Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T05:12:04.257Z Has data issue: false hasContentIssue false

3 - Atomic properties

Published online by Cambridge University Press:  25 January 2011

C. J. Pethick
Affiliation:
Nordita and University of Copenhagen
H. Smith
Affiliation:
University of Copenhagen
Get access

Summary

A number of atomic properties play a key role in experiments on cold atomic gases, and we shall discuss them briefly in the present chapter with particular emphasis on alkali atoms. Basic atomic structure is the subject of Sec. 3.1. Two effects exploited to trap and cool atoms are the influence of a magnetic field on atomic energy levels, and the response of an atom to radiation. In Sec. 3.2 we describe the combined influence of the hyperfine interaction and the Zeeman effect on the energy levels of an atom, and in Sec. 3.3 we review the calculation of the atomic polarizability. In Sec. 3.4 we summarize and compare some energy scales.

Atomic structure

The total spin of a Bose particle must be an integer, and therefore a boson made up of fermions must contain an even number of them. Neutral atoms contain equal numbers of electrons and protons, and therefore the statistics that an atom obeys is determined solely by the number of neutrons N: if N is even, the atom is a boson, and if it is odd, a fermion. Since the alkalis have odd atomic number Z, boson alkali atoms have odd mass numbers A. Likewise for atoms with even Z, bosonic isotopes have even A. In Table 3.1 we list N, Z, and the nuclear spin quantum number I for some alkali atoms and hydrogen.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Atomic properties
  • C. J. Pethick, H. Smith, University of Copenhagen
  • Book: Bose–Einstein Condensation in Dilute Gases
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802850.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Atomic properties
  • C. J. Pethick, H. Smith, University of Copenhagen
  • Book: Bose–Einstein Condensation in Dilute Gases
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802850.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Atomic properties
  • C. J. Pethick, H. Smith, University of Copenhagen
  • Book: Bose–Einstein Condensation in Dilute Gases
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511802850.004
Available formats
×