Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T17:03:55.671Z Has data issue: false hasContentIssue false

Chapter Fifteen - What is habitat quality? Dissecting a research portfolio on shorebirds

Published online by Cambridge University Press:  05 December 2012

Theunis Piersma
Affiliation:
University of Groningen and Royal Netherlands Institute for Sea Research (NIOZ)
Robert J. Fuller
Affiliation:
British Trust for Ornithology, Norfolk
Get access

Summary

It is intriguing that the fourth edition of the main British ecology textbook Ecology: From Individuals to Ecosystems (Begon et al., 2006) does not include habitat selection or habitat choice amongst the keywords in the subject index. What can be found is the word niche. Of course, this concept is closely bound up with the concepts related to the use and selection of habitats, as discussed in the present book. Nevertheless, Begon et al. (2006, p. 31) have interesting things to say about the relationships between the niche concept and the use of habitat, so let’s start with a citation: ‘The term ecological niche . . . is often used loosely to describe the sort of place in which an organism lives, as in the sentence: “Woodlands are the niche of woodpeckers”. Strictly, however, where an organism lives is its habitat. A niche is not a place but an idea: a summary of the organism’s tolerances and requirements. The habitat of a gut micro-organism would be an animal’s alimentary canal; the habitat of an aphid might be a garden; and the habitat of a fish could be a whole lake. Each habitat, however, provides many different niches: many other organisms also live in the gut, the garden or the lake – and with quite different lifestyles.’

This chapter presents a rather personal account of the attempts by myself and co-workers to explain the distribution and abundance of shorebirds, especially during the non-breeding season. We have tried to explain why non-breeding shorebirds use certain mudflats more than others, and why different individuals may use the same area in such different ways. In addition to the population and individual levels, we have also addressed questions on habitat selection at the species level, such as why some shorebird species use coastal rather than freshwater wetlands during the non-breeding season, and why some shorebird species breed on High Arctic tundra rather than in temperate grasslands (a behaviour that condemns them to very long migrations to escape the polar winters).

Type
Chapter
Information
Birds and Habitat
Relationships in Changing Landscapes
, pp. 383 - 407
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, P. W.Baker, A. J.Bennett, K. A. 2007 Rates of mass gain and energy deposition in Red Knot on their final spring staging site is both time- and condition-dependentJ. Appl. Ecol. 44 885CrossRefGoogle Scholar
Baker, A. J.Gonzalez, P. M.Piersma, T. 2004 Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware BayProc. R. Soc. B 271 875CrossRefGoogle ScholarPubMed
Begon, M.Townshend, C. R. 2006 Ecology: From Individuals to EcosystemsOxfordBlackwell PublishingGoogle Scholar
Battley, P. F.Piersma, T. 2005 Adaptive interplay between feeding ecology and features of the digestive tract in birdsPhysiological and Ecological Adaptations to Feeding in VertebratesStarck, J. M.Wang, T.201EnfieldScience PublishersGoogle Scholar
Battley, P. F.Rogers, D. I.Piersma, T.Koolhaas, A. 2003 Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flightEmu 103 97CrossRefGoogle Scholar
Bijleveld, A. I.Egas, M.van Gils, J. A.Piersma, T. 2010 Beyond the information centre hypothesis: communal roosting for information on food, predators, travel companions and mates?Oikos 119 277CrossRefGoogle Scholar
Brown, J. S. 1988 Patch use as an indicator of habitat preference, predation risk, and competitionBehav. Ecol. Sociobiol. 22 37CrossRefGoogle Scholar
Brown, J. S. 1992 Patch use under predation risk. 1. Models and predictionsAnn. Zool. Fenn. 29 301Google Scholar
Brown, J. S.Kotler, B. P. 2007 Foraging and the ecology of fearForaging: Behaviour and EcologyStephens, D. W.Brown, J. S.Ydenberg, R. C.437ChicagoUniversity of Chicago PressGoogle Scholar
Buehler, D. M.Tieleman, B. I.Piersma, T. 2009 Age and environment affect constitutive immune function in Red Knots ()J. Ornithol. 150 815CrossRefGoogle Scholar
Buehler, D. M.Tieleman, B. I.Piersma, T. 2010 Indices of immune function are lower in Red Knots () recovering protein than in those storing fat during stopover in Delaware BayAuk 127 394CrossRefGoogle Scholar
Buehler, D. M.Tieleman, B. I.Piersma, T. 2010 How do migratory species stay healthy over the annual cycle? A conceptual model for immune function and for resistance to diseaseIntegr. Comp. Biol. 50 346CrossRefGoogle ScholarPubMed
Caro, T. M. 2005 Antipredator Defences in Birds and MammalsChicagoChicago University PressGoogle Scholar
Cohen, J. B.Karpanty, S. M.Fraser, J. D. 2010 Habitat selection and behaviour of Red Knots on the New Jersey Atlantic coast during spring stopoverCondor 112 655CrossRefGoogle Scholar
Cohen, J. B.Karpanty, S. M.Fraser, J. D.Truitt, B. R. 2010 The effect of benthic prey abundance and size on Red Knot () distribution at an alternative migratory stopover site on the US Atlantic coastJ. Ornithol. 151 355CrossRefGoogle Scholar
Colwell, M. A. 2010 Shorebird Ecology, Conservation, and ManagementBerkeleyUniversity of California PressGoogle Scholar
Chase, J. M.Leibold, M. A. 2003 Ecological Niches. Linking Classical and Contemporary ApproachesChicagoUniversity of Chicago PressCrossRefGoogle Scholar
Cresswell, W. 1994 Flocking is an effective anti-predator strategy in Redshanks, Anim. Behav. 47 433CrossRef
Danchin, É.Giraldeau, L.-A.Cézilly, F. 2008 Behavioural EcologyOxfordOxford University Press
Dekinga, A.Piersma, T. 1993 Reconstructing diet composition on the basis of faeces in a mollusc-eating wader, the Knot Bird Study 40 144CrossRefGoogle Scholar
Dekinga, A.Dietz, M. W.Koolhaas, A.Piersma, T. 2001 Time course and reversibility of changes in the gizzards of Red Knots alternately eating hard and soft foodJ. Exp. Biol. 204 2167Google ScholarPubMed
Dietz, M. W.Dekinga, A.Piersma, T.Verhulst, S. 1999 Estimating organ size in small migrating shorebirds with ultrasonography: an intercalibration exercisePhysiol. Biochem. Zool. 72 28CrossRefGoogle Scholar
Ens, B. J.Piersma, T.Drent, R. 1994 The dependence of waders and waterfowl migrating along the East Atlantic Flyway on their coastal food supplies: what is the most profitable research programme?Ophelia127Google Scholar
Figuerola, J. 1999 Effects of salinity on rates of infestation of waterbirds by haematozoaEcography 22 681CrossRefGoogle Scholar
Folmer, E. O.Olff, H.Piersma, T. 2010 How well do food distributions predict spatial distributions of shorebirds with different degrees of self-organization?J. Anim. Ecol. 79 747Google ScholarPubMed
Fretwell, S. D. 1972 Populations in a Seasonal EnvironmentPrincetonPrinceton University PressGoogle Scholar
Geue, D.Partecke, J. 2008 Reduced parasite infestation in urban European Blackbirds (): a factor favoring urbanization?Can. J. Zool. 86 1418CrossRefGoogle Scholar
Gill, J. A.Sutherland, W. J.Norris, K. 2001 Depletion models can predict shorebird distribution at different spatial scalesProc. R. Soc. B 268 369CrossRefGoogle ScholarPubMed
Goss-Custard, J. D.West, A. D.Yates, M. G. 2006 Intake rates and the functional response in shorebirds (Charadriiformes) eating macro-invertebratesBiol. Rev. 81 501CrossRefGoogle ScholarPubMed
Gutiérrez, J. S.Dietz, M. W.Masero, J. A. 2012 Functional ecology of saltglands in shorebirds: flexible responses to variable environmental conditionsFunct. Ecol. 26 236CrossRefGoogle Scholar
Hall, S. R.Brown, J. H.Cáceres, C. E. 2008 Is infectious disease just another type of consumer-resource interaction?Reciprocal Interactions between Ecosystems and DiseaseOstfeld, R. S.Keesing, F.Eviner, V. T.223PrincetonPrinceton University PressGoogle Scholar
Houston, A. I.McNamara, J. M. 1999 Models of Adaptive BehaviourCambridgeCambridge University PressGoogle Scholar
Hulscher, J. B. 1982 The Oystercatcher as a predator of the bivalve in the Dutch Wadden SeaArdea 70 89Google Scholar
Karpanty, S. M.Fraser, J. D.Berkson, J. 2006 Horseshoe Crab eggs determine Red Knot distribution in Delaware BayJ. Wildlife Manage. 70 1704CrossRefGoogle Scholar
King, J. R. 1974 Seasonal allocation of time and energy resources in birdsAvian EnergeticsPaynter, R. A.4Cambridge, MassNuttall Onithological ClubGoogle Scholar
Klaassen, M. 2003 Relationships between migration and breeding strategies in Arctic breeding birdsAvian MigrationBerthold, P.Gwinner, E.Sonnenschein, E.237BerlinSpringer-VerlagCrossRefGoogle Scholar
Kraan, C.Piersma, T.Dekinga, A.Koolhaas, A.van der Meer, J. 2007 Dredging for Edible Cockles () on intertidal flats: short-term consequences of fisher patch-choice decisions for target and non-target benthic faunaICES J. Mar. Sci. 64 1735CrossRefGoogle Scholar
Kraan, C.van Gils, J. A.Spaans, B. 2009 Landscape-scale experiment demonstrates that Wadden Sea intertidal flats are used to capacity by molluscivore migrant shorebirdsJ. Anim. Ecol. 78 1259CrossRefGoogle ScholarPubMed
Kraan, C.van Gils, J. A.Spaans, B.Dekinga, A.Piersma, T. 2010 Declining refuelling opportunities for Afro-Siberian Red Knots in the western Dutch Wadden SeaArdea 98 155CrossRefGoogle Scholar
Krebs, J. R.Davies, N. B. 1987 An Introduction to Behavioural EcologySecond edition. OxfordBlackwell Scientific PublicationsGoogle Scholar
Lank, D. B.Ydenberg, R. C. 2003 Death and danger at migratory stopovers: problems with “predation risk”J. Avian Biol. 34 225CrossRefGoogle Scholar
Leyrer, J.Brugge, M.Dekinga, A. 2012 Small-scale demographic structure suggests pre-emptive behaviour in a flocking shorebirdBehav. Ecol.CrossRefGoogle Scholar
Lima, S. L.Dill, L. M. 1990 Behavioral decisions made under the risk of predation: a review and prospectusCan. J. Zool. 68 619CrossRefGoogle Scholar
Lind, J.Cresswell, W. 2006 Anti-predation behaviour during bird migration; the benefit of studying multiple behavioural dimensionsJ. Ornithol. 147 310CrossRefGoogle Scholar
Lourenço, P. M.Mandema, F. S.Hooijmeijer, J. C. E. W.Granadeiro, J. P.Piersma, T. 2010 Site selection and resource depletion in black-tailed godwits eating rice during northward migrationJ. Anim. Ecol. 79 522CrossRefGoogle ScholarPubMed
MacArthur, R. H. 1972 Geographical Ecology: Patterns in the Distribution of SpeciesPrincetonPrinceton University PressGoogle Scholar
McGowan, A.Cresswell, W.Ruxton, G. D. 2002 The effects of daily weather variation on foraging and responsiveness to disturbance in overwintering Red Knot Ardea 90 229Google Scholar
Mendes, L.Piersma, T.Lecoq, M.Spaans, B.Ricklefs, R. E. 2005 Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitatsOikos 109 396CrossRefGoogle Scholar
Myers, J. P. 1986 Sex and gluttony in Delaware BayNat. Hist. 95 68Google Scholar
Orwell, G. 1945 Animal Farm, a Fairy StoryLondonSecker and WarburgGoogle Scholar
Petit, M.Vézina, F.Piersma, T. 2010 Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivityJ. Comp. Physiol. B 180 847CrossRefGoogle Scholar
Piersma, T. 1997 Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?Oikos 80 623CrossRefGoogle Scholar
Piersma, T. 2003 Coastal’ versus ‘inland’ shorebird species: interlinked fundamental dichotomies between their life- and demographic histories?Wader Study Group Bull. 100 5Google Scholar
Piersma, T. 2007 Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwideJ. Ornithol. 148 S45CrossRefGoogle Scholar
Piersma, T.van Gils, J. A. 2011 The Flexible Phenotype: A Body-centred Integration of Ecology, Physiology, and BehaviourOxfordOxford University PressGoogle Scholar
Piersma, T.Drent, R.Wiersma, P. 1991 Temperate versus tropical wintering in the world’s northernmost breeder, the Knot: metabolic scope and resource levels restrict subspecific optionsActa XX Congr. Int. Ornithol. (Christchurch) II 761Google Scholar
Piersma, T.Hoekstra, R.Dekinga, A. 1993 Scale and intensity of intertidal habitat use by Knots in the western Wadden Sea in relation to food, friends and foesNeth. J. Sea Res. 31 331CrossRefGoogle Scholar
Piersma, T.Verkuil, Y.Tulp, I. 1994 Resources for long-distance migration of Knots and : how broad is the temporal exploitation window of benthic prey in the western and eastern Wadden SeaOikos 71 393CrossRefGoogle Scholar
Piersma, T.van Gils, J.de Goeij, P. 1995 Holling’s functional response model as a tool to link the food-finding mechanism of a probing shorebird with its spatial distributionJ. Anim. Ecol. 64 493CrossRefGoogle Scholar
Piersma, T.van Aelst, R.Kurk, K.Berkhoudt, H.Maas, L. R. M. 1998 A new pressure sensory mechanism for prey detection in birds: the use of principles of seabed dynamics?Proc. R. Soc. B 265 1377CrossRefGoogle Scholar
Piersma, T.Koolhaas, A.Dekinga, A. 2001 Long-term indirect effects of mechanical cockle-dredging on intertidal bivalve stocks in the Wadden SeaJ. Appl. Ecol. 38 976CrossRefGoogle Scholar
Piersma, T.Dekinga, A.van Gils, J. A.Achterkamp, B.Visser, G. H. 2003 Cost-benefit analysis of mollusc-eating in a shorebird. I. Foraging and processing costs estimated by the doubly labelled water methodJ. Exp. Biol. 206 3361CrossRefGoogle Scholar
Piersma, T.Rogers, D. I.González, P. M. 2005 Fuel storage rates in red knots worldwide: facing the severest ecological constraint in tropical intertidal conditions?Birds of Two Worlds: The Ecology and Evolution of Migratory BirdsGreenberg, R.Marra, P. P.262BaltimoreJohns Hopkins University PressGoogle Scholar
Quaintenne, G.van Gils, J. A.Bocher, P.Dekinga, A.Piersma, T. 2010 Diet selection in a molluscivore shorebird across Western Europe: does it show short- or long-term intake rate-maximization?J. Anim. Ecol. 79 53CrossRefGoogle ScholarPubMed
Quaintenne, G.van Gils, J. A.Bocher, P.Dekinga, A.Piersma, T. 2011 Scaling up ideals to freedom: are densities of Red Knots across Western Europe consistent with IFD?Proc. R. Soc. B 278 2728CrossRefGoogle Scholar
Råberg, L.Graham, A. L.Read, A. F. 2009 Decomposing health: Tolerance and resistance to parasites in animalsPhil. Trans. R. Soc. B 265 1637Google Scholar
Recher, H. F. 1966 Some aspects of the ecology of migrant shorebirdsEcology 47 393CrossRefGoogle Scholar
Ridley, M. 1994 The Red Queen: Sex and the Evolution of Human NatureLondonPenguin BooksGoogle Scholar
Rogers, D. I.Battley, P. F.Piersma, T.van Gils, J. A. 2006 High-tide habitat choice: insights from modelling roost selection by shorebirds around a tropical bayAnim. Behav. 72 563CrossRefGoogle Scholar
Rogers, D. I.Yang, Y.-H.Hassell, C. J. 2010 Red Knots ( and ) depend on a small threatened staging area in Bohai Bay, ChinaEmu 110 307CrossRefGoogle Scholar
Schmidt-Nielsen, K. 1984 Scaling: Why is Animal Size so Important?CambridgeCambridge University PressCrossRefGoogle Scholar
Schoener, T. W. 1989 The ecological nicheEcological Concepts: The Contribution of Ecology to an Understanding of the Natural WorldCherrett, J. M.79OxfordBlackwell Scientific PublicationsGoogle Scholar
Schuster, C. N. J.Barlow, R. B.Brockman, H. J. 2003 The American Horseshoe CrabCambridge, MAHarvard University PressGoogle Scholar
Sitters, H. P.Gonzalez, P. M.Piersma, T.Baker, A. J.Price, D. J. 2001 Day and night feeding habitat of Red Knots in Patagonia: profitability versus safety?J. Field Ornithol. 72 86CrossRefGoogle Scholar
Speakman, J. R.Król, E. 2010 Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endothermsJ. Anim. Ecol. 79 726Google ScholarPubMed
Starck, J. M.Dietz, M. W.Piersma, T. 2001 The assessment of body composition and other parameters by ultrasound scanningBody Composition Analysis of Animals. A Handbook of Non-destructive MethodsSpeakman, J. R.188CambridgeCambridge University PressCrossRefGoogle Scholar
Stephens, D. W.Krebs, J. R. 1986 Foraging TheoryPrincetonPrinceton University PressGoogle Scholar
Sutherland, W. J. 1996 From Individual Behaviour to Population EcologyOxfordOxford University PressGoogle Scholar
Temple, S. A. 2004 Individuals, populations, and communities: the ecology of birdsHandbook of Bird Biology1Princeton, NJPrinceton University PressGoogle Scholar
Tieleman, B. I.Williams, J. B.Buschur, M. E. 2002 Physiological adjustments to arid and mesic environments in larks (Alaudidae)Physiol. Biochem. Zool. 75 305CrossRefGoogle Scholar
Tieleman, B. I.Williams, J. B.Bloomer, P. 2003 Adaptation of metabolism and evaporative water loss along an aridity gradientProc. R. Soc. B 270 207CrossRefGoogle ScholarPubMed
Tieleman, B. I.Williams, J. B.Buschur, M. E.Brown, C. R. 2003 Phenotypic variation of larks along an aridity gradient: are desert birds more flexible?Ecology 84 1800CrossRefGoogle Scholar
Tieleman, B. I.Williams, J. B.Ricklefs, R. E.Klasing, K. C. 2005 Constitutive innate immunity is a component of the pace-of-life syndrome in tropical birdsProc. R. Soc. B 272 1715CrossRefGoogle Scholar
Tinbergen, J. M. 1981 Foraging decisions in Starlings ( L.)Ardea 69 1Google Scholar
Vahl, W. K.van der Meer, J.Weissing, F. J.van Dullemen, D.Piersma, T. 2005 The mechanisms of interference competition: two experiments on foraging wadersBehav. Ecol. 16 845CrossRefGoogle Scholar
Vahl, W. K.van der Meer, J.Meijer, K.Piersma, T.Weissing, F. J. 2007 Interference competition, the spatial distribution of food and free-living foragersAnim. Behav. 74 1493CrossRefGoogle Scholar
van de Kam, J.Ens, B. J.Piersma, T.Zwarts, L. 2004 Shorebirds. An Illustrated Behavioural EcologyUtrechtKNNV PublishersGoogle Scholar
van den Hout, P. J.Spaans, B.Piersma, T. 2008 Differential mortality of wintering shorebirds on the Banc d’Arguin, Mauritania, due to predation by large falconsIbis 150 219CrossRefGoogle Scholar
van den Hout, P. J.van Gils, J. A.Lok, T.
van Gils, J. A.Battley, P. F.Piersma, T.Drent, R. 2005 Reinterpretation of gizzard sizes of Red Knots world-wide emphasises overriding importance of prey quality at migratory stopover sitesProc. R. Soc. B 272 2609CrossRefGoogle ScholarPubMed
van Gils, J. A.de Rooij, S. R.van Belle, J. 2005 Digestive bottleneck affects foraging decisions in Red Knots . I. Prey choiceJ. Anim. Ecol. 74 105CrossRefGoogle Scholar
van Gils, J. A.Dekinga, A.Spaans, B.Vahl, W. K.Piersma, T. 2005 Digestive bottleneck affects foraging decisions in Red Knots (). II. Patch choice and length of working dayJ. Anim. Ecol. 74 120CrossRefGoogle Scholar
van Gils, J. A.Dekinga, A.van den Hout, P. J.Spaans, B.Piersma, T. 2007 Digestive organ size and behavior of Red Knots () indicate the quality of their benthic food stocksIsr. J. Ecol. Evol. 53 329CrossRefGoogle Scholar
van Gils, J. A.Edelaar, P.Escudero, G.Piersma, T. 2004 Carrying capacity models should not use fixed prey density thresholds: a plea for using more tools of behavioural ecologyOikos 104 197CrossRefGoogle Scholar
van Gils, J. A.Piersma, T. 1999 Day- and nighttime movements of radiomarked knots, , staging in the western Wadden Sea in July-August 1995Wader Study Group Bull. 89 36Google Scholar
van Gils, J. A.Piersma, T. 2004 Digestively constrained predators evade the cost of interference competitionJ. Anim. Ecol. 73 386CrossRefGoogle Scholar
van Gils, J. A.Piersma, T.Dekinga, A. 2006 Modelling phenotypic flexibility: an optimality analysis of gizzard size in Red Knots ()Ardea 94 409Google Scholar
van Gils, J. A.Piersma, T.Dekinga, A.Dietz, M. W. 2003 Cost-benefit analysis of mollusc-eating in a shorebird. II. Optimizing gizzard size in the face of seasonal demandsJ. Exp. Biol. 206 3369CrossRefGoogle Scholar
van Gils, J. A.Piersma, T.Dekinga, A.Spaans, B. 2000 Distributional ecology of individually radio-marked knots in the western Dutch Wadden Sea in August-October 1999Limosa 73 29Google Scholar
van Gils, J. A.Piersma, T.Dekinga, A.Spaans, B.Kraan, C. 2006 Shellfish-dredging pushes a flexible avian top predator out of a protected marine ecosystemPLoS Biol. 4 2399CrossRefGoogle Scholar
van Gils, J. A.Schenk, I. W.Bos, O.Piersma, T. 2003 Incompletely informed shorebirds that face a digestive bottleneck maximize net energy gain when exploiting patchesAm. Nat. 161 777CrossRefGoogle Scholar
van Gils, J. A.Spaans, B.Dekinga, A.Piersma, T. 2006 Foraging in a tidally structured environment by Red Knots (): ideal, but not freeEcology 87 1189CrossRefGoogle Scholar
Verboven, N.Piersma, T. 1995 Is the evaporative water loss of Knot higher in tropical than in temperate climates?Ibis 137 308CrossRefGoogle Scholar
Wiersma, P.Piersma, T. 1994 Effects of microhabitat, flocking, climate and migratory goal on energy expenditure in the annual cycle of Red KnotsCondor 96 257CrossRefGoogle Scholar
Williams, J. B.Tieleman, B. I. 2001 Physiological ecology and behavior of desert birdsCurr. Ornithol. 16 299Google Scholar
Yang, H.-Y.Chen, B.Barter, M. 2011 Impacts of tidal land claims in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird wintering and staging sitesBird Conserv. Int. 21 241Google Scholar
Zwarts, L. 1974 Vogels van het brakke getijdegebied, ecologische onderzoekingen op de VentjagersplatenAmsterdamBondsuitgeverij van de jeugdbonden voor natuurstudieGoogle Scholar
Zwarts, L.Blomert, A.-M. 1992 Why Knot take medium-sized when six prey species are availableMar. Ecol. Prog. Ser. 83 113CrossRefGoogle Scholar
Zwarts, L.Blomert, A.-M.Hupkes, R. 1990 Increase of feeding time in waders preparing their spring migration from the Banc d’Arguin, MauritaniaArdea 78 237Google Scholar
Zwarts, L.Blomert, A.-M.Wanink, J. H. 1992 Annual and seasonal variation in the food supply harvestable by Knot staging in the Wadden Sea in late summerMar. Ecol. Prog. Ser. 83 129CrossRefGoogle Scholar
Zwarts, L.Ens, B. J.Kersten, M.Piersma, T. 1990 Moult, mass and flight range of waders ready to take off for long-distance migrationsArdea 78 339Google Scholar
Zwarts, L.Wanink, J. H. 1984 How Oystercatchers and Curlews successively deplete clamsCoastal Waders and Wildfowl in WinterEvans, P. R.Goss-Custard, J. D.Hale, W. G.69CambridgeCambridge University PressGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×