Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-18T05:07:42.196Z Has data issue: false hasContentIssue false

7 - Genetics, control and regulation of exopolysaccharide synthesis

Published online by Cambridge University Press:  09 September 2009

Ian W. Sutherland
Affiliation:
University of Edinburgh
Get access

Summary

Introduction

Although some of the earliest studies on bacterial transformation utilised as a model system polysaccharide production in Streptococcus pneumoniae and its relation to virulence, further progress in studying the genetics of polysaccharide synthesis has taken some considerable time. Much effort was applied to studies on the genetics of colanic acid synthesis in E. coli and Salmonella typhimurium, but this has proved to be a very complex system with numerous regulatory mechanisms. The complexity may perhaps be, at least in part, related to the relatively large hexasaccharide repeat unit of this exopolysaccharide and the ability of most bacteria synthesising it to produce more than one extracellular polysaccharide. Recently, however, detailed knowledge of the genetics of exopolysaccharide synthesis has derived from various systems. The interest in xanthan as an industrial product from X. campestris, and in the bacteria per se as plant pathogens, has prompted their study. Rhizobium species, as well as producing at least two different polysaccharides of potential industrial interest, have received attention because of their symbiotic relationship with leguminous plants and the associated bacterial fixation of dinitrogen. Alginate production by Pseudomonas aeruginosa has been studied because of the correlation between polysaccharide secretion and the infection of cystic fibrosis patients. Finally, a range of (mainly pathogenic) Gram-negative bacterial species have been examined, E. coli strains being used for a number of studies. All this information enables us to see some common aspects in the genetic control and regulation of exopolysaccharide synthesis; the concept of a ‘cassette’ of biosynthesis genes unique for each polysaccharide, first conceived in exopolysaccharide-synthesising E. coli by Boulnois and his colleagues, may well be at least partly applicable to many, if not all, exopolysaccharide-synthesising bacteria.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×