Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T09:01:18.180Z Has data issue: false hasContentIssue false

Chapter 9 - Diencephalon: Thalamus

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 140 - 150
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Select Bibliography

Jones, E. G. (2007). The Thalamus. New York, NY: Cambridge University Press.Google Scholar
Kultas-Ilinsky, K., and Ilinsky, I. A. (Eds.). (2000). Basal Ganglia and Thalamus in Health and Movement Disorders. New York, NY: Kluwer Academic / Plenum Publishers.Google Scholar
Moretti, R., Toree, P., and Rodolofo, M. A. (Eds.). (2009). Basal Ganglia and Thalamus. Their Role in Cognition and Behavior. New York, NY: Nova Science Publishers.Google Scholar
Sherman, S. M., and Guillery, R. W. (2001). Exploring the Thalamus. San Diego, CA: Academic Press.Google Scholar

References

Alosco, M. L., and Hayes, S. M. (2015). Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer’s disease. Heart Failure Rev., 20(5), 561571. doi:10.1007/s10741-015–9488-5CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1997). The role of the thalamus in schizophrenia. Can. J. Psychiatry, 42, 2733. Retrieved from www.ncbi.nlm.nih.gov/pubmed/9040920CrossRefGoogle ScholarPubMed
Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M.,… Glahn, D. C. (2013). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cereb. Cortex, 24, 31163130. doi:10.1093/cercor/bht165CrossRefGoogle ScholarPubMed
Bogousslavsky, J., Ferrazzini, M., Regli, F., Assal, G., Tanabe, H., and Delaloye-Bischof, A. (1988). Manic delirium and frontal-like syndrome with paramedian infarction of the right thalamus. J. Neurol., Neurosurg., Psychiatry, 51, 116119. doi:10.1136/jnnp.51.1.116Google Scholar
Bonelli, R. M., and Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues Clin. Neurosci., 9, 141151. Retrieved from www.ncbi.nlm.nih.gov/pmc/articles/PMC3181854Google Scholar
Byne, W., Buchsbaum, M. S., Kemether, E., Hazlett, E. A., Shinwari, A., Mitropoulou, V., and Siever, L. J. (2001). Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch. Gen. Psychiatry, 58(2), 133140. doi:10.1001/archpsyc.58.2.133Google Scholar
Byne, W., Buchsbaum, M. S., Mattiace, L. A., Hazlett, E. A., Kemether, E., Elhakem, S. L.,… Jones, L. (2002) Postmortem assessment of thalamic nuclear volumes in subjects with schizophrenia. Am. J. Psychiatry, 159, 5965. doi:10.1176/appi.ajp.159.1.59Google Scholar
Byne, W., Fernandes, J., Haroutunian, V., Huacon, D., Kidkardnee, S., Kim, J.Yiannoulos, G. (2007) Reduction of right medial pulvinar volume and neuron number in schizophrenia. Schizophr. Res., 90, 7175. doi:10.1016/j.schres.2006.10.006CrossRefGoogle ScholarPubMed
Byne, W., Hazlett, E. A., Buchsbaum, M. S., and Kemether, E. (2009). The thalamus and schizophrenia: Current status of research. Acta Neuropathol., 117(4), 347368. doi:10.1007/s00401-008–0404-0CrossRefGoogle ScholarPubMed
Carrera, E., and Bogousslavsky, J. (2006). The thalamus and behavior. Effects of anatomically distinct strokes. Neurology, 66, 18171823. doi:10.1212/01.wnl.0000219679.95223.4cCrossRefGoogle ScholarPubMed
Chaudhry, A., Noor, A., Degagne, B., Baker, K., Bok, L. A., Brady, A. F., Chitayat, D.,… Vincent, J. B. (2015). Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder. Clin. Genet., 88(3), 224233. doi:10.1111/cge.12482CrossRefGoogle ScholarPubMed
Cobia, D. J., Smith, M. J., Salinas, I., Charlene, Ng, Gado, M.,… Wang, L. (2016) Progressive deterioration of thalamic nuclei relates to cortical network decline in schizophrenia. Schizophrenia Res., 180, 2127. doi:10.1016/j.schres.2016.08.003Google Scholar
Cummings, J. L., and Mendez, M. F. (1984). Secondary mania with focal cerebrovascular lesions. Am. J. Psychiatry, 141(9), 10841087. doi:10.1176/ajp.141.9.1084Google ScholarPubMed
De Witte, L., Brouns, R., Kavadias, D., Engelborghs, S., De Deyn, P. F., and Mariën, P. (2011). Cognitive, affective and behavioural disturbances following vascular thalamic lesions: A review. Cortex, 47(3), 27, 273319. doi:10.1016/j.cortex.2010.09.002CrossRefGoogle ScholarPubMed
Dorph-Petersen, K. A., and Lewis, D. A. (2016). Postmortem structural studies of the thalamus in schizophrenia. Schizophr. Res., Aug 23. pii: S0920-9964(16)30357–7. doi:10.1016/j.schres.2016.08.007Google Scholar
Gates, G. A. (2012). Central presbycusis: An emerging view. Otolaryngol. Head Neck Surg., 147(1), 12. Epub. doi:10.1177/0194599812446282CrossRefGoogle ScholarPubMed
Gentilini, M., De Renzi, E., and Crisi, G. (1987). Bilateral paramedian thalamic artery infarcts: report of eight cases. J. Neurol. Neurosurg. Psychiatry, 50(7), 900909. Retrieved from www.ncbi.nlm.nih.gov/pmc/articles/PMC1032130CrossRefGoogle ScholarPubMed
Ghika-Schmid, F., and Bogousslavsky, J. (2000). The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann. Neurol., 48(2), 220227. doi:10.1002/1531–8249(200008)48:2<220::aid-ana12>3.0.CO;2-MGoogle Scholar
Graff-Radford, N. R., Eslinger, P. J., Damasio, A. R., and Yamada, T. (1984). Nonhemorrhagic infarction of the thalamus: Behavioral, anatomic, and physiologic correlates. Neurology, 34(1), 1423. doi:10.1212/WNL.34.1.14CrossRefGoogle ScholarPubMed
Gur, R. E., Maany, V., Mozley, P. D., Swanson, C., Bilker, W., and Gur, R. C. (1998). Subcortical MRI volumes in neuroleptic-naïve and treated patients with schizophrenia. Am. J. Psychiatry, 155, 17111717. doi:10.1176/ajp.155.12.1711Google Scholar
Hariz, M., Blomstedt, P., and Zrinzo, L. (2013). Future of brain stimulation: new targets, new indications, new technology. Mov. Disord., 28(13), 17841792. doi:10.1002/mds.25665Google Scholar
Hassler, R., Reichart, T., Munginer, F., Umbach, W., and Gangleberger, J. A. (1960). Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain, 83, 337350. Retrieved from www.ncbi.nlm.nih.gov/pubmed/13852002CrossRefGoogle ScholarPubMed
Jeanmonod, D., and Morel, A. (2009). The central lateral thalamotomy for neuropathic pain. In Lozano, A. M., Gildenberg, P. L., and Tasker, R. R. (Eds.), Textbook of stereotactic and functional neurosurgery (2nd edn., pp. 20812096). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
Khorram, B., Lang, D. J., Kopala, L. C., Vandorpe, R. A., Rui, Q., Goghari, V. M.,… Honer, W. G. (2006). Reduced thalamic volume in patients with chronic schizophrenia after switching from typical antipsychotic medications to olanzaprine. Am. J. Psychiatry, 163, 20052007. doi:10.1177/0269881110363314CrossRefGoogle Scholar
Lanciego, J. L., Rodriguez-Oroz, M. C., Blesa, F. J., Alvarez-Erviti, L., Guridi, J., Barrosos-Chinea, P.,… Obeso, J. A. (2015). Lesion of the centromedian thalamic nucleus in MPTP-treated monkeys. Mov. Disord., 23(5), 708715. doi:10.1002/mds.21906CrossRefGoogle Scholar
Lisman, J. E., Pi, H. J., Zhang, Y., and Otmakhova, N. A. (2010). A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol. Psychiatry, 68(1), 1724. doi:10.1016/j.biopsych.2010.04.007CrossRefGoogle ScholarPubMed
Magrassi, L, Maggioni, G., Pistarini, C., Di Perri, C., Bastianello, S., Zippo, A. G., Iotti, G. A.Imberti, R. (2016). Results of a prospective study (CATS) on the effects of thalamic stimulation in minimally conscious and vegetative state patients. J. Neurosurg., 8, 110. doi:10.3171/2015.7.JNS15700Google Scholar
Mai, J. K., and Forutan, F. (2012). Thalamus. In Mai, J. K., and Paxinos, G. (Eds.), The Human Nervous System (3rd edn., pp. 618677). New York, NY: Elsevier Academic Press.CrossRefGoogle Scholar
Mamah, D., Alpert, K. I., Barch, D. M., Csernansky, J. G., and Wang, L. (2016). Subcortical neuromorphometry in schizophrenia spectrum and bipolar disorders. Neuroimage Clin., 11, 276286. doi:10.1016/j.nicl.2016.02.011Google Scholar
Manto, M., and Mariën, P. (2015). Schmahmann’s syndrome – identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias, 2, 2. doi:10.1186/s40673-015–0023-1CrossRefGoogle ScholarPubMed
Melo, T. P., and Bogousslavsky, J. (1992). Hemiataxia-hypesthesia: A thalamic stroke syndrome. J. Neurol. Neurosurg. Psychiatry, 55, 581584. doi:10.1136/jnnp.55.7.581CrossRefGoogle ScholarPubMed
Mendez, M. F., Papasian, N. C., Lim, G. T., and Swanberg, M. (2003). Thalamic acalculia. J. Neuropsychiatry Clin. Neurosci., 15, 115116. Retrieved from www.academia.edu/10951701/Thalamic_AcalculiaCrossRefGoogle ScholarPubMed
Michels, L., Moazami-Goudarzi, M., and Jeanmonod, D. (2011). Correlations between EEG and clinical outcome in chronic neuropathic pain: surgical effects and treatment resistance. Brain Imaging Behav., 5(4), 329348. doi:10.1007/s11682-011–9135-2CrossRefGoogle ScholarPubMed
Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., and Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch. Gen. Psychiatry, 66(8), 811822. doi:10.1001/archgenpsychiatry.2009.91Google Scholar
Mitchell, A. S., and Chakraborty, S. (2013). What does the mediodorsal thalamus do? Front. Syst. Neurosci., 7, 37. doi:10.3389/fnsys.2013.00037Google Scholar
Mitchell, A. S., Sherman, S. M., Sommer, M. A., Mair, R. G., Vertes, R. P., and Chudasama, Y. (2014). Advances in understanding mechanisms of thalamic relays in cognition and behavior. J. Neurosci., 34(36), 1534015346. doi:10.1523/JNEUROSCI.3289–14.2014Google Scholar
Morris, J. S., DeGelder, B., Weiskrantz, L., and Dolan, R. J. (2001). Differential extrageniculostriate and amygdala response to presentation of emotional faces in a cortically blind field. Brain, 124(6), 12411252. doi:10.1093/brain/124.6.1241Google Scholar
Nadeau, S. E., Roeltgen, D. P., Sevush, S., Ballinger, W. E., and Watson, R. T. (1994). Apraxia due to a pathologically documented thalamic infarction. Neurology, 44(11), 21332137. Retrieved from www.ncbi.nlm.nih.gov/pubmed/7969972CrossRefGoogle ScholarPubMed
Pereira, E. A., Green, A. L., and Aziz, T. Z. (2013). Deep brain stimulation for pain. Handb. Clin. Neurol., 116, 277294. doi:10.1016/B978-0–444-53497–2.00023–1CrossRefGoogle ScholarPubMed
Rafal, R., McGrath, M., Machado, L., and Hindle, J. (2004). Effects of lesions of the human posterior thalamus on ocular fixation during voluntary and visually triggered saccades. J. Neurol. Neurosurg. Psychiatry, 75, 16021606. doi:10.1136/jnnp.2003.017038Google Scholar
Saalmann, Y. B., Pinsk, M. A., Wang, L., Li, X., and Kastner, S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science, 337(6095), 753456. doi:10.1126/science.1223082Google Scholar
Sánchez-González, M. Á., Garcia-Cabezas, M. Á., Rico, B., and Cavada, C. (2005). The primate thalamus is a key target for brain dopamine. J. Neurosci., 25(26), 60766083. doi:10.1523/JNEUROSCI.0968–05.2005CrossRefGoogle ScholarPubMed
Schmahmann, J. D., and Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(4), 561579. Retrieved from www.ncbi.nlm.nih.gov/pubmed/9577385Google Scholar
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nat. Neurosci., 16, 533541. doi:10.1038/nn.4269CrossRefGoogle Scholar
Strungas, S., Christensen, J. D., Holcomb, J. M., and Garver, D. L. (2003). State-related thalamic changes during antipsychotic treatment in schizophrenia: Preliminary observations. Psychiatry Res., 124, 121124. doi:10.1016/S0925-4927(03)00092–1Google Scholar
Tarsy, D., Papavassiliou, E., Lyons, K. E., and Rahwa, R. (2008). Thalamic deep brain stimulation for Parkinson’s disease tremor. In Current Clinical Neurology: Deep Brain Stimulation in Neurological and Psychiatric Disorders. Tarsy, D., Vitck, J. L., Starr, P. A., and Okun, M. S. (Eds., pp. 229239) Totowa, NJ: Humana Press doi:10.1008/978–1-59745–360-8CrossRefGoogle Scholar
Torso, M., Serra, L., Giulietti, G., Spanò, B., Tuzzi, E., Koch, G.,… Bozzali, M. (2015). Strategic lesions in the anterior thalamic radiation and apathy in early Alzheimer’s disease. PLoS One, 10(5):e0124998. doi:10.1371/journal.pone.0124998CrossRefGoogle ScholarPubMed
Van der Werf, Y. D., Scheltens, P., Lindeboom, J., Witter, M. P., Uylings, H. B., and Jolles, J. (2003). Deficits of memory, executive functioning and attention following infarction in the thalamus; a study of 22 cases with localised lesions. Neuropsychologia, 41, 13301344. doi:10.1016/S0028-3932(03)00059–9Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J., and Dolan, R. J. (2003). Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nat. Neurosci., 6(6), 624631. doi:10.1038/nn1057Google Scholar
Walker, A. E. (1982). Normal and pathological physiology of the human thalamus. In Schaltenbrand, G., and Walker, A. E. (Eds.). Sterotaxy of the Human Brain: Anatomical Physiological, and Clinical Applications (pp. 181217), Stuttgart: Theieme.Google Scholar
Wells, M. F., Wimmer, R. D., Schmitt, L. I., Feng, G., and Halassa, M. M. (2016). Thalamic reticular impairment underlies attention deficit in Ptchd1Y/- Mice. Nature, 532(7597), 5863. doi:10.1038/nature17427CrossRefGoogle ScholarPubMed
Wimmer, R. D., Schmitt, L. I., Davidson, T. J., Nakajima, M., Deisseroth, K., and Halassa, M. M. (2015). Thalamic control of sensory selection in divided attention. Nature, 526(7575), 705709. doi:10.1038/nature15398Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×