Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T12:10:56.843Z Has data issue: false hasContentIssue false

2 - Invasive brain drug delivery

Published online by Cambridge University Press:  08 January 2010

William M. Pardridge
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Invasive brain drug delivery strategies have been the most widely used for circum-venting the blood–brain barrier (BBB) drug delivery problem. The invasive strategies require either a craniotomy by a neurosurgeon or access to the carotid artery by an interventional radiologist. The neurosurgery-based strategies include intracerebroventricular (ICV) infusion of drugs, or intracerebral implants of either genetically engineered cells or biodegradable polymers. Thus, the neurosurgicalbased strategies fundamentally emanate from the material sciences and employ controlled-release formulations, which is a classical drug delivery strategy (Figure 2.1). In contrast, the theme of this book is that brain drug targeting emanates from transport biology science, and is focused on the endogenous BBB transport systems (Figure 2.1). In the absence of brain drug-targeting strategies that allow drugs to be transported through the BBB, thenit is necessary to employ invasive strategies. These approaches either deliver drug behind the BBB, as with either ICV infusion or intracerebral implants, or physically disrupt the BBB following the intracarotid arterial infusion of noxious agents.

Neurosurgical implants

Intracerebroventricular infusion

Cerebrospinal fluid (CSF) physiology

The failure of a blood-borne agent to cross the brain cpillary endothelial wall, which forms the BBB in vivo, is illustrated with the light microscopic histochemical study (Brightman, 1977), as shown in Figure 2.2. In this study, horseradish peroxidase HRP) was injected either intravenously or by ICV injection.

Type
Chapter
Information
Brain Drug Targeting
The Future of Brain Drug Development
, pp. 13 - 35
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×