Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-09T11:02:44.587Z Has data issue: false hasContentIssue false

25 - Numerical Competence in Fish

from Part V - Numerical and Quantitative Abilities

Published online by Cambridge University Press:  01 July 2021

Allison B. Kaufman
Affiliation:
University of Connecticut
Josep Call
Affiliation:
University of St Andrews, Scotland
James C. Kaufman
Affiliation:
University of Connecticut
Get access

Summary

Although fish represent approximately half of vertebrates, the quantitative abilities of fish have been investigated only recently. Two methodological approaches commonly used with mammals and birds have been used: the observation of spontaneous behaviour and training procedures. In the former, fish are observed in their preference for reaching the larger or smaller quantities of biologically relevant stimuli (in most cases, whether they join a larger shoal when placed in an unfamiliar environment). In the latter, fish are trained to select the larger or the smaller of two sets of abstract objects (e.g., two-dimensional figures that differ in numerosity). These studies showed that different fish species process numerical information in a similar way to that of mammals and birds. In this chapter, we review the relevant literature, giving particular regard to the strength and potential weaknesses of the two methodological approaches.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrillo, C. & Bisazza, A. (2018). Understanding the origin of number sense: A review of fish studies. Philosophical Transactions of the Royal Society B, 373, e20160511.Google Scholar
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2008). Do fish count? Spontaneous discrimenation of quantity in female mosquitofish. Animal Cognition, 11(3), 495503.Google Scholar
Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2009). Use of number by fish. PLoS One, 4(3), e4786.Google Scholar
Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large number discrimination by mosquitofish. PLoS One, 5(12), e15232.CrossRefGoogle ScholarPubMed
Agrillo, C., Piffer, L., & Bisazza, A. (2011). Number versus continuous quantity in numerosity judgments by fish. Cognition, 119, 281287.CrossRefGoogle ScholarPubMed
Agrillo, C., Piffer, L., Bisazza, A., & Butterworth, B. (2012a). Evidence for two numerical systems that are similar in humans and guppies. PLoS One, 7(2), e31923.CrossRefGoogle ScholarPubMed
Agrillo, C., Miletto Petrazzini, M. E., Piffer, L., Dadda, M., & Bisazza, A. (2012b). A new training procedure for studying discrimination learning in fish. Behavioural Brain Research, 230(2), 343348.Google Scholar
Agrillo, C., Miletto Petrazzini, M. E., Tagliapietra, C., & Bisazza, A. (2012c). Inter-specific differences in numerical abilities among teleost fish. Frontiers in Psychology, 3, 483. doi: 10.3389/fpsyg.2012.00483Google Scholar
Agrillo, C. & Bisazza, A. (2014). Spontaneous versus trained numerical abilities: A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 8291.CrossRefGoogle ScholarPubMed
Agrillo, C., Parrish, A. E., & Beran, M. J. (2016). How illusory is the solitaire illusion? Assessing the degree of misperception of numerosity in adult humans. Frontiers in Psychology, 7, 1663.Google Scholar
Beran, M. J., Perdue, B. M., Parrish, A. E., & Evans, T. A. (2012). Do social conditions affect capuchin monkeys’ (Cebus apella) choices in a quantity judgment task? Frontiers in Psychology, 3, 492.CrossRefGoogle Scholar
Beran, M. J., McIntyre, J. M., Garland, A., & Evans, T. A. (2013). What counts for “counting”? Chimpanzees (Pan troglodytes) respond appropriately to relevant and irrelevant information in a quantity judgment task. Animal Behaviour, 85, 987993.Google Scholar
Berger, J. (1978). Group-size, foraging, and antipredator ploys: An analysis of bighorn sheep decisions. Behavioural Ecology and Sociobiology, 4, 9199.Google Scholar
Biro, D. & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193199.CrossRefGoogle ScholarPubMed
Bisazza, A., Piffer, L., Serena, G., & Agrillo, C. (2010). Ontogeny of numerical abilities in fish. PLoS One, 5(11), e15516.Google Scholar
Bisazza, A., Tagliapietra, C., Bertolucci, C., Foà, A., & Agrillo, C. (2014a). Non-visual numerical discrimination in a blind cavefish (Phreatichthys andruzzii). Journal of Experimental Biology, 217, 19021909.Google Scholar
Bisazza, A., Agrillo, C., & Lucon-Xiccato, T. (2014b). Extensive training extends numerical abilities of guppies. Animal Cognition, 17(6), 14131419.Google Scholar
Bogale, B. A., Kamata, N., Mioko, K., & Sugita, S. (2011). Quantity discrimination in jungle crows, Corvus macrorhynchos. Animal Behaviour, 82(4), 635641.CrossRefGoogle Scholar
Bogale, B. A., Aoyama, M., & Sugita, S. (2014). Spontaneous discrimination of food quantities in the jungle crow, Corvus macrorhynchos. Animal Behaviour, 94, 7378.Google Scholar
Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scalePsychological Science, 12(3), 238243. doi: 10.1111/1467-9280.00342Google Scholar
Brock, A. J., Sudwarts, A., Daggett, J., Parker, M. O., & Brennan, C. H. (2017). A fully automated computer based Skinner box for testing learning and memory in zebrafish. bioRxiv, doi: 10.1101/110478Google Scholar
Buckingham, J. N., Wong, B. B. M., & Rosenthal, G. G. (2007). Shoaling decisions in female swordtails: How do fish gauge group size? Behaviour, 144, 13331346.Google Scholar
Cantlon, J. F. & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS Biology, 5, 29122919.CrossRefGoogle ScholarPubMed
Chittka, L. & Geiger, K. (1995). Can honey bees count landmarks? Animal Behaviour, 49, 159164.Google Scholar
Chivers, D. P. & Smith, R. J. F. (1994). The role of experience and chemical alarm signalling in predator recognition by fathead minnows, Pimephales promelas. Journal of Fish Biology, 44, 273285.CrossRefGoogle Scholar
Chivers, D. P. & Smith, R. J. F. (1995). Fathead minnows, Pimephales promelas, learn to recognize chemical stimuli from high risk habitats by the presence of alarm substance. Behaviorual Ecology, 6, 155158.CrossRefGoogle Scholar
Dadda, M., Piffer, L., Agrillo, C., & Bisazza, A. (2009). Spontaneous number representation in mosquitofish. Cognition, 112(2), 343348.Google Scholar
Davis, H. (1984). Discrimination of the number three by a raccoon (Procyon lotor). Animal Learning and Behaviour, 12, 409413.CrossRefGoogle Scholar
Davis, H. & Memmott, J. (1982). Counting behavior in animals: A critical evaluation. Psychology Bulletin, 92, 547571.Google Scholar
Davis, H. & Perusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence and a new research agenda. Behavioral and Brain Sciences, 11, 561579.Google Scholar
Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neuroscience, 21(8), 355361.CrossRefGoogle ScholarPubMed
Emmerton, J. & Renner, J. C. (2009). Local rather than global processing of visual arrays in numerosity discrimination by pigeons (Columba livia). Animal Cognition, 12, 511526.Google Scholar
Frith, C. D., & Frith, U. (1972). The solitaire illusion: An illusion of numerosity. Perception & Psychophysics, 11, 409410.Google Scholar
Garland, A., Low, J., & Burns, K. C. (2012). Large quantity discrimination by North Island robins (Petroica longipes). Animal Cognition, 15(6), 11291140.CrossRefGoogle ScholarPubMed
Garland, A., Beran, M.J., McIntyre, J., & Low, J. (2014). Relative quantity judgments between discrete spatial arrays by chimpanzees (Pan troglodytes) and New Zealand robins (Petroica longipes). Journal of Comparative Psychology, 28(3), 307317.CrossRefGoogle Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2011a). Can angelfish (Pterophyllum scalare) count? Discrimination between different shoal sizes follows Weber’s law. Animal Cognition, 14(1), 19.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2011b). Spontaneous discrimination of small quantities: Shoaling preferences in angelfish (Pterophyllum scalare). Animal Cognition, 14(4), 565574.Google Scholar
Gómez-Laplaza, L. M. & Gerlai, R. (2013). Quantification abilities in angelfish (Pterophyllum scalare): The influence of continuous variables. Animal Cognition, 16(3), 373383.CrossRefGoogle ScholarPubMed
Gómez-Laplaza, L. M. & Gerlai, R. (2015). Angelfish (Pterophyllum scalare) discriminate between small quantities: A role of memory. Journal of Comparative Psychology, 129, 7883.CrossRefGoogle ScholarPubMed
Gómez-Laplaza, L. M., Diaz-Sotelo, E., & Gerlai, R. (2018). Quantity discrimination in angelfish, Pterophyllum scalare: A novel approach with food as the discriminant. Animal Behaviour, 142, 1930.Google Scholar
Gross, H. J., Pahl, M., Si, A., Zhu, H., Tautz, J., & Zhang, S. (2009). Number-based visual generalisation in the honeybee. PLoS One, 4(1), e4263.CrossRefGoogle ScholarPubMed
Hager, M. C. & Helfman, G. S. (1991). Safety in numbers: Shoal size choice by minnows under predatory threat. Behaviour Ecology and Sociobiology, 29, 271276.Google Scholar
Hauser, M. D., Carey, S., & Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society of London B, 267(1445), 829833.CrossRefGoogle ScholarPubMed
Hauser, M. D., Dehaene, S., Dehaene-Lambertz, G., & Patalano, A. L. (2002). Spontaneous number discrimination of multi-format auditory stimuli in cotton-top tamarins (Saguinus oedipus). Cognition, 86, B23B32.Google Scholar
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences USA, 106, 1038210385.Google Scholar
Jaakkola, K., Fellner, W., Erb, L., Rodriguez, M., & Guarino, E. (2005). Understanding of the concept of numerically “less” by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 119, 286303.CrossRefGoogle ScholarPubMed
Jordan, K. E., Maclean, E. L., & Brannon, E. M. (2008). Monkeys match and tally quantities across senses. Cognition, 108, 617625.CrossRefGoogle ScholarPubMed
Judge, P. G., Evans, T. A., & Vyas, D. K. (2005). Ordinal representation of numeric quantities by brown capuchin monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behaviour Processes, 31, 7994.Google Scholar
Krause, J. & Godin, J. G. J. (1995). Predator preferences for attacking particular group sizes: Consequences for predator hunting success and prey predation risk. Animal Behaviour, 50, 465473.CrossRefGoogle Scholar
Landeau, L. & Terborgh, J. (1986). Oddity and the “confusion effect” in predation. Animal Behaviour, 34(5), 13721380.Google Scholar
Lemaitre, J. F., Ramm, S. A., Hurst, J. L., & Stockley, P. (2011). Social cues of sperm competition influence accessory reproductive gland size in a promiscuous mammal. Proceedings of the Royal Society of London B, 278, 11711176.Google Scholar
Lindström, K. & Ranta, E. (1993). Social preferences by male guppies, Poecilia reticulata, based on shoal size and sex. Animal Behaviour, 46, 10291031.Google Scholar
Lucon-Xiccato, T., Miletto Petrazzini, M. E., Agrillo, C., & Bisazza, A. (2015). Guppies discriminate between two quantities of food items but prioritize item size over total amount. Animal Behaviour, 107, 183191.Google Scholar
Lucon-Xiccato, T., Dadda, M., Gatto, E., & Bisazza, A. (2017). Development and testing of a rapid method for measuring shoal size discrimination. Animal Cognition, 20(2), 149157.Google Scholar
Mehlis, M., Thünken, T., Bakker, T. C. M., & Frommen, J. G. (2015). Quantification acuity in spontaneous shoaling decisions of three-spined sticklebacks. Animal Cognition, 18, 11251131.Google Scholar
Miletto Petrazzini, M. E., Agrillo, C., Izard, V., & Bisazza, A. (2015a). Relative versus absolute numerical representation in fish: Can guppies represent ‘fourness’? Animal Cognition, 18(5), 10071117.Google Scholar
Miletto Petrazzini, M. E., Lucon-Xiccato, T., Agrillo, C., & Bisazza, A. (2015b). Use of ordinal information by fish. Scientific Reports, 5, (111)Google Scholar
Miletto Petrazzini, M. E., Agrillo, C., Izard, V., & Bisazza, A. (2016). Do humans (Homo sapiens) and fish (Pterophyllum scalare) make similar numerosity judgments? Journal of Comparative Psychology, 130(4), 380390.Google Scholar
Miletto Petrazzini, M. E., Parrish, A. E., Beran, M. J., & Agrillo, C. (2018). Exploring the Solitaire Illusion in guppies (Poecilia reticulata). Journal of Comparative Psychology, 132(1), 4857.CrossRefGoogle ScholarPubMed
Miletto Petrazzini, M. E., Pecunioso, A., Dadda, M., & Agrillo, C. (2019) The impact of brain lateralization and anxiety-like behavior in an extensive operant conditioning task in zebrafish (Danio rerio). Symmetry, 11(11), 1395.Google Scholar
Milinski, M. (1977a). Experiments on the selection by predators against spatial oddity of their prey. Zeitschrift für Tierpsychologie, 43, 311325.Google Scholar
Milinski, M. (1977b). Do all members of a swarm suffer the same predation? Zeitschrift für Tierpsychologie, 45, 373388.CrossRefGoogle Scholar
Morgan, M. J. & Godin, J. G. J. (1985). Antipredator benefits of schooling in a cyprinodontid fish, the banded killifish (Fundulus diaphanus). Zeitschrift für Tierpsychologie, 70, 236246.Google Scholar
Parrish, A. E., Agrillo, C., Perdue, B. M., & Beran, M. J. (2016). The elusive illusion: Do children (Homo sapiens) and capuchin monkeys (Cebus apella) see the solitaire illusion? Journal of Experimental Child Psychology, 142, 8395.Google Scholar
Pepperberg, I. M. (2006). Grey parrot (Psittacus erithacus) numerical abilities: Addition and further experiments on a zero-like concept. Journal Comparative Psychology, 120(1), 111.CrossRefGoogle ScholarPubMed
Potrich, D., Sovrano, V. A., Stancher, G., & Vallortigara, G. (2015). Quantity discrimination by zebrafish (Danio rerio). Journal of Comparative Psychology, 129, 388339.Google Scholar
Potrich, D., Rugani, R., Sovrano, V. A., Regolin, L., & Vallortigara, G. (2019). Use of numerical and spatial information in ordinal counting by zebrafish. Scientific Report, 9, 18323.Google Scholar
Pritchard, V. L. Lawrence, J. Butlin, R. K., & Krause, J. (2001). Shoal choice in zebrafish, Danio rerio: The influence of shoal size and activity. Animal Behaviour, 62, 10851088.Google Scholar
Roberts, G. (1996). Why individual vigilance declines as group size increases. Animal Behaviour, 51, 10771086.Google Scholar
Roberts, W. A. & Mitchell, S. (1994). Can a pigeon simultaneously process temporal and numerical information? Journal of Experimental Psychology: Animal Behaviour Processes, 20, 6678.Google Scholar
Rugani, R., Regolin, L., & Vallortigara, G. (2007). Rudimental numerical competence in 5-day-old domestic chicks (Gallus gallus): Identification of ordinal position. Journal of Experimental Psychology: Animal Behavior Processes, 33, 2131.Google ScholarPubMed
Rugani, R., Regolin, L., & Vallortigara, G. (2008). Discrimination of small numerosities in young chicks. Journal of Experimental Psychology: Animal Behavior Processes, 34(3), 388399.Google Scholar
Rugani, R., Fontanari, L., Simoni, E., Regolin, L., & Vallortigara, G. (2009). Arithmetic in newborn chicks. Proceedings of the Royal Society of London, B, 276(1666), 24512460.Google Scholar
Schaller, G. B. (1972). The Serengeti Lion. A Study of Predator-Prey Relations. Chicago: Chicago University Press.Google Scholar
Smith, C. C. & Sargent, R. C. (2006). Female fitness declines with increasing female density but not male harassment in the western mosquitofish, Gambusia affinis. Animal Behaviour, 71, 401407.CrossRefGoogle Scholar
Stancher, G., Sovrano, V. A., Potrich, D., & Vallortigara, G. (2013). Discrimination of small quantities by fish (redtail splitfin, Xenotoca eiseni). Animal Cognition, 16(2), 307312.Google Scholar
Suzuki, K. & Kobayashi, T. (2000). Numerical competence in rats (Rattus norvegicus): Davis & Bradford (1986) extended. Journal of Comparative Psychology, 114(1), 7385.Google Scholar
Tokita, M., Ashitani, Y., & Ishiguchi, A. (2013). Is approximate numerical judgment truly modality-independent? Visual, auditory, and cross-modal comparisons. Attention, Perception, and Psychophysics, 75, 18521861.Google Scholar
Vonk, J. & Beran, M. J. (2012). Bears “count” too: Quantity estimation and comparison in black bears (Ursus americanus). Animal Behaviour, 84, 231238.Google Scholar
Wertheimer, M. (1923). Laws of Organization in Perceptual Forms. A Source Book of Gestalt Psychology. London, UK: Routledge.Google Scholar
West, R. E., & Young, R. J. (2002). Do domestic dogs show any evidence of being able to count? Animal Cognition, 5(3), 183186.Google Scholar
Xiong, W., Yi, L. C., Tang, Z., Zhao, X., & Fu, S. J. (2018). Quantity discrimination in fish species: Fish use non-numerical continuous quantity traits to select shoals. Animal Cognition, 21, 813820.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×