligence, 4(3–4), 181201. doi: 10.1016/0004-3702(73)90011-8.Google Scholar
Spikman, J. M., Timmerman, M. E., Milders, M. V, Veenstra, W. S., & van der Naalt, J. (2011). Social cognition impairments in relation to general cognitive deficits, injury severity, and prefrontal lesions in traumatic brain injury patients. Journal of Neurotrauma, 29(1), 101111. doi: 10.1089/neu.2011.2084.Google Scholar
Sprugnoli, G., Rossi, S., Emmerdorfer, A., Rossi, A., Liew, S., Tatti, E., … Santarnecchi, E. (2017). Neural correlates of Eureka moment. Intelligence, 62, 99118. doi: 10.1016/j.intell.2017.03.004.Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 20152028. doi: 10.1016/j.neuropsychologia.2009.03.004.CrossRefGoogle ScholarPubMed
Tik, M., Sladky, S., Luft, C., Willinger, D., Hoffmann, A., Banissy, M., … Windischberger, C. (2018). Ultra-high-field fMRI insights on insight: Neural correlates of the Aha!-moment. Human Brain Mapping, 39, 32413252.Google Scholar
Unterrainer, J. M., & Owen, A. M. (2006). Planning and problem solving: From neuropsychology to functional neuroimaging. Journal of Physiology-Paris, 99(4), 308317. doi: 10.1016/j.jphysparis.2006.03.014.Google Scholar
Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. NeuroImage, 103, 349354. doi: 10.1016/j.neuroimage.2014.09.055.Google Scholar
Waechter, R. L., Goel, V., Raymont, V., Kruger, F., & Grafman, J. (2013). Transitive inference reasoning is impaired by focal lesions in parietal cortex rather than rostrolateral prefrontal cortex. Neuropsychologia, 51(3), 464471.Google Scholar
Wardlaw, C., Hicks, A. J., Sherer, M., & Ponsford, J. L. (2018). Psychological resilience is associated with participation outcomes following mild to severe traumatic brain injury. Frontiers in Neurology, 9, 563. doi: 10.3389/fneur.2018.00563.Google Scholar
Wechsler, D. (1958). The measurement and appraisal of adult intelligence (4th ed.). Philadelphia, PA: Williams & Wilkins Co. doi: 10.1037/11167-000.Google Scholar
Wechsler, D. (2001). Wechsler Test of Adult Reading: WTAR. San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (2008a). WAIS-IV technical and interpretive manual. San Antonio, TX: Pearson.Google Scholar
Wechsler, D. (2008b). Wechsler adult intelligence scale – Fourth edition (WAIS–IV). San Antonio, TX: NCS Pearson.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×