Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T13:31:01.463Z Has data issue: false hasContentIssue false

8 - An overview of arbuscular mycorrhizal fungal composition, distribution and host effects from a tropical moist forest

Published online by Cambridge University Press:  25 August 2009

Edward Allen Herre
Affiliation:
Smithsonian Tropical Research Institute
Damond Kyllo
Affiliation:
Smithsonian Tropical Research Institute
Scott Mangan
Affiliation:
Smithsonian Tropical Research Institute and Indiana University
Rebecca Husband
Affiliation:
Smithsonian Tropical Research Institute and University of York
Luis C. Mejia
Affiliation:
Smithsonian Tropical Research Institute
Ahn-Heum Eom
Affiliation:
Smithsonian Tropical Research Institute and Korea National University of Education
David Burslem
Affiliation:
University of Aberdeen
Michelle Pinard
Affiliation:
University of Aberdeen
Sue Hartley
Affiliation:
University of Sussex
Get access

Summary

Introduction

Arbuscular mycorrhizal fungi (AMF) (Zygomycetes) are an ancient group, dating back to the invasion of land surfaces by plants. Currently, they are perhaps the most abundant soil fungi, and they form intimate relationships with the roots of the vast majority of terrestrial plant species across the planet. These fungal symbionts generally play a mutualistic role, aiding the host plant primarily by enhancing the acquisition of soil nutrients, particularly phosphorus (P). In addition, AMF species often affect plant hormone production/induction (Allen et al. 1980), resistance to root pathogens (Newsham et al. 1995); water uptake (Kyllo et al. 2003) and soil structure (Andrade et al. 1998; Rillig & Allen 1999). In return, all AMF species obligately depend on the host plant for photosynthetically fixed carbon. Given their obligate dependence, AMF are influenced by their hosts at essentially every phase in their life history – hyphal development, sporulation and spore germination (Hetrick & Bloom 1986; Sanders & Fitter 1992; Bever et al. 1996). On the other hand, the degree of mycorrhizal dependence often varies widely among the host plant species in a community (Janos 1980a; Azcon & Ocampo 1981; Hetrick et al. 1992; Kiers et al. 2000).

A central and still largely unanswered question is the degree to which host plant and AMF species influence each other's community composition in natural systems. Fundamentally, for community effects to occur, different combinations of host and AMF species must produce different outcomes of survival and growth.

Type
Chapter
Information
Biotic Interactions in the Tropics
Their Role in the Maintenance of Species Diversity
, pp. 204 - 225
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. D., E. Rincon, , Allen, M. F., Perez-Jimenez, A. & Huante, P. P.. 1998. Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30: 261–274CrossRefGoogle Scholar
Allen, M. F. 1996. The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycological Research 100: 769–782CrossRefGoogle Scholar
Allen, M. F., Moore, T. S. & Christiensen, M.. 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Canadian Journal of Botany 58: 371–374CrossRefGoogle Scholar
Andrade, G., Mihara, K. L., Linderman, R. G. & Bethlenfalvay, G. L.. 1998. Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202: 89–96CrossRefGoogle Scholar
Augspurger, C. K. 1984. Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65: 1705–1712CrossRefGoogle Scholar
Azcon, R. & Ocampo, J. A.. 1981. Factors affecting the V-A infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytologist 87: 677–685CrossRefGoogle Scholar
Bever, J. D. 1994. Feedback between plants and their soil communities in an old field community. Ecology 75: 1965–1977CrossRefGoogle Scholar
Bever, J. D. 1999. Dynamics within mutualism and the maintenance of diversity: inferences from a model of interguild frequency dependence. Ecology Letters 2: 52–62CrossRefGoogle Scholar
Bever, J. D. 2002. Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society of London B 269: 2595–2601CrossRefGoogle ScholarPubMed
Bever, J. D., Morton, J. B., Antonovics, J. & Schultz, P. A.. 1996. Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84: 71–82CrossRefGoogle Scholar
Bever, J. D., Westover, K. M. & Antonovics, J.. 1997. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology 85: 561–573CrossRefGoogle Scholar
Bever, J. D., Schultz, P. A., Pringle, A. & Morton, J. B.. 2001. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience 51: 923–931CrossRefGoogle Scholar
Brundrett, M. C., Abbott, L. K. & Jasper, D. A.. 1999. Glomalean mycorrhizal fungi from tropical Australia I. Comparison of the effectiveness and specificity of different isolation procedures. Mycorrhiza 8: 305–314CrossRefGoogle Scholar
Castelli, J. P. & Casper, B. B.. 2003. Intraspecific AMF fungal variation contributes to plant–fungal feedback in a serpentine grassland. Ecology 84: 323–336CrossRefGoogle Scholar
Clapp, J. P., Young, J. P. W., Merryweather, J. W. & Fitter, A. H.. 1995. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytologist 130: 259–265CrossRefGoogle Scholar
Clapp, J. P., Fitter, A. H. & Young, J. P. W.. 1999. Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Molecular Ecology 8: 915–921CrossRefGoogle ScholarPubMed
Clapp, J. P., Rodriguez, A. & Dodd, J. C.. 2001. Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytologist 149: 539–554CrossRefGoogle Scholar
Clapp, J. P., T. Helgason, T. J. Daniell & J. P. W. Young. 2002. Genetic studies of the structure and diversity of arbuscular mycorrhizal communities. In Mycorrhizal Ecology (ed. , M. G. A. van der Heijden & , I. R. Sanders). Berlin: Springer-VerlagGoogle Scholar
Connell, J. H. & Lowman, M. B.. 1989. Low diversity tropical rain forests: some possible mechanisms for their existence. American Naturalist 134: 88–119CrossRefGoogle Scholar
Dalling, J. W. & Hubbell, S. P.. 2002. Seed size, growth rate, and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology 90: 557–568CrossRefGoogle Scholar
Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W.. 2001. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology 36: 203–209CrossRefGoogle ScholarPubMed
Eom, A. H., Hartnett, D. C. & Wilson, G. W. T.. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122: 435–444CrossRefGoogle ScholarPubMed
Fischer, C. R., Janos, D. P., Perry, D. A., Linderman, R. G. & Sollins, P.. 1994. Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26: 369–377CrossRefGoogle Scholar
Gange, A. C., Brown, V. K. & Farmer, L. M.. 1990. A test of mycorrhizal benefit in an early successional plant community. New Phytologist 115: 85–91CrossRefGoogle Scholar
Garwood, N. C. 1983. Seed germination in a seasonal tropical forest in Panama: a community study. Ecological Monographs 53: 159–182CrossRefGoogle Scholar
Gilbert, G. S., Hubbell, S. P. & Foster, R. B.. 1994. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98: 100–108CrossRefGoogle Scholar
Givnish, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87(2): 193–210CrossRefGoogle Scholar
Grime, J. P., Mackey, M. L., Hillier, S. H. & Read, D. J.. 1987. Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422CrossRefGoogle Scholar
Guadarrama, P. & J. Álvarez-Sánchez, F.. 1999. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8: 267–270CrossRefGoogle Scholar
Harley, J. L. & S. E. Smith. 1983. Mycorrhizal Symbiosis. London: Academic Press
Harms, K. E., Wright, S. J., Calderón, O., Hernández, A. & Herre, E. A.. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404: 493–496CrossRefGoogle Scholar
Hart, M. M. & J. N. Klironomos. 2002. Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In Mycorrhizal Ecology (ed. , M. G. A. van der Heijden & , I. R. Sanders). Berlin: Springer-VerlagGoogle Scholar
Hart, M. M., Reader, R. J. & Klironomos, J. N.. 2001. Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93: 1186–1194CrossRefGoogle Scholar
Hartnett, D. C. & Wilson, G. W. T.. 1999. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology 80: 1187–1195CrossRefGoogle Scholar
Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W.. 1998. Ploughing up the wood-wide web?Nature 394: 431CrossRefGoogle ScholarPubMed
Helgason, T., Fitter, A. H. & Young, J. P. W.. 1999. Molecular diversity of arbuscular mycorrhizal fungi colonising Hyacinthoides non-scripta (bluebell) in a seminatural woodland. Molecular Ecology 8: 659–666CrossRefGoogle Scholar
Helgason, T., Merryweather, J. W. & Denison, J.. 2002. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology 90: 371–384CrossRefGoogle Scholar
Hetrick, B. A. & Bloom, J.. 1986. The influence of host plant on production and colonization ability of vesicular-arbuscular mycorrhizal spores. Mycologia 78: 32–36CrossRefGoogle Scholar
Hetrick, B. A. D., Wilson, G. W. T. & Todd, T. C.. 1992. Relationship of mycorrhizal symbiosis, rooting strategy and phenology among tall grass prairie forbs. Canadian Journal of Botany 70: 1521–1528CrossRefGoogle Scholar
Husband, R., Herre, E. A., Turner, S. L., Gallery, R. & Young, J. P. W.. 2002a. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology 11: 2669–2678CrossRefGoogle Scholar
Husband, R., Herre, E. A. & Young, J. P. W.. 2002b. Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest. FEMS Microbiology Ecology 42: 131–136CrossRefGoogle Scholar
Janos, D. P. 1980. Vesicular arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61: 151–162CrossRefGoogle Scholar
Janos, D. P. 1992. Heterogeneity and scale in tropical vesicular-arbuscular mycorrhiza formation. In Mycorrhizas in Ecosystems (ed. , D. J. Read, , D. H. Lewis, , A. H. Fitter & , I. J. Alexander). Wallingford: CAB International, pp. 276–282Google Scholar
Johnson, N. C. & Wedin, D. A.. 1997. Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecological Applications 7: 171–182CrossRefGoogle Scholar
Johnson, N. C., Tilman, D. & Wedin, D.. 1992. Plant and soil controls on mycorrhizal fungal communities. Ecology 73: 2034–2042CrossRefGoogle Scholar
Kiers, E. T., Lovelock, C. E., Krueger, E. L. & Herre, E. A.. 2000. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecology Letters 3: 106–113CrossRefGoogle Scholar
Kitajima, K. 2003. Impact of cotyledon and leaf removal on seedling survival in three tree species with contrasting cotyledon functions. Biotropica 35: 429–434CrossRefGoogle Scholar
Klironomos, J. N. 2002. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301CrossRefGoogle Scholar
Kuhn, G., Hijri, M. & Sanders, I. R.. 2001. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414: 745–748CrossRefGoogle ScholarPubMed
Kyllo, D. 2001. Effects of a common mycorrhizal network and light on growth and community structure of understorey shrubs, Piper & Psychotria, in a moist neotropical forest. Unpublished Ph. D. thesis, University of Missouri – St Louis
Kyllo, D., Velez, V. & Tyree, M. T.. 2003. Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytologist 160: 443–454CrossRefGoogle Scholar
Lee, P. J. & Koske, R. E.. 1994. Gigaspora gigantea – seasonal abundance and aging of spores in a sand dune. Mycological Research 98: 453–457CrossRefGoogle Scholar
Leigh, E. G. Jr. 1999. Tropical forest ecology: a view from Barro Colorado Island. New York: Oxford University PressGoogle Scholar
Lloyd-Macgilp, S. A., Chambers, S. M. & Dodd, J. C.. 1996. Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytologist 133: 103–111CrossRefGoogle Scholar
Lovelock, C. E., Andersen, K. & Morton, J. B.. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135(2): 268–279CrossRefGoogle Scholar
Mangan, S. A. & Adler, G. H. (2002) Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131: 587–597CrossRefGoogle Scholar
Mangan, S. A., , A.-H., Adler, G. H., Yavitt, J. B. & Herre, E. A. (2004) Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141: 687–700CrossRefGoogle ScholarPubMed
McDade, L. A., K. S. Bawa, H. A. Hespenheide & G. S. Hartshorn. 1994. La Selva: Ecology and Natural History of a Neotropical Forest. Chicago: Chicago University Press
Merryweather, J. & Fitter, A.. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta. Seasonal and spatial patterns of fungal populations. New Phytologist 138: 131–142CrossRefGoogle Scholar
Mills, K. M. & Bever, J. D.. 1998. Maintenance of diversity within plant communities: soil pathogens as agents of feedback. Ecology 79: 1595–1601CrossRefGoogle Scholar
Morton, J. B., Bentivenga, S. P. & Bever, J. D.. 1995. Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Canadian Journal of Botany 73: S25–S32CrossRefGoogle Scholar
Mosse, B. 1972. Effects of different Endogone strains on the growth of Paspalum notatum. Nature 239: 221–223CrossRefGoogle Scholar
Nemec, S. 1978. Response of six citrus rootstocks to three species of Glomus, a mycorrhizal fungus. Proceedings of the Florida State Horticulture Society 91: 10–14Google Scholar
Newsham, K. K., Fitter, A. H. & Watkinson, A. R.. 1995. Arbuscular mycorrhizae protect an annual grass from root pathogenic fungi in the field. Journal of Ecology 83: 991–1000CrossRefGoogle Scholar
Olff, H., Goede, R. G. M., Putten, W. H. & Gleichman, J. M.. 2000. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia 125: 45–54CrossRefGoogle ScholarPubMed
Picone, C. 2000. Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32: 734–750CrossRefGoogle Scholar
Pringle, A. & Bever, J. D.. 2002. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. American Journal of Botany 89: 1439–1446CrossRefGoogle Scholar
Reader, M. M., Klironomos, R. J. & Klironomos, J. N.. 2001. Life history strategies of arbuscular mycorrhizal fungi in relations to their successional dynamics. Mycologia 93: 1186–1194Google Scholar
Redecker, D., Morton, J. B. & Bruns, T. D.. 2000. Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Molecular Phylogenetics and Evolution 14: 276–284CrossRefGoogle Scholar
Rillig, M. C. & Allen, M. F.. 1999. What is the role of arbuscular mycorrhizal fungi in plant to ecosystem responses to elevated atmospheric CO2. Mycorrhiza 9: 1–8CrossRefGoogle Scholar
Sanders, I. R. 2002. Specificity in the arbuscular mycorrhizal symbisois. In Mycorrhizal Ecology (ed. , M. G. A. van der Heijden & , I. R. Sanders). Berlin: Springer-VerlagGoogle Scholar
Sanders, I. R. & Fitter, A. H.. 1992. Evidence for differential responses between host–fungus combinations of vesicular-arbuscular mycorrhizas from a grassland. Mycological Research 96: 415–419CrossRefGoogle Scholar
Sanders, I. R., Alt, M., Groppe, K., Boller, T. & Wiemken, A.. 1995. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytologist 130: 419–427CrossRefGoogle Scholar
Schenck, N. C. & Smith, G. S.. 1982. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytologist 92: 193–201CrossRefGoogle Scholar
Schultz, P. A., Bever, J. D. & Morton, J.. 1999. Acaulospora colossica sp. nov. from an old field in North Carolina and morphological comparisons with similar species, A. laevis and A. koskei. Mycologia 91: 676–683CrossRefGoogle Scholar
Schussler, A., Gehrig, H., Schwarzott, D. & Walker, C.. 2001. Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycological Research 105: 5–15CrossRefGoogle Scholar
Simon, L., Lalonde, M. & Bruns, T. D.. 1992. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology 58: 291–295Google ScholarPubMed
Siqueira, J. O., Carneiro, M. A. C., Curi, N., Rosado, S. C. da Silva & Davide, A. C.. 1998. Mycorrhizal colonization and mycotrophic growth of native woody species as related to successional groups in Southeastern Brazil. Forest Ecology and Management 107: 241–252CrossRefGoogle Scholar
Smith, F. A., Jakobsen, I. & Smith, S. E.. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist 147: 357–366CrossRefGoogle Scholar
Smith, S. E. & , D. J. Read. 1997. Mycorrhizal Symbioses, 2nd edn. London: Academic PressGoogle Scholar
Streitwolf-Engel, R., Boller, T., Wiemken, A. & Sanders, I. R.. 1997. Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. Journal of Ecology 85: 181–191CrossRefGoogle Scholar
Talukdar, N. C. & Germida, J. J.. 1994. Growth and yield of lentil and wheat inoculated with 3 glomus isolates from Saskatchewan soils. Mycorrhiza 5: 45–152CrossRefGoogle Scholar
van der Heijden, M. G. A. 2002. Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying principles and mechanisms. In Mycorrhizal Ecology (ed. , M. G. A. van der Heijden & , I. R. Sanders). Berlin: Springer-VerlagGoogle Scholar
Heijden, M. G. A., Boller, T., Wiemken, A. & Sanders, I. R.. 1998a. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082–2091CrossRefGoogle Scholar
Heijden, M. G. A., Klironomos, J. N., Ursic, M.et al. 1998b. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69–72CrossRefGoogle Scholar
Vandenkoornhuyse, P., Husband, R. & Daniell, T. J.. 2002. Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Molecular Ecology 11: 1555–1564CrossRefGoogle Scholar
Wills, C., Condit, R., Foster, R. B. & Hubbell, S. P.. 1997. Strong density- and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proceedings of the National Academy of Science 94: 1252–1257CrossRefGoogle Scholar
Wright, S. J. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130: 1–14CrossRefGoogle ScholarPubMed
Zangaro, W., Nisizaki, S. M. A., Domingos, J. C. B. & Nakano, E. M.. 2003. Mycorrhizal response and successional status in 80 woody species from south Brazil. Journal of Tropical Ecology 19: 315–324CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×