Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T17:42:32.746Z Has data issue: false hasContentIssue false

7 - Postcranial Skeletal Development and Its Evolutionary Implications

Published online by Cambridge University Press:  25 March 2017

Christopher J. Percival
Affiliation:
University of Calgary
Joan T. Richtsmeier
Affiliation:
Pennsylvania State University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alffram, P.-A. and Bauer, G.C.H. (1962). Epidemiology of fractures of the forearm: a biomechanical investigation of bone strength. Journal of Bone and Joint Surgery AM, 44, 105114.Google ScholarPubMed
Allen, J. A. (1877). The influence of physical conditions in the genesis of species. Radical Review, 1, 108140.Google Scholar
Apte, S. S. and Kenwright, J. (1994). Physeal distraction and cell proliferation in the growth plate. Journal of Bone and Joint Surgery British Volume, 76, 837843.Google Scholar
Archer, C. W., Morrison, H. and Pitsillides, A. A. (1994). Cellular aspects of the development of diarthrodial joints and articular cartilage. Journal of Anatomy, 184, 447456.Google ScholarPubMed
Auerbach, B. M. (2007). Human skeletal variation in the New World during the Holocone: effects of climate and subsistence across geography and time. PhD dissertation, Johns Hopkins University, Baltimore, MD.Google Scholar
Auerbach, B. M. and Ruff, C. B. (2010). Stature estimation formulae for indigenous North American populations. American Journal of Physical Anthropology, 141, 190207.Google Scholar
Bateson, G. (1963). The role of somatic change in evolution. Evolution, 17, 529539.CrossRefGoogle Scholar
Bergmann, C. (1847). Ueber die Verhältnisse der wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien, 3, 595708.Google Scholar
Bertram, J. E., Polevoy, Y. and Cullinane, D. M. (1998). Mechanics of avian fibrous periosteum: tensile and adhesion properties. Bone, 22, 669675.Google Scholar
Betti, L., von Cramon-Taubadel, N. and Lycett, S. J. (2012). Human pelvis and long bones reveal differential preservation of ancient population history and migration out of Africa. Human Biology, 84, 139152.CrossRefGoogle ScholarPubMed
Biewener, A. A. (1989). Scaling body support in mammals: limb posture and muscle mechanics. Science, 245, 4548.Google Scholar
Breur, G. J., VanEnkevort, B. A., Farnum, C. E. and Wilsman, N. J. (1991). Linear relationship between the volume of hypertrophic chondrocytes and the rate of longtiduinal bone growth in growth plates. Journal of Orthopaedic Research, 9, 348359.Google Scholar
Brookes, M. (1971). Growth Cartilages. The Blood Supply of Bone: An Approach to Bone Biology. London: Butterworth, pp. 133161.Google Scholar
Bylski-Austrow, D. I., Wall, E. J., Rupert, M. P., Roy, D. R. and Crawford, A. H. (2001). Growth plate forces in the adolescent human knee: a radiographic and mechanical study of epiphyseal staples. Journal of Pediatric Orthopaedics, 21, 817823.CrossRefGoogle Scholar
Cancel, M., Grimard, G., Thuillard-Crisinel, D., Moldovan, F., and Villemure, I. (2009). Effects of in vivo static compressive loading on aggrecan and type II and X collagens in the rat growth plate extracellular matrix. Bone, 44, 306315.Google Scholar
Carter, D. R. and Beaupre, G. S. (2001). Skeletal Function and Form: Mechanobiology of Skeletal Development, Aging, and Regeneration. Cambridge: Cambridge University Press.Google Scholar
Congdon, K. A., Hammond, A. S. and Ravosa, M. J. (2012). Differential limb loading in miniature pigs (Sus scrofa domesticus): a test of chondral modeling theory. Journal of Experimental Biology, 215, 14721483.Google Scholar
Connour, J. R., Glander, K. and Vincent, F. (2000). Postcranial adaptations for leaping in primates. Journal of Zoology, 251, 79103.Google Scholar
Cooper, K. L., Oh, S., Sung, Y., et al. (2013). Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature, 495, 375379.Google Scholar
Day, L. M. and Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae). Journal of Experimental Biology, 210, 642654.CrossRefGoogle ScholarPubMed
Di Nino, D. L., Long, F. and Linsenmayer, T. F. (2001). Regulation of endochondral cartilage growth in the developing avian limb: cooperative involvement of perichondrium and periosteum. Developmental Biology, 240, 433442.CrossRefGoogle ScholarPubMed
Drachman, D. (1969). Normal development and congenital malformation of joints. Bulletin of Rheumatic Diseases, 19, 536540.Google Scholar
Farnum, C. E. and Wilsman, N. J. (1989). Cellular turnover at the chondro-osseous junction of growth plate cartilage: analysis by serial sections at the light microscopical level. Journal of Orthopaedic Research, 7, 654666.Google Scholar
Farnum, C. E. and Wilsman, N.J. (1998). Effects of distraction and compression on growth plate function. In: Buckwalter, J. A., Erhrlich, M. G., Sandell, L. J. and Trippel, S. B. (eds.) Skeletal Growth and Development. Rosemont, IL: American Academy of Orthopaedic Surgeons, pp. 517530.Google Scholar
Farnum, C. E., Lenox, M., Zipfel, W., Horton, W. and Williams, R. (2006). In vivo delivery of fluoresceinated dextrans to the murine growth plate: imaging of three vascular routes by multiphoton microscopy. The Anatomical Record, 288A, 91103.Google Scholar
Foolen, J., van Dopnkelaar, C. C., Murphy, P., Huiskes, R. and Ito, K. (2009). Residual periosteum tension is insufficient to directly modulate bone growth. Journal of Biomechanics, 42, 152157.Google Scholar
Foolen, J., van Donkelaar, C. C. and Ito, K. (2011). Intracellular tension in periosteum/perichondrium cells regulates long bone growth. Journal of Orthopaedic Research, 29, 8491.CrossRefGoogle ScholarPubMed
Forriol, F. and Shapiro, F. (2005). Bone development. Clinical Orthopaedics and Related Research, 432, 1433.Google Scholar
Frank, G. R. (1995). The role of estrogen in pubertal skeletal physiology: epiphyseal maturation and mineralization of the skeleton. Acta Paediatrica, 84, 627630.CrossRefGoogle ScholarPubMed
Frost, H. M. (1979). A chondral modeling theory. Calcified Tissue International, 28, 181200.CrossRefGoogle ScholarPubMed
Frost, H. M. (1990). Structural adaptations to mechanical usage (SATMU): the hyaline cartilage modeling problem. The Anatomical Record, 226, 423432.Google Scholar
Frost, H. M. (1994a). Perspectives: a vital biomechanical model of synovial joint design. The Anatomical Record, 240, 118.Google Scholar
Frost, H. M. (1994b). Perspectives: a vital biomechanical model of the endochondral ossification mechanism. The Anatomical Record, 240, 435446.Google Scholar
Frost, H. M. (1999). Joint anatomy, design, and arthroses: insights of the Utah paradigm. The Anatomical Record, 255, 162174.Google Scholar
Garcia-Ramirez, M., Toran, N., Andaluz, P., Carrascosa, A. and Audi, L. (2000). Vascular endothelial growth factor is expressed in human fetal growth cartilage. Journal of Bone and Mineral Research, 15, 534540.CrossRefGoogle ScholarPubMed
Godfrey, L., Sutherland, M., Boy, D. and Gomberg, N. (1991). Scaling of limb joint surface areas in anthropoid primates and other mammals. Journal of Zoology, 223, 603625.Google Scholar
Grossniklaus, U., Kelly, B., Ferguson-Smith, A. C., Pembrey, M. and Lindquist, S. (2013). Transgenerational epigenetic inheritance: how important is it? Nature Reviews of Genetics, 14, 228235.CrossRefGoogle Scholar
Hammond, A. S., Ning, J., Ward, C. V. and Ravosa, M. J. (2010). Mammalian limb loading and chondral modeling during ontogeny. The Anatomical Record, 293, 658670.Google Scholar
Hamrick, M. W. (1999). A chondral modeling theory revisiting. Journal of Theoretical Biology, 201, 201208.Google Scholar
Heiple, K. G. and Lovejoy, C. O. (1971). The distal femoral anatomy of Australopithecus. American Journal of Physical Anthropology, 35, 7584.Google Scholar
Hernandez, J. A., Serrano, S., Mariñoso, M. L., et al. (1995). Bone growth and modeling changes induced by periosteal stripping in the rat. Clinical Orthopaedics and Related Research, 320, 211219.Google Scholar
Hert, J. (1969). Acceleration of the growth after decrease of load on epiphyseal plates by means of spring distractors. Folia Morphologia (Praha), 17, 194203.Google ScholarPubMed
Higgins, R. W. and Ruff, C. B. (2011). The effects of distal limb segment shortening on locomotor efficiency in sloped terrain: implications for Neandertal locomotor behavior. American Journal of Physical Anthropology, 146, 336345.CrossRefGoogle ScholarPubMed
Hirokawa, S. (1993). Biomechanics of the knee joint: a critical review. Critical Reviews in Biomedical Engineering, 21, 79135.Google Scholar
Holliday, T. W. (1997). Postcranial evidence of cold adaptation in European Neandertals. American Journal of Physical Anthropology, 104, 245258.Google Scholar
Holliday, T. W. (1999). Brachial and crural indices of European Late Upper Paleolithic and Mesolithic humans. Journal of Human Evolution, 36, 549566.CrossRefGoogle ScholarPubMed
Horton, W. A. (1993). Morphology of connective tissue: cartilage. In: Royce, P. M. and Steinman, B. (eds.) Connective Tissue and its Heritable Disorders. New York, NY: Wiley-Liss.Google Scholar
Hunziker, E. B., Schenk, R. K. and Cruz-Orive, L.-M. (1987). Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. Journal of Bone and Joint Surgery, American Volume, 69, 162173.Google Scholar
Hunt, K. D. (1996). The postural feeding hypothesis: an ecological model for the evolution of bipedalism. South African Journal of Science, 92, 7790.Google Scholar
Ianotti, J. P. (1990). Growth plate physiology and pathology. The Orthopaedic Clinics of North America, 21, 117.Google Scholar
Jungers, W. L. (1982). Lucy’s limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature, 297, 676678.Google Scholar
Jungers, W. L. (1985). Size and Scaling in Primate Biology. New York, NY: Plenum Press.Google Scholar
Jungers, W. L. (1988). Relative joint size and hominoid locomotor adaptations with implications for the evolution of hominid bipedalism. Journal of Human Evolution, 17, 247265.CrossRefGoogle Scholar
Jungers, W. L. and Stern, J. T. (1983). Body proportions, skeletal allometry and locomotion in the Hadar hominids: a reply to Wolpoff. Journal of Human Evolution, 12, 673684.Google Scholar
Kember, N. F. (1985). Comparative patterns of cell division in epiphyseal cartilage plates in the rabbit. Journal of Anatomy, 142, 185190.Google Scholar
Kember, N. F. and Sisson, H. A. (1976). Quantitative histology of the human growth plate. Journal of Bone and Joint Surgery, British Volume, 58, 426435.Google Scholar
Kettelkamp, D. B. and Jacobs, A. W. (1972). Tibiofemoral contact area: determination and implications. Journal of Bone and Joint Surgery, American Volume, 54, 347358.Google ScholarPubMed
Kilborn, S. H., Trudel, G. and Uhthoff, H. (2002). Review of growth plate closure compared with age at sexual maturity and lifespan in laboratory animals. Contemporary Topics, 41, 2126.Google Scholar
Krahl, H., Michaelis, U., Pieper, H. G., Quack, G. and Montag, M. (1994). Stimulation of bone growth through sports. A radiologic investigation of the upper extremities in professional tennis players. American Journal of Sports Medicine, 22, 751757.Google Scholar
Kramer, P. (1999). Modelling the locomotor energetics of extinct hominids. Journal of Experimental Biology, 202, 28072818.Google Scholar
Kramer, P., and Eck, G. G. (2000). Locomotor energetics and lower limb length in hominid bipedality. Journal of Human Evolution, 38, 651666.Google Scholar
Kuhn, J. L., DeLacey, J. H. and Leenellett, E. E. (1996). Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand White rabbits of varying ages. Journal of Orthopaedic Research, 14, 706711.Google Scholar
Latimer, B. M. and Lovejoy, C. O. (1989). The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality. American Journal of Physical Anthropology, 33, 369386.Google Scholar
Latimer, B., Ohman, S. C. and Lovejoy, C. O. (1987). Talocrural joint in African hominoids: implications for Australopithecus afarensis. American Journal of Physical Anthropology, 74, 155175.Google Scholar
Lazarus, J. E., Hegde, A., Andrade, A. C., Nilsson, O. and Baron, J. (2007). Fibroblast growth factor expression in the postnatal growth plate. Bone, 40, 577586.Google Scholar
Li, K. C., Zernicke, R. F., Barnard, R. J. and Li, A. F. (1991). The influences of exercise intensity on bone development in growing rats. Japanese Journal of Physical Education, 36, 3951.Google Scholar
Liu, J. C., Andrade, A. C., Forcinito, P., et al. (2010). Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone, 46, 13801390.Google Scholar
Liu, J. C., Nilsson, O. and Baron, J. (2011). Growth plate senescence and catch-up growth. Endocrine Reviews, 21, 2329.Google Scholar
Lovejoy, C. O. (1984). Review of possible animal models for kinematic/utility testing of the Pfizer Anterior Cruciate Ligament Prosthesis (PALCP). Monograph presented to the Howmedica Division of Pfizer Pharmaceutical Company.Google Scholar
Maquet, P. G., Van de Berg, A. J. and Simonet, J. C. (1975). Femorotibial weight-bearing areas. Journal of Bone and Joint Surgery, American Volume, 57, 766771.Google Scholar
Mayr, E. (1956). Geographical character gradients and climactic adaptation. Evolution, 10, 105108.Google Scholar
McBride, S. H., Evans, S. F. and Knothe Tate, M. L. (2011). Anisotropic mechanical properties of ovine femoral periosteum and the effects of cryopreservation. Journal of Biomechanics, 44, 19541959.Google Scholar
Ménard, A-L., Grimard, G., Valteau, B., et al. (2014). In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate. Journal of Orthopaedic Research, 32, 11291136.Google Scholar
Myers, M. J. and Steudel, K. (1997). Morphological conservation of limb natural pendular period in the domestic dog (Canis familiaris): implications for locomotor energetics. Journal of Morphology, 234, 183196.Google Scholar
Niehoff, A., Kersting, U. G., Zaucke, F., Morlock, M. M. and Bruggemann, G. P. (2004). Adaptation of mechanical, morphological, and biochemical properties of the rat growth plate to dose-dependent voluntary exercise. Bone, 35, 899908.Google Scholar
Nilsson, O., Mitchum, R. D. Jr., Schrier, L., et al. (2005). Growth plate senescence is associated with loss of DNA methylation. Journal of Endocrinology, 186, 241249.CrossRefGoogle ScholarPubMed
Nyska, M., Nyska, A., Swissa-Sivan, A. and Samueloff, S. (1995). Histomorphometry of long bone growth plate in swimming rats. International Journal of Experimental Pathology, 76, 241245.Google Scholar
Ochareon, P. and Herring, S.W. (2007). Growing the mandible: role of the periosteum and its cells. The Anatomical Record, 290, 13661376.CrossRefGoogle ScholarPubMed
Ohashi, N., Robling, A. G., Burr, D. B. and Turner, C. H. (2002). The effects of dynamic axial loading on the rat growth plate. Journal of Bone and Mineral Research, 17, 284292.Google Scholar
Organ, J. M. and Ward, C. V. (2006). Contours of the hominoid lateral tibial condyle with implications for Australopithecus. Journal of Human Evolution, 51, 113127.CrossRefGoogle ScholarPubMed
Parfitt, A. M. (1986). Cortical porosity in postmenopausal and adolescent wrist fractures. In: Uhthoff, H. and Jaworski, Z. F. G. (eds.) Current Concepts of Bone Fragility. Berlin: Springer, pp. 167172.Google Scholar
Parfitt, A. M. (1994). The two faces of growth: benefits and risks to bone integrity. Osteoporosis International, 4, 382398.CrossRefGoogle ScholarPubMed
Parfitt, A. M. (2002). Misconceptions (1): epiphyseal fusion causes cessation of growth. Bone, 30, 337339.Google Scholar
Parker, E. A., Hegde, A., Buckley, M., et al. (2007). Spatial and temporal regulation of GH-IGF-related gene expression in growth plate cartilage. Journal of Endocrinology, 194, 3140.Google Scholar
Plochocki, J. H., Ward, C. V. and Smith, D. E. (2009). Evaluation of the chondral modeling theory using FE-simulation and numeric shape optimization. Journal of Anatomy, 214, 768777.CrossRefGoogle ScholarPubMed
Polk, J. D., Williams, S. A. and Peterson, J. V. (2009). Body size and joint posture in primates. American Journal of Physical Anthropology, 140, 359367.CrossRefGoogle ScholarPubMed
Pontzer, H. (2005). A new model predicting locomotor cost from limb length via force production. Journal of Experimental Biology, 208, 15131524.Google Scholar
Rico, H., Revilla, M., Villa, L. F., et al. (1993). Body composition in children and Tanner’s stages: a study in dual-energy x-ray absorptiometry. Metabolism, 42, 967970.Google Scholar
Roberts, D. F. (1978). Climate and Human Variability, 2nd ed. Menlo Park, CA: Cummings Publishing Company.Google Scholar
Robling, A. G., Duuvelaar, K. M., Geevers, J. V., Ohashi, N. and Turner, C. H. (2001). Modulation of appositional and longitudinal bone growth in the rat ulna by applied static and dynamic force. Bone, 29, 105113.Google Scholar
Rolian, C. (2014). Genes, development, and evolvability in primate evolution. Evolutionary Anthropology, 23, 93104.Google Scholar
Roseman, C. C. and Auerbach, B. M. (2015). Ecogeography, genetics, and the evolution of human body form. Journal of Human Evolution, 78, 8090.Google Scholar
Roseman, C. C., and Weaver, T. D. (2007). Molecules versus morphology? Not for the human cranium. BioEssays, 29, 11851188.Google Scholar
Rot, C., Stern, T., Blecher, R., Friesem, B. and Zelzer, E. (2014). A mechanical jack-like mechanism drives spontaneous fracture healing in neonatal mice. Developmental Cell, 31, 159170.Google Scholar
Ruff, C. (1988). Hindlimb articular surface allometry in Hominoidea and Macaca, with comparisons to diaphyseal scaling. Journal of Human Evolution, 17, 687714.Google Scholar
Ruff, C. B. (1994). Morphological adaptation to climate in modern and fossil hominids. Yearbook of Physical Anthropology, 37, 65107.Google Scholar
Ruff, C. B. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211232.Google Scholar
Ruff, C. B. and Runestad, J. A. (1992). Primate limb bone structural adaptations. Annual Review of Anthropology, 21, 407433.Google Scholar
Senut, B. and Tardieu, C. (1985). Functional aspects of Plio-Pleistocene Hominid limb bones: implications for taxonomy and phylogeny. In: Delson, E. (ed.) Ancestors: The Hard Evidence. New York, NY: Alan R. Liss, pp. 193201.Google Scholar
Sergerie, K., Lacoursierem, M. O., Levesqaue, M. and Villemure, I. (2009). Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests. Journal of Biomechanics, 42, 510516.Google Scholar
Serrat, M. A. (2013). Allen’s rule revisited: temperature influences bone elongation during a critical period of postnatal development. Anatomical Record, 296, 15341545.Google Scholar
Serrat, M. A., King, D. and Lovejoy, C. O. (2008). Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proceedings of the National Academy of Sciences, 105, 1934719352.Google Scholar
Serrat, M. A., Efaw, M. L. and Williams, R. M. (2014). Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging. Journal of Applied Physiology, 116, 425438.CrossRefGoogle ScholarPubMed
Silberberg, R. (1971). Skeletal growth and ageing. Acta Rheumatologica, 26, 156.Google Scholar
Steudel-Numbers, K. L. and Tilkens, M. J. (2004). The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins. Journal of Human Evolution, 47, 95109.Google Scholar
Stevens, D. G., Doyer, M. I. and Bowen, C. V. (1999). Transplantation of epiphyseal plate allografts between animals of different ages. Journal of Pediatric Orthopedics, 19, 398403.Google Scholar
Stokes, I. A. F., Mente, P. L., Iatridis, J. C., Farnum, C. E. and Aronsson, D. D. (2002). Enlargement of growth plate chondrocytes modulated by sustained mechanical loading. Journal of Bone and Joint Surgery, American Volume, 84, 18421848.Google Scholar
Stokes, I. A. F., Gwadera, J., Dimock, A., Farnum, C. E. and Aronsson, D. D. (2005). Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. Journal of Orthopaedic Research, 2, 188195.Google Scholar
Stokes, I. A., Aronsson, D. D., Dimock, A. N., Cortright, V. and Beck, S. (2006). Endochondral growth in growth plates of three species of two anatomical locations modulated by mechanical compression and tension. Journal of Orthopaedic Research, 24, 13271334.Google Scholar
Stokes, I. A., Clark, K. C., Farnum, C. E. and Aronsson, D. D. (2007). Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone, 41, 197205.CrossRefGoogle ScholarPubMed
Swissa-Siva, A., Simking, A., Leichter, I., et al. (1989). Effect of swimming on bone growth and development in young rats. Bone and Mineral, 7, 91105.Google Scholar
Temple, D. H., Auerbach, B. M., Nakatsukasas, M., Sciulli, P. W. and Larsen, C. S. (2008). Variation in limb proportions between Jomon foragers and Yayoi agriculturalists. American Journal of Physical Anthropology, 137, 164174.Google Scholar
ten Broek, C. M., Bakker, A. J., Varela-Lasheras, V., et al. (2012). Evo–Devo of the human vertebral column: on homeotic transformations, pathologies and prenatal selection. Evolutionary Biology, 39, 456471.Google Scholar
Towers, M. and Tickle, C. (2009). Growing models of vertebrate limb development. Development, 136, 179190.Google Scholar
Trinkaus, E. (1981). Neandertal limb proportions and cold adaptation. In: Stringer, C. B. (ed.) Aspects of Human Evolution. London: Taylor and Francis, pp. 187224.Google Scholar
Trinkaus, E. (1986). The Neandertals and modern human origins. Annual Review of Anthropology, 15, 193218.Google Scholar
Trueta, J. (1968). The Effect of Ischaemia on the Epiphyseal Cartilage. Studies of the Development and Decay of the Human Frame. London: William Heinemann Medical Books, pp. 108117.Google Scholar
Tupman, G. S. (1962). A study of bone growth in normal children and its relationship to skeletal maturation. Journal of Bone and Joint Surgery, British Volume, 44, 4267.Google Scholar
Valteau, B., Grimard, G., Londono, I., Modovan, F. and Villemure, I. (2011). In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation. Bone, 49, 9961004.Google Scholar
Vico, L., Barou, O., Larouche, N., Alexandre, C. and Lafage-Proust, M. H. (1999). Effects of centrifuging at 2 g on rat long bone metaphyses. European Journal of Applied Physiology, 80, 360366.Google Scholar
Villemure, I. and Stokes, I. A. F. (2009). Growth plate mechanics and mechanobiology. A survey of present understanding. Journal of Biomechanics, 42, 17931803.CrossRefGoogle ScholarPubMed
Ward, C. V. (2002). Interpreting the posture and locomotion of Australopithecus afarensis: where do we stand? Yearbook of Physical Anthropology, 45, 185215.Google Scholar
Wilde, G. P. and Baker, G. C. (1987). Circumferential periosteal release in the treatment of children with leg-length inequality. Journal of Bone and Joint Surgery, British Volume, 69, 817821.Google Scholar
Wilsman, N. J., Farnum, C. E., Green, E. M., Lieferman, E. M. and Clayton, M. K. (1996a). Cell cycle analysis of proliferative zone chondrocytes in growth plates elongating at different rates. Journal of Orthopaedic Research, 14, 562572.Google Scholar
Wilsman, N. J., Farnum, C. E., Leiferman, E. M., Fry, M. and Barreto, C. (1996b). Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. Journal of Orthopaedic Research, 14, 927936.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×