Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T00:51:32.225Z Has data issue: false hasContentIssue false

9 - Infant Categorization

from Subpart II.1 - Infancy: The Roots of Human Thinking

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

William James once famously wrote in his Principles of Psychology (1890 [2013]) that the infant “assailed by eyes, ears, nose, skin, and entrails at once, feels it all as one great blooming, buzzing confusion.” According to James, infants are overwhelmed by the bombardment of information available to the senses, and consequently their ability to perceive and learn is limited in the first months of life. This perspective remained dominant in the early days of developmental psychology – perhaps reified by Piaget’s (1952) claim that infants’ rely on their senses and motor skills until two years of age – but the last forty years of research on this issue has revealed a startlingly different picture of infants’ perceptual and cognitive abilities. For example, experimental work has demonstrated purportedly that infants in the first year of life can compute simple addition and subtraction (Wynn, 1992), have a basic grasp of certain physical principles (Baillargeon, 1987), perceive launching events as causal (Oakes & Cohen, 1990), have expectations about how animates – people and animals – engage in motion (Spelke et al., 1995), and interact with other animates (Hamlin et al., 2007), among other things.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antell, S. E., & Caron, A. J. (1985). Neonatal perception of spatial relationships. Infant Behavior and Development, 8, 1523.CrossRefGoogle Scholar
Baillargeon, R. (1987). Object permanence in 3 1/2- and 4 1/2-month-old infants. Developmental Psychology, 23, 655664.CrossRefGoogle Scholar
Behl-Chadha, G. (1996). Basic-level and superordinate-like categorical representations in early infancy. Cognition, 60, 105141.CrossRefGoogle ScholarPubMed
Benton, D. T., & Rakison, D. H. (2018). Computational Modeling and What It Can Tell You about Behavior. Thousand Oaks, CA: SAGE Research Methods Cases.CrossRefGoogle Scholar
Best, C. A., Yim, H., & Sloutsky, V. M. (2013). The cost of selective attention in category learning: Developmental differences between adults and infants. Journal of Experimental Child Psychology, 116, 105119.CrossRefGoogle ScholarPubMed
Bomba, P. C., & Siqueland, E. R. (1983). The nature and structure of infant form categories. Journal of Experimental Child Psychology, 35, 294328.CrossRefGoogle Scholar
Brooks, L. (1978). Nonanalytic concept formation and memory for instances. In Rosch, E. H., and Lloyd, B. B. (eds.), Cognition and Categorisation (pp. 169–211). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bruner, J. S., Olver, R. R., & Greenfield, P. M. (1966). Studies in Cognitive Growth. New York: Wiley.Google Scholar
Bruner, R., Goodnow, J. J., and Austin, G. A. (eds.) (1956). A Study of Thinking (pp. 3170). New York: Wiley.Google Scholar
Casasola, M. (2005). Can language do the driving? The effect of linguistic input on infants’ categorization of support spatial relations. Developmental Psychology, 41, 183192.CrossRefGoogle ScholarPubMed
Casasola, M., & Bhagwat, J. (2007). Do novel words facilitate 18‐month‐olds’ spatial categorization? Child Development, 78, 18181829.CrossRefGoogle ScholarPubMed
Casasola, M., & Cohen, L. B. (2002). Infant categorization of containment, support and tight‐fit spatial relationships. Developmental Science, 5, 247264.Google Scholar
Casasola, M., Cohen, L. B., & Chiarello, E. (2003). Six‐month‐old infants’ categorization of containment spatial relations. Child Development, 74, 679693.CrossRefGoogle ScholarPubMed
Casasola, M., & Park, Y. (2013). Developmental changes in infant spatial categorization: When more is best and when less is enough. Child Development, 84, 10041019.CrossRefGoogle Scholar
Choi, S. (2006). Influence of language-specific input on spatial cognition: Categories of containment. First Language, 26, 207232.CrossRefGoogle Scholar
Choi, S., & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41, 83121.CrossRefGoogle ScholarPubMed
Choi, S., McDonough, L., Bowerman, M., & Mandler, J. M. (1999). Early sensitivity to language-specific spatial categories in English and Korean. Cognitive Development, 14(2), 241268.CrossRefGoogle Scholar
Cromer, R. F. (1974). The development of language and cognition: The cognition hypothesis. In Foss, B. M. (ed.), New Perspectives in Child Development (pp. 184252). London: Penguin.Google Scholar
de Boysson-Bardies, B., & Vihman, M. M. (1991). Adaptation to language: Evidence from babbling and first words in four languages. Language, 67, 297319.CrossRefGoogle Scholar
Dromi, E. (1987). Early Lexical Development. New York. Cambridge University Press.Google Scholar
Eimas, P. D., & Quinn, P. C. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 65, 903917.CrossRefGoogle ScholarPubMed
Freeman, N. H., Lloyd, S., & Sinha, C. G. (1980). Infant search tasks reveal early concepts of containment and canonical usage of objects. Cognition, 8, 243262.CrossRefGoogle ScholarPubMed
French, R. M., Mareschal, D., Mermillod, M., & Quinn, P. C. (2004). The role of bottom-up processing in perceptual categorization by 3- to 4-month old infants: Simulations and data. Journal of Experimental Psychology: General, 133, 382397.CrossRefGoogle Scholar
Gava, L., Valenza, E., & Turati, C. (2009). Newborns’ perception of left–right spatial relations. Child Development, 80, 17971810.CrossRefGoogle ScholarPubMed
Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14, 79106.Google Scholar
Gelman, R., Durgin, F., & Kaufman, L. (1995). Distinguishing between animate and inanimates: Not by motion alone. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition (pp. 150184). Oxford: Clarendon.Google Scholar
Gelman, S. A., & Coley, J. D. (1990). The importance of knowing a dodo is a bird: Categories and inferences in 2-year-old children. Developmental Psychology, 26, 796.CrossRefGoogle Scholar
Gentner, D., Özyürek, A., Gürcanli, Ö., & Goldin-Meadow, S. (2013). Spatial language facilitates spatial cognition: Evidence from children who lack language input. Cognition, 127, 318330.CrossRefGoogle ScholarPubMed
Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: Rate, content, and the vocabulary spurt. Journal of Child Language, 17, 171183.CrossRefGoogle ScholarPubMed
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 3.CrossRefGoogle ScholarPubMed
Gopnik, A., & Meltzoff, A. (1987). The development of categorization in the second year and its relation to other cognitive and linguistic developments. Child Development, 58, 15231531.CrossRefGoogle Scholar
Hamlin, J. K., Wynn, K., & Bloom, P. (2007). Social evaluation by preverbal infants. Nature, 450, 557.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to language. Nature, 430, 453.CrossRefGoogle ScholarPubMed
Hurley, K. B., & Oakes, L. M. (2015). Experience and distribution of attention: Pet exposure and infants’ scanning of animal images. Journal of Cognition and Development, 16, 1130.CrossRefGoogle ScholarPubMed
James, W. (2013). The Principles of Psychology. Redditch, Worcestershire: Read Books Ltd.Google Scholar
Ji, L. J., Zhang, Z., & Nisbett, R. E. (2004). Is it culture or is it language? Examination of language effects in cross-cultural research on categorization. Journal of Personality and Social Psychology, 87, 57.CrossRefGoogle ScholarPubMed
Johnson, C., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18, 7389.CrossRefGoogle Scholar
Jones, S. S., & Smith, L. B. (1993). The place of perception in children’s concepts. Cognitive Development, 8, 113139.CrossRefGoogle Scholar
Keil, F. C. (1981). Constraints on knowledge and cognitive development. Psychological Review, 88, 197227.CrossRefGoogle Scholar
Kovack-Lesh, K. A., McMurray, B., & Oakes, L. M. (2014). Four-month-old infants’ visual investigation of cats and dogs: Relations with pet experience and attentional strategy. Developmental Psychology, 50, 402.CrossRefGoogle ScholarPubMed
Langlois, J. H., Roggman, L. A., Casey, R. J., Ritter, J. M., Rieser-Danner, L. A., & Jenkins, V. Y. (1987). Infant preferences for attractive faces: Rudiments of a stereotype? Developmental Psychology, 23, 363.CrossRefGoogle Scholar
Leslie, A. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L., & Gelman, S. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 119148). New York: Cambridge University Press.CrossRefGoogle Scholar
Leslie, A. (1995). A theory of agency. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition (pp. 121141). Oxford: Clarendon.Google Scholar
Madole, K. L., & Cohen, L. B. (1995). The role of object parts in infants’ attention to form-function correlations. Developmental Psychology, 31, 637.CrossRefGoogle Scholar
Mandler, J. M. (1992). How to build a baby: II. Conceptual primitives. Psychological Review, 99, 587604.CrossRefGoogle ScholarPubMed
Mandler, J. M. (2000). Perceptual and conceptual processes in infancy. Journal of Cognition and Development, 1, 336.CrossRefGoogle Scholar
Mandler, J. M. (2003). Conceptual categorization. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming, Buzzing Confusion (pp. 103131). New York: Oxford University Press.CrossRefGoogle Scholar
Mandler, J. M., & Bauer, P. J. (1988). The cradle of categorization: Is the basic level basic? Cognitive Development, 3, 247264.CrossRefGoogle Scholar
Mandler, J. M., Bauer, P. J., & McDonough, L. (1991). Separating the sheep from the goats: Differentiating global categories. Cognitive Psychology, 23, 263298.CrossRefGoogle Scholar
Mandler, J. M., & McDonough, L. (1996). Drinking and driving don’t mix: Inductive generalization in infancy. Cognition, 59, 307335.CrossRefGoogle ScholarPubMed
Mareschal, D., French, R. M., & Quinn, P. C. (2000). A connectionist account of asymmetric category learning in early infancy. Developmental Psychology, 36, 635.CrossRefGoogle ScholarPubMed
Mareschal, D., Quinn, P. C., & French, R. M. (2002). Asymmetric interference in 3- to 4-month olds’ sequential category learning. Cognitive Science, 26, 377389.Google Scholar
McDonough, L., Choi, S., & Mandler, J. M. (2003). Understanding spatial relations: Flexible infants, lexical adults. Cognitive Psychology, 46, 229259.CrossRefGoogle ScholarPubMed
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207238.CrossRefGoogle Scholar
Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family resemblance, conceptual cohesiveness, and category construction. Cognitive Psychology, 19, 242279.CrossRefGoogle ScholarPubMed
Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289316.CrossRefGoogle ScholarPubMed
Nazzi, T., & Gopnik, A. (2001). Linguistic and cognitive abilities in infancy: When does language become a tool for categorization? Cognition, 80, B11B20.CrossRefGoogle ScholarPubMed
Neisser, U. (1987). From direct perception to conceptual structure. In Neisser, U. (ed.), Concepts and Conceptual Development (pp. 1124). London: Cambridge University Press.Google Scholar
Nelson, K. (1973). Some evidence for the cognitive primacy of categorisation and its functional basis. Merrill-Palmer Quarterly, 19, 2139.Google Scholar
Newcombe, N., & Huttenlocher, J. (2000). Making Space. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Oakes, L. M. (2010). Using habituation of looking time to assess mental processes in infancy. Journal of Cognition and Development, 11, 255268.CrossRefGoogle ScholarPubMed
Oakes, L. M., & Cohen, L. B. (1990). Infant perception of a causal event. Cognitive Development, 5, 193207.CrossRefGoogle Scholar
Oakes, L. M., Coppage, D. J., & Dingel, A. (1997). By land or by sea: The role of perceptual similarity in infants’ categorization of animals. Developmental Psychology, 33, 396.CrossRefGoogle ScholarPubMed
Oakes, L. M. & Madole, K. L. (2003). Principles of developmental change in infants’ category formation. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming, Buzzing Confusion (pp. 159192). New York: Oxford University Press.Google Scholar
Park, Y., & Casasola, M. (2015). Plain or decorated? Object visual features matter in infant spatial categorization. Journal of Experimental Child Psychology, 140, 105119.CrossRefGoogle ScholarPubMed
Piaget, J. (1952). The Origins of Intelligence in Children. New York: W. W. Norton & Co.CrossRefGoogle Scholar
Premack, D. (1990). The infants’ theory of self-propelled objects. Cognition, 36, 116.CrossRefGoogle ScholarPubMed
Quinn, P. C. (1994). The categorization of above and below spatial relations by young infants. Child Development, 65, 58-69.CrossRefGoogle ScholarPubMed
Quinn, P. C., Cummins, M., Kase, J., Martin, E., & Weissman, S. (1996). Development of categorical representations for above and below spatial relations in 3-to 7-month-old infants. Developmental Psychology, 32, 942950.CrossRefGoogle Scholar
Quinn, P. C., & Eimas, P. D. (1996). Perceptual organization and categorization. In Rovee-Collier, C., & Lipsitt, L. (eds.), Advances in Infancy Research (Vol. 10, pp. 136). Norwood, NJ: Ablex Publishing.Google Scholar
Quinn, P. C., & Eimas, P. D. (1997). A reexamination of the perceptual-to-conceptual shift in mental representations. Review of General Psychology, 1, 171187.CrossRefGoogle Scholar
Quinn, P. C., & Eimas, P. D. (2000). The emergence of category representations during infancy: Are separate perceptual and conceptual processes required? Journal of Cognition and Development, 1, 5561.CrossRefGoogle Scholar
Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22, 463475.CrossRefGoogle ScholarPubMed
Quinn, P. C., Eimas, P. D., & Tarr, M. J. (2001). Perceptual categorization of cat and dog silhouettes by 3-to 4-month-old infants. Journal of Experimental Child Psychology, 79, 7894.CrossRefGoogle Scholar
Quinn, P. C., & Johnson, M. H. (2000). Global-before-basic object categorization in connectionist networks and 2-month-old infants. Infancy, 1, 3146.CrossRefGoogle ScholarPubMed
Quinn, P. C., Johnson, M. H., Mareschal, D., Rakison, D. H., & Younger, B. A. (2000). Understanding early categorization: One process or two? Infancy, 1, 111122.CrossRefGoogle ScholarPubMed
Quinn, P. C., Norris, C. M., Pasko, R. N., Schmader, T. M., & Mash, C. (1999). Formation of a categorical representation for the spatial relation between by 6-to 7-month-old infants. Visual Cognition, 6, 569585.CrossRefGoogle Scholar
Rakison, D. H. (2003). Parts, categorization, and the animate-inanimate distinction in infancy. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming Buzzing Confusion (pp. 159192). New York: Oxford University Press.CrossRefGoogle Scholar
Rakison, D. H. (2005). A secret agent? How infants learn about the identity of objects in a causal scene. Journal of Experimental Child Psychology, 91, 271296.CrossRefGoogle Scholar
Rakison, D. H., & Benton, D. T. (2019). Second‐order correlation learning of dynamic stimuli: Evidence from infants and computational modeling. Infancy, 24, 5778.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Butterworth, G. E. (1998a). Infants’ attention to object structure in early categorization. Developmental Psychology, 34, 13101325.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Butterworth, G. E. (1998b). Infants’ use of object parts in early categorization. Developmental Psychology, 34, 4962.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Cohen, L. B. (1999). Infants’ use of functional parts in basic-like categorization. Developmental Science, 2, 423432.CrossRefGoogle Scholar
Rakison, D. H., & Hahn, E. (2004). The mechanisms of early categorization and induction: Smart or dumb infants? In Kail, R. (ed.), Advances in Child Development and Behavior (Vol. 32, pp. 281322). New York: Academic Press.Google Scholar
Rakison, D. H., & Lupyan, G. (2008). Developing object concepts in infancy: An associative learning perspective. Monographs of the Society for Research in Child Development, 73, 1110.Google ScholarPubMed
Rakison, D. H., & Poulin-Dubois, D. (2001). Developmental origin of the animate-inanimate distinction. Psychological Bulletin, 127, 209228.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Poulin-Dubois, D. (2002). You go this way and I’ll go that way: Developmental changes in infants’ attention to correlations among dynamic parts in motion events. Child Development, 73, 682699.CrossRefGoogle Scholar
Rakison, D. H., & Yermolayeva, Y. (2010). Infant categorization. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 894905.Google ScholarPubMed
Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130, 273.CrossRefGoogle ScholarPubMed
Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology General, 104, 192233.CrossRefGoogle Scholar
Rosch, E. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382439.CrossRefGoogle Scholar
Rosch, E. (1978). Principles of categorisation. In Rosch, E., & Lloyd, B. (eds.), Cognition and Categorisation (pp. 2748). Lawrence Erlbaum, NJ, Hillsdale.Google Scholar
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573605.CrossRefGoogle Scholar
Sapir, E. (1921). An Introduction to the Study of Speech. New York: Harcourt, Brace.Google Scholar
Smith, L. B., Colunga, E., & Yoshida, H. (2003). Making an ontology: Cross-linguistic evidence. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming Buzzing Confusion (pp. 275302). New York: Oxford University Press.CrossRefGoogle Scholar
Smith, L. B., & Heise, D. (1992). Perceptual similarity and conceptual structure. In Burns, B. (ed.), Percepts, Concepts, and Categories (Vol. 93, pp. 233272). Amsterdam: Elsevier.Google Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1992). Count nouns, adjectives, and perceptual properties in children's novel word interpretations. Developmental Psychology, 28, 273286.CrossRefGoogle Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in young children: A dumb attentional mechanism? Cognition, 60, 143171.CrossRefGoogle ScholarPubMed
Smith, L. B., & Samuelson, L. K. (2003). Different is good: Connectionism and dynamic systems theory are complementary emergentist approaches to development. Developmental Science, 6, 434439.CrossRefGoogle Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.CrossRefGoogle ScholarPubMed
Spelke, E. S., & Kinzler, K. D. (2009). Innateness, learning, and rationality. Child Development Perspectives, 3, 9698.CrossRefGoogle ScholarPubMed
Spelke, E. S., Phillips, A., & Woodward, A. L. (1995). Infants’ knowledge of object motion and human action. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition (pp. 150184). Oxford: Clarendon.Google Scholar
Waxman, S., & Booth, A. (2003). The origins and evolution of links between word learning and conceptual organization: New evidence from 11‐month‐olds. Developmental Science, 6, 128135.CrossRefGoogle Scholar
Waxman, S. R., & Hall, D. G. (1993). The development of a linkage between count nouns and object categories: Evidence from fifteen‐to twenty‐one‐month‐old infants. Child Development, 64, 12241241.CrossRefGoogle ScholarPubMed
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12-to 13-month-old infants. Cognitive Psychology, 29, 257302.CrossRefGoogle Scholar
Whorf, B. L. (1940). Science and Linguistics (pp. 207219). Indianapolis, IN: Bobbs-Merrill.Google Scholar
Whorf, B. L. (1956). Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf. Carroll, J. B. (Ed.). Cambridge, MA: Technology Press of MIT.Google Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Yermolayeva, Y., & Rakison, D. H. (2014). Connectionist modeling of developmental changes in infancy: Approaches, challenges, and contributions. Psychological Bulletin, 140, 224.CrossRefGoogle ScholarPubMed
Yoshida, H., & Smith, L. B. (2003). Known and novel noun extensions: Attention at two levels of abstraction. Child Development, 74, 564577.CrossRefGoogle ScholarPubMed
Younger, B. A., & Cohen, L. B. (1986). Developmental change in infants' perception of correlations among attributes. Child Development, 57, 803815.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×