Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T08:20:04.245Z Has data issue: false hasContentIssue false

14 - Studies of the Activation and Structural Changes of the Brain Associated with Expertise

from Part III - Methods for Studying the Structure of Expertise

Published online by Cambridge University Press:  10 May 2018

K. Anders Ericsson
Affiliation:
Florida State University
Robert R. Hoffman
Affiliation:
Florida Institute for Human and Machine Cognition
Aaron Kozbelt
Affiliation:
Brooklyn College, City University of New York
A. Mark Williams
Affiliation:
University of Utah
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, A. M., Macaluso, E., Azevedo, R. T., Cesari, P., Urgesi, C., & Aglioti, S. M. (2012). Action anticipation beyond the action observation network: A functional magnetic resonance imaging study in expert basketball players. European Journal of Neuroscience, 35, 16461654.CrossRefGoogle ScholarPubMed
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11, 11091116.CrossRefGoogle ScholarPubMed
Amidzic, O., Riehle, H. J., Fehr, T., Wienbruch, C., & Elbert, T. (2001). Pattern of focal gamma-bursts in chess players. Nature, 412, 603.Google Scholar
Atherton, M., Zhuang, J., Bart, W. M., Hu, X., & He, S. (2003). A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research, 16, 2631.Google Scholar
Balser, N., Lorey, B., Pilgramm, S., Naumann, T., Kindermann, S., Stark, R., … & Munzert, J. (2014a). The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves. Frontiers in Human Neuroscience, 8.Google Scholar
Balser, N., Lorey, B., Pilgramm, S., Stark, R., Bischoff, M., Zentgraf, K., … & Munzert, J. (2014b). Prediction of human actions: Expertise and task-related effects on neural activation of the action observation network. Human Brain Mapping, 35, 40164034.CrossRefGoogle ScholarPubMed
Bartlett, J., Boggan, A. L., & Krawczyk, D. C. (2013). Expertise and processing distorted structure in chess. Frontiers in Human Neuroscience, 7, 825.Google Scholar
Bilalić, M. (2016) Revisiting the role of the Fusiform Face Area (FFA) in expertise. Journal of Cognitive Neuroscience, 28, 13451357.Google Scholar
Bilalić, M. (2017). The neuroscience of expertise. Cambridge University Press.CrossRefGoogle Scholar
Bilalić, M., Grottenthaler, T., Nägele, T., & Lindig, T. (2016). The faces in radiological images: Fusiform face area supports radiological expertise. Cerebral Cortex, 26, 10041014.CrossRefGoogle ScholarPubMed
Bilalić, M., Kiesel, A., Pohl, C., Erb, M., & Grodd, W. (2011). It takes two: Skilled recognition of objects engages lateral areas in both hemispheres. PLoS ONE, 6, e16202.CrossRefGoogle ScholarPubMed
Bilalić, M., Langner, R., Erb, M., & Grodd, W. (2010). Mechanisms and neural basis of object and pattern recognition: A study with chess experts. Journal of Experimental Psychology: General, 139, 728742.Google Scholar
Bilalić, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: Fusiform face area in chess experts and novices. Journal of Neuroscience, 31, 1020610214.Google Scholar
Bilalić, M., Turella, L., Campitelli, G., Erb, M., & Grodd, W. (2012). Expertise modulates the neural basis of context dependent recognition of objects and their relations. Human Brain Mapping, 33, 27282740.CrossRefGoogle ScholarPubMed
Binet, A. (1894). Psychologie des grands calculateurs et joueurs d’échecs. Paris: Hachette.Google Scholar
Bishop, D. T., Wright, M. J., Jackson, R. C., & Abernethy, B. (2013). Neural bases for anticipation skill in soccer: An FMRI study. Journal of Sport & Exercise Psychology, 35, 98109.CrossRefGoogle ScholarPubMed
Buschhüter, D., Smitka, M., Puschmann, S., Gerber, J. C., Witt, M., Abolmaali, N. D., & Hummel, T. (2008). Correlation between olfactory bulb volume and olfactory function. NeuroImage, 42, 498502.Google Scholar
Busey, T. A., & Vanderkolk, J. R. (2005). Behavioral and electrophysiological evidence for configural processing in fingerprint experts. Vision Research, 45, 431448.Google Scholar
Calvo-Merino, B. (2004). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex, 15, 12431249.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Grèzes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity in action observation. Current Biology, 16, 19051910.Google Scholar
Campitelli, G., Gobet, F., Head, K., Buckley, M., & Parker, A. (2007). Brain localization of memory chunks in chessplayers. International Journal of Neuroscience, 117, 16411659.CrossRefGoogle ScholarPubMed
Campitelli, G., Gobet, F., & Parker, A. (2005). Structure and stimulus familiarity: A study of memory in chess-players with functional magnetic resonance imaging. Spanish Journal of Psychology, 8, 238245.CrossRefGoogle ScholarPubMed
Cannonieri, G. C., Bonilha, L., Fernandes, P. T., Cendes, F., & Li, L. M. (2007). Practice and perfect: Length of training and structural brain changes in experienced typists. Neuroreport, 18, 10631066.Google Scholar
Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective & Behavioral Neuroscience, 7, 367379.Google Scholar
Castriota-Scanderbeg, A., Hagberg, G. E., Cerasa, A., Committeri, G., Galati, G., Patria, F., … & Frackowiak, R. (2005). The appreciation of wine by sommeliers: A functional magnetic resonance study of sensory integration. NeuroImage, 25, 570578.CrossRefGoogle ScholarPubMed
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 5581.CrossRefGoogle Scholar
Cross, E. S., Hamilton, A. F., & Grafton, S. T. (2006). Building a motor simulation de novo: Observation of dance by dancers. NeuroImage, 31, 12571267.Google Scholar
Cross, E. S., Kraemer, D. J. M., Hamilton, A. F., Kelley, W. M., & Grafton, S. T. (2009). Sensitivity of the action observation network to physical and observational learning. Cerebral Cortex, 19, 315326.Google Scholar
de Groot, A. (1978). Thought and choice in chess (2nd edn.). The Hague: Mouton. (Original work published 1946)Google Scholar
Di, X., Zhu, S., Jin, H., Wang, P., Ye, Z., Zhou, K., … & Rao, H. (2012). Altered resting brain function and structure in professional badminton players. Brain Connectivity, 2, 225233.Google Scholar
Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 24702473.Google Scholar
Duan, X., He, S., Liao, W., Liang, D., Qiu, L., Wei, L., … & Chen, H. (2012). Reduced caudate volume and enhanced striatal-DMN integration in chess experts. NeuroImage, 60, 12801286.Google Scholar
Duan, X., Long, Z., Chen, H., Liang, D., Qiu, L., Huang, X., … & Gong, Q. (2014). Functional organization of intrinsic connectivity networks in Chinese-chess experts. Brain Research, 1558, 3343.Google Scholar
Duchaine, B., & Yovel, G. (2015). A revised neural framework for face processing. Annual Review of Vision Science, 1, 393416.Google Scholar
Epstein, R. A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12, 388396.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Frank, M. C., & Barner, D. (2012). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141, 134149.Google Scholar
Frasnelli, J., Lundström, J. N., Boyle, J. A., Djordjevic, J., Zatorre, R. J., & Jones-Gotman, M. (2010). Neuroanatomical correlates of olfactory performance. Experimental Brain Research, 201, 111.CrossRefGoogle ScholarPubMed
Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236243.CrossRefGoogle ScholarPubMed
Goldstein, R., Almenberg, J., Dreber, A., Emerson, J. W., Herschkowitsch, A., & Katz, J. (2008). Do more expensive wines taste better? Evidence from a large sample of blind tastings. Journal of Wine Economics, 3, 19.Google Scholar
Grafton, S. T. (2009). Embodied cognition and the simulation of action to understand others. Annals of the New York Academy of Sciences, 1156, 97117.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41, 14091422.Google Scholar
Hadjikhani, N., & de Gelder, B. (2002). Neural basis of prosopagnosia: An fMRI study. Human Brain Mapping, 16, 176182.Google Scholar
Haller, S., & Radue, E. W. (2005). What is different about a radiologist’s brain? Radiology, 236, 983989.Google Scholar
Hanakawa, T., Honda, M., Okada, T., Fukuyama, H., & Shibasaki, H. (2003). Neural correlates underlying mental calculation in abacus experts: A functional magnetic resonance imaging study. NeuroImage, 19, 296307.CrossRefGoogle ScholarPubMed
Hänggi, J., Brütsch, K., Siegel, A. M., & Jäncke, L. (2014). The architecture of the chess player’s brain. Neuropsychologia, 62, 152162.Google Scholar
Harel, A. (2015). What is special about expertise? Visual expertise reveals the interactive nature of real-world object recognition. Neuropsychologia, 83, 8899.Google Scholar
Harel, A., Gilaie-Dotan, S., Malach, R., & Bentin, S. (2010). Top-down engagement modulates the neural expressions of visual expertise. Cerebral Cortex, 20, 23042318.CrossRefGoogle ScholarPubMed
Harley, E. M., Pope, W. B., Villablanca, J. P., Mumford, J., Suh, R., Mazziotta, J. C., … & Engel, S. A. (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cerebral Cortex, 19, 27462754.Google Scholar
Hu, Y., Geng, F., Tao, L., Hu, N., Du, F., Fu, K., & Chen, F. (2011). Enhanced white matter tracts integrity in children with abacus training. Human Brain Mapping, 32, 1021.CrossRefGoogle ScholarPubMed
Jäncke, L., Koeneke, S., Hoppe, A., Rominger, C., & Hänggi, J. (2009). The architecture of the golfer’s brain. PloS ONE, 4, e4785.Google Scholar
Jung, W. H., Kim, S. N., Lee, T. Y., Jang, J. H., Choi, C.-H., Kang, D.-H., & Kwon, J. S. (2013). Exploring the brains of Baduk (Go) experts: Gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis. Frontiers in Human Neuroscience, 7.Google Scholar
Kalamangalam, G. P., & Ellmore, T. M. (2014). Focal cortical thickness correlates of exceptional memory training in Vedic priests. Frontiers in Human Neuroscience, 8.CrossRefGoogle ScholarPubMed
Krupinski, E. A. (2000). The importance of perception research in medical imaging. Radiation Medicine, 18, 329334.Google Scholar
Ku, Y., Hong, B., Zhou, W., Bodner, M., & Zhou, Y.-D. (2012). Sequential neural processes in abacus mental addition: An EEG and fMRI case study. PLoS ONE, 7, e36410.Google Scholar
Kundel, H. L., & Nodine, C. F. (1975). Interpreting chest radiographs without visual search. Radiology, 116, 527532.Google Scholar
Kundel, H. L., Nodine, C. F., Conant, E. F., & Weinstein, S. P. (2007). Holistic component of image perception in mammogram interpretation: Gaze-tracking study. Radiology, 242, 396402.Google Scholar
Kupers, R., Beaulieu-Lefebvre, M., Schneider, F. C., Kassuba, T., Paulson, O. B., Siebner, H. R., & Ptito, M. (2011). Neural correlates of olfactory processing in congenital blindness. Neuropsychologia, 49, 20372044.Google Scholar
Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience & Biobehavioral Reviews, 41, 3652.Google Scholar
Lu, L. H., Dapretto, M., O’Hare, E. D., Kan, E., McCourt, S. T., Thompson, P. M., … & Sowell, E. R. (2009). Relationships between brain activation and brain structure in normally developing children. Cerebral Cortex, 19, 25952604.CrossRefGoogle ScholarPubMed
Lucan, J. N., Foxe, J. J., Gomez-Ramirez, M., Sathian, K., & Molholm, S. (2010). Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing. Human Brain Mapping, 31, 18131821.CrossRefGoogle ScholarPubMed
Maguire, E. A., Frackowiak, R. S., & Frith, C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers. Journal of Neuroscience, 17, 71037110.Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences USA, 97, 43984403.Google Scholar
Maguire, E. A., Valentine, E. R., Wilding, J. M., & Kapur, N. (2003). Routes to remembering: The brains behind superior memory. Nature Neuroscience, 6, 9095.Google Scholar
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16, 10911101.Google Scholar
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270, 102105.Google Scholar
Melo, M., Scarpin, D. J., Amaro, E., Passos, R. B., Sato, J. R., Friston, K. J., & Price, C. J. (2011). How doctors generate diagnostic hypotheses: A study of radiological diagnosis with functional magnetic resonance imaging. PloS ONE, 6, e28752.CrossRefGoogle ScholarPubMed
Morrot, G., Brochet, F., & Dubourdieu, D. (2001). The color of odors. Brain and Language, 79, 309320.Google Scholar
Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J. C., & Miletich, R. (1994). Brain activity in chess playing. Nature, 369, 191.Google Scholar
Olsson, C.-J., & Lundström, P. (2013). Using action observation to study superior motor performance: A pilot fMRI study. Frontiers in Human Neuroscience, 7, 819.CrossRefGoogle ScholarPubMed
Park, I. S., Lee, K. J., Han, J. W., Lee, N. J., Lee, W. T., Park, K. A., & Rhyu, I. J. (2009). Experience-dependent plasticity of cerebellar vermis in basketball players. The Cerebellum, 8, 334339.Google Scholar
Pazart, L., Comte, A., Magnin, E., Millot, J.-L., & Moulin, T. (2014). An fMRI study on the influence of sommeliers’ expertise on the integration of flavor. Frontiers in Behavioral Neuroscience, 8.Google Scholar
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., … & Tzourio-Mazoyer, N. (2001). Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nature Neuroscience, 4, 103107.Google Scholar
Plailly, J., Delon-Martin, C., & Royet, J.-P. (2012). Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Human Brain Mapping, 33, 224234.Google Scholar
Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564574.Google Scholar
Raz, A., Packard, M. G., Alexander, G. M., Buhle, J. T., Zhu, H., Yu, S., & Peterson, B. S. (2009). A slice of π: An exploratory neuroimaging study of digit encoding and retrieval in a superior memorist. Neurocase, 15, 361372.Google Scholar
Reingold, E. M., & Sheridan, H. (2011). Eye movements and visual expertise in chess and medicine. In Liversedge, S. P., Gilchrist, I. D., & Everling, S. (eds.), The Oxford handbook of eye movements (pp. 523550). Oxford University Press.Google Scholar
Renier, L., Cuevas, I., Grandin, C. B., Dricot, L., Plaza, P., Lerens, E., … & De Volder, A. G. (2013). Right occipital cortex activation correlates with superior odor processing performance in the early blind. PLoS ONE, 8, e71907.Google Scholar
Rennig, J., Bilalić, M., Huberle, E., Karnath, H.-O., & Himmelbach, M. (2013). The temporo-parietal junction contributes to global gestalt perception: Evidence from studies in chess experts. Frontiers in Human Neuroscience, 7, 513.Google Scholar
Richler, J., Palmeri, T. J., & Gauthier, I. (2012). Meanings, mechanisms, and measures of holistic processing. Frontiers in Psychology, 3, 553.Google Scholar
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.Google Scholar
Roberts, R. E., Bain, P. G., Day, B. L., & Husain, M. (2013). Individual differences in expert motor coordination associated with white matter microstructure in the cerebellum. Cerebral Cortex, 23, 22822292.Google Scholar
Rombaux, P., Huart, C., De Volder, A. G., Cuevas, I., Renier, L., Duprez, T., & Grandin, C. (2010). Increased olfactory bulb volume and olfactory function in early blind subjects. NeuroReport, 21, 10691073.Google Scholar
Ross, D., Tamber-Rosenau, B., Palmeri, T., Zhang, J., Xu, Y., & Gauthier, I. (2015). High resolution fMRI reveals holistic car representations in the anterior FFA of car experts. Journal of Vision, 15, 614.Google Scholar
Rossion, B., & Jacques, C. (2008). Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. NeuroImage, 39, 19591979.Google Scholar
Sadeh, B., Podlipsky, I., Zhdanov, A., & Yovel, G. (2010). Event-related potential and functional MRI measures of face-selectivity are highly correlated: A simultaneous ERP-fMRI investigation. Human Brain Mapping, 31, 14901501.Google Scholar
Seubert, J., Freiherr, J., Frasnelli, J., Hummel, T., & Lundstrom, J. N. (2013). Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cerebral Cortex, 23, 24482456.CrossRefGoogle ScholarPubMed
Stilla, R., Deshpande, G., LaConte, S., Hu, X., & Sathian, K. (2007). Posteromedial parietal cortical activity and inputs predict tactile spatial acuity. Journal of Neuroscience, 27, 1109111102.Google Scholar
Stilla, R., & Sathian, K. (2008). Selective visuo-haptic processing of shape and texture. Human Brain Mapping, 29, 11231138.Google Scholar
Swensson, R. G. (1980). A two-stage detection model applied to skilled visual search by radiologists. Attention, Perception, & Psychophysics, 27, 1116.Google Scholar
Tanaka, S., Michimata, C., Kaminaga, T., Honda, M., & Sadato, N. (2002). Superior digit memory of abacus experts: An event-related functional MRI study. Neuroreport, 13, 2187.Google Scholar
Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N., … & Honda, M. (2012). Abacus in the brain: A longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion. Frontiers in Psychology, 3.Google Scholar
Thompson, P. (1980). Margaret Thatcher: A new illusion. Perception, 9, 483484.CrossRefGoogle Scholar
Turella, L., Wurm, M. F., Tucciarelli, R., & Lingnau, A. (2013). Expertise in action observation: Recent neuroimaging findings and future perspectives. Frontiers in Human Neuroscience, 7, 637.Google Scholar
Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445453.Google Scholar
Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The neural basis of intuitive best next-move generation in board game experts. Science, 331, 341346.CrossRefGoogle ScholarPubMed
Wan, X., Takano, D., Asamizuya, T., Suzuki, C., Ueno, K., Cheng, K., … & Tanaka, K. (2012). Developing intuition: Neural correlates of cognitive-skill learning in caudate nucleus. Journal of Neuroscience, 32, 1749217501.Google Scholar
Weissman, D. H., & Banich, M. T. (2000). The cerebral hemispheres cooperate to perform complex but not simple tasks. Neuropsychology, 14, 4159.Google Scholar
Wenzel, U., Taubert, M., Ragert, P., Krug, J., & Villringer, A. (2014). Functional and structural correlates of motor speed in the cerebellar anterior lobe. PLoS ONE, 9, e96871.Google Scholar
Wong, Y. K., & Gauthier, I. (2010). A multimodal neural network recruited by expertise with musical notation. Journal of Cognitive Neuroscience, 22, 695713.Google Scholar
Woollett, K., & Maguire, E. A. (2011). Acquiring “the knowledge” of London’s layout drives structural brain changes. Current Biology, 21, 21092114.Google Scholar
Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2010). Functional MRI reveals expert–novice differences during sport-related anticipation. Neuroreport, 21, 9498.Google Scholar
Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2011). Cortical fMRI activation to opponents’ body kinematics in sport-related anticipation: Expert–novice differences with normal and point-light video. Neuroscience Letters, 500, 216221.Google Scholar
Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2013). Brain regions concerned with the identification of deceptive soccer moves by higher-skilled and lower-skilled players. Frontiers in Human Neuroscience, 7, 851.Google Scholar
Yin, L.-J., Lou, Y.-T., Fan, M.-X., Wang, Z.-X., & Hu, Y. (2015). Neural evidence for the use of digit-image mnemonic in a superior memorist: An fMRI study. Frontiers in Human Neuroscience, 9.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×