Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: February 2015

18 - Microfabricated gels for tissue engineering

from Part III - Hydrogel scaffolds for regenerative medicine

Summary

Introduction

Tissue engineering aims to develop biological substitutes that repair or replace damaged tissues or whole organs by combining technologies from engineering and medical sciences [1]. Although tissue engineering has enabled successful generation of various artificial tissue substitutes, such as skin [2], bladder [3], cartilage [4], bone [5], heart valves [6], and blood vessels [7], a number of challenges remain to be solved. It has been challenging to engineer large and vascularized organs such as the heart or liver. These tissues depend on adequate vascularization for the supply of nutrients and oxygen. In tissue engineering, this translates into not only creating the specific tissue but also making the highly organized vasculature. On the other hand, avascular tissues such as heart valves or cartilage depend on adequate diffusion for their supply of nutrients and oxygen. In terms of engineering, an avascular biomimetic construct cannot be too thick [8, 9], since this would lead to a limited supply of nutrients and oxygen [1]. Microfabrication strategies aim to overcome these limitations by controlling the size, geometry and features of three-dimensional (3D) in-vitro tissue-engineered constructs. Recent advances in biomaterials combined with developments in microengineering methods have enabled the development of vascular networks, prevascularized tissue constructs, and creation of well-ordered tissue constructs from microgel units with different cell types. [10].

Native tissues consist of cells that reside in a framework called the extracellular matrix (ECM). The ECM is composed of proteins (e.g. collagen), fibers (e.g. elastin), polysaccharides (e.g. hyaluronic acid), glycosaminoglycans (e.g. heparan sulfate), and growth factors (e.g. fibroblast growth factor). The ECM functions as a support system for cells to exert their biological function and can be viewed as the scaffolding environment for the tissues. Traditional tissue engineering uses synthetic scaffolds or biomaterials as molds to create tissue constructs. These scaffolds are typically porous, biocompatible, and degradable, and allow sufficient diffusion to occur [11]. Furthermore, such scaffolds enable cell adhesion, proliferation, and differentation, and tissue organization that are similar to those in their native counterparts [12]. Over time, the synthetic scaffold will degrade in vivo, while the cells deposit new natural scaffolding (ECM), thus leading to the formation of new tissue.

Related content

Powered by UNSILO
References
Langer, R. and Vacanti, J. P. 1993. Tissue engineering. Science, 260, 920–6.
Auger, F. A., Lacroix, D. and Germain, L. 2009. Skin substitutes and wound healing. Skin Pharmacol. Physiology, 22, 94–102.
Atala, A., Bauer, S. B., Soker, S., Yoo, J. J. and Retik, A. B. 2006. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367, 1241–6.
Ashiku, S. K., Randolph, M. A. and Vacanti, C. A. 1997. Tissue engineered cartilage. Porous Mater. Tissue Eng., 250, 129–50.
Petite, H., Viateau, V., Bensaid, W. et al. 2000. Tissue-engineered bone regeneration, Nature Biotechnol., 18, 959–63.
Cebotari, S., Lichtenberg, A., Tudorache, I. et al. 2006. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114, I132–7.
L’Heureux, N., Dusserre, N., Konig, G. et al. 2006. Human tissue-engineered blood vessels for adult arterial revascularization. Nature Med., 12, 361–5.
Liu, B., Liu, Y., Lewis, A. K. and Shen, W. 2010. Modularly assembled porous cell-laden hydrogels. Biomaterials, 31, 4918–25.
Muschler, G. E., Nakamoto, C. and Griffith, L. G. 2004. Engineering principles of clinical cell-based tissue engineering. J. Bone Joint Surg., 86A, 1541–58.
Nichol, J. W., Bae, H., Kachouie, N. et al. 2011. Microscale technologies for tissue engineering and stem cell differentiation. In Stem Cell and Tissue Engineering, ed. Li, S., L’Heureux, N., and Elisseeff, J., Singapore: World Scientific Publishing Company.
Pescosolido, L., Schuurman, W., Malda, J. et al. 2011. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules, 12, 1831–8.
Fedorovich, N. E., Alblas, J., de Wijn, J. R. et al. 2007. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing, Tissue Eng., 13, 1905–25.
Landers, R., Hubner, U., Schmelzeisen, R. and Mulhaupt, R. 2002. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23, 4437–47.
DeKosky, B. J., Dormer, N. H., Ingavle, G. C. et al. 2010. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. Tissue Eng. Part C, 16, 1533–42.
Lutolf, M. P. 2009. Spotlight on hydrogels. Nature Mater., 8, 451–3.
Khademhosseini, A. and Langer, R. 2007. Microengineered hydrogels for tissue engineering. Biomaterials, 28, 5087–92.
Benoit, D. S. W., Durney, A. R. and Anseth, K. S. 2006. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation, Tissue Eng., 12, 1663–73.
Kaji, H., Camci-Unal, G., Langer, R. and Khademhosseini, A. 2011. Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochim. Biophys. Acta – General Subjects, 1810, 239–50.
Fukuda, J., Khademhosseini, A., Yeo, Y. et al. 2006. Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials, 27, 5259–67.
Wheeldon, I., Fernandez, J., Bae, H., Kaji, H. and Khademhosseini, A. 2011. Microscale biomaterials for regenerative medicine and engineered cellular microenvironments. In Biomaterials for Tissue Engineering: A Review of the Past and Future Trends, ed. Burdick, J. A., and Mauck, R. L., New York: Springer.
Camci-Unal, G., Aubin, H., Ahari, A. F. et al. 2010. Surface-modified hyaluronic acid hydrogels to capture endothelial progenitor cells. Soft Matter, 6, 5120–6.
Camci-Unal, G., Nichol, J. W., Bae, H. et al. 2013. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med., 7(5), 337–47.
Khademhosseini, A., Eng, G., Yeh, J. et al. 2006. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J. Biomed. Mater. Res. A, 79, 522–32.
Chung, B. G., Kang, L. and Khademhosseini, A. 2007. Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opinion Drug Discovery, 2, 1653–68.
Karp, J. M., Yeh, J., Eng, G. et al. 2007. Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip, 7, 786–94.
Moeller, H. C., Mian, M. K., Shrivastava, S., Chung, B. G. and Khademhosseini, A. 2008. A microwell array system for stem cell culture. Biomaterials, 29, 752–63.
Yamazoe, H., Uemura, T. and Tanabe, T. 2008. Facile cell patterning on an albumin-coated surface. Langmuir, 24, 8402–4.
Wojciak-Stothard, B., Curtis, A., Monaghan, W., Macdonald, K. and Wilkinson, C. 1996. Guidance and activation of murine macrophages by nanometric scale topography. Exp. Cell Res., 223, 426–35.
Meyle, J., Gultig, K., Wolburg, H. and Von Recum, A. F. 1993. Fibroblast anchorage to microtextured surfaces. J. Biomed. Mater. Res. A, 27, 1553–7.
Rajnicek, A. M., Britland, S. and McCaig, C. D. 1997. Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J. Cell Sci., 110, 2905–13.
Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. and Ingber, D. E. 1997. Geometric control of cell life and death. Science, 276, 1425–8.
Yeh, J., Ling, Y., Karp, J. M. et al. 2006. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials, 27, 5391–8.
McGuigan, A. P. and Sefton, M. V. 2006. Vascularized organoid engineered by modular assembly enables blood perfusion. Proc. Nat. Acad. Sci. USA, 103, 11461–6.
Nguyen, K. T. and West, J. L. 2002. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23, 4307–14.
Mironov, V., Prestwich, G. and Forgacs, G. 2007. Bioprinting living structures. J. Mater. Chem., 17, 2054–60.
Fedorovich, N. E., Swennen, I., Girones, J. et al. 2009. Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10, 1689–96.
Seitz, H., Rieder, W., Irsen, S., Leukers, B. and Tille, C. 2005. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part B – Appl. Biomater., 74, 782–8.
Wang, X. H., Yan, Y. N., Pan, Y. Q. et al. 2006. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Eng., 12, 83–90.
Ang, T. H., Sultana, F. S. A., Hutmacher, D. W. et al. 2002. Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system. Mater. Sci. Eng. C – Biomimetic Supramolec. Systems, 20, 35–42.
Wilson, W. C. and Boland, T. 2003. Cell and organ printing 1: protein and cell printers. Anat. Rec. A Discov. Molec. Cell Evol. Biol., 272, 491–6.
Odde, D. J. and Renn, M. J. 2000. Laser-guided direct writing of living cells. Biotechnol. Bioeng., 67, 312–18.
Barron, J. A., Wu, P., Ladouceur, H. D. and Ringeisen, B. R. 2004. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices, 6, 139–47.
Ringeisen, B. R., Kim, H., Barron, J. A. et al. 2004. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng., 10, 483–91.
Cohen, D. L., Malone, E., Lipson, H. and Bonassar, L. J. 2006. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng., 12, 1325–35.
Varghese, D., Deshpande, M., Xu, T. et al. 2005. Advances in tissue engineering: cell printing. J. Thorac. Cardiovasc. Surg., 129, 470–2.
Landers, R., Pfister, A., Hubner, U. et al. 2002. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci., 37, 3107–16.
Skardal, A., Zhang, J. X. and Prestwich, G. D. 2010. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31, 6173–81.
Lam, C. X. F., Mo, X. M., Teoh, S. H. and Hutmacher, D. W. 2002. Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng. C – Biomimetic Supramolec. Systems, 20, 49–56.
Nahmias, Y., Schwartz, R. E., Verfaillie, C. M. and Odde, D. J. 2005. Laser-guided direct writing for three-dimensional tissue engineering. Biotechnol. Bioeng., 92, 129–36.
Boland, T., Mironov, V., Gutowska, A., Roth, E. A. and Markwald, R. R. 2003. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anatomical Record Part A – Discoveries Molec. Cellular Evolutionary Biol., 272, 497–502.
Smith, C. M., Stone, A. L., Parkhill, R. L. et al. 2004. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng., 10, 1566–76.
Han, L. H., Suri, S., Schmidt, C. E. and Chen, S. C. 2010. Fabrication of three-dimensional scaffolds for heterogeneous tissue engineering. Biomed. Microdevices, 12, 721–5.
Chen, C. Y., Barron, J. A. and Ringeisen, B. R. 2006. Cell patterning without chemical surface modification: cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Appl. Surf. Sci., 252, 8641–5.
Guillotin, B. and Guillemot, F., Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol., 29, 183–90.
Ovsianikov, A., Gruene, M., Pflaum, M. et al. 2010. Laser printing of cells into 3D scaffolds. Biofabrication, 2, 014104.
Kikuchi, A. and Okano, T. 2005. Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J. Controll. Release, 101, 69–84.
Shimizu, T., Sekine, H., Isoi, Y. et al. 2006. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng., 12, 499–507.
L’Heureux, N., Paquet, S., Labbe, R., Germain, L. and Auger, F. A. 1998. A completely biological tissue-engineered human blood vessel. FASEB J., 12, 47–56.
Mikos, A. G., Herring, S. W., Ochareon, P. et al. 2006. Engineering complex tissues. Tissue Eng., 12, 3307–39.
Lee, K. Y. and Mooney, D. J. 2001. Hydrogels for tissue engineering. Chem. Rev., 101, 1869–79.
Kaihara, S., Borenstein, J., Koka, R. et al. 2000. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng., 6, 105–17.
Stevens, M. M., Mayer, M., Anderson, D. G. et al. 2005. Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials, 26, 7636–41.
Tekin, H., Ozaydin-Ince, G., Tsinman, T. et al. 2011. Responsive microgrooves for the formation of harvestable tissue constructs. Langmuir, 27, 5671–9.
Bian, W. N. and Bursac, N. 2009. Engineered skeletal muscle tissue networks with controllable architecture. Biomaterials, 30, 1401–12.
Xia, Y. N. and Whitesides, G. M. 1998. Soft lithography. Ann. Rev. Mater. Sci., 28, 153–84.
Slaughter, B. V., Khurshid, S. S., Fisher, O. Z., Khademhosseini, A. and Peppas, N. A. 2009. Hydrogels in regenerative medicine. Adv. Mater., 21, 3307–29.
Oh, J. K., Lee, D. I. and Park, J. M. 2009. Biopolymer-based microgels/nanogels for drug delivery applications. Prog. Polymer Sci., 34, 1261–82.
Folch, A. and Toner, M. 2000. Microengineering of cellular interactions. Ann. Rev. Biomed. Eng., 2, 227–56.
Suh, K. Y., Choi, S. J., Baek, S. J., Kim, T. W. and Langer, R. 2005. Observation of high-aspect-ratio nanostructures using capillary lithography. Adv. Mater., 17, 560–4.
Chandra, D., Taylor, J. A. and Yang, S. 2008. Replica molding of high-aspect-ratio (sub-)micron hydrogel pillar arrays and their stability in air and solvents. Soft Matter, 4, 979–84.
Johann, R. M., Baiotto, C. and Renaud, P. 2007. Micropatterned surfaces of PDMS as growth templates for HEK 293 cells. Biomed. Microdevices, 9, 475–85.
Rivest, C., Morrison, D. W. G., Ni, B. et al. 2007. Microscale hydrogels for medicine and biology: synthesis, characteristics and applications. J. Mechanics Mater. Structures, 2, 1103–19.
Rolland, J. P., Maynor, B. W., Euliss, L. E. et al. 2005. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J. Am. Chem. Soc., 127, 10096–100.
Khademhosseini, A., Yeh, J., Jon, S. et al. 2004. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab Chip, 4, 425–30.
Tekin, H., Tsinman, T., Sanchez, J. G. et al. 2011. Responsive micromolds for sequential patterning of hydrogel microstructures. J. Am. Chem. Soc., 133, 12944–7.
Khademhosseini, A., Ferreira, L., Blumling, J. et al. 2006. Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates. Biomaterials, 27, 5968–77.
Park, J. H., Chung, B. G., Lee, W. G. et al. 2010. Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol. Bioeng., 106, 138–48.
Du, Y., Ghodousi, M., Qi, H. et al. 2011. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol. Bioeng., 108, 1693–703.
Koh, W. G., Revzin, A. and Pishko, M. V. 2002. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir, 18, 2459–62.
Liu, V. A. and Bhatia, S. N. 2002. Three-dimensional photopatterning of hydrogels containing living cells. Biomed. Microdevices, 4, 257–66.
Koh, W. G., Itle, L. J. and Pishko, M. V. 2003. Molding of hydrogel multiphenotype cell microstructures to create microarrays. Anal. Chem., 75, 5783–9.
Aubin, H., Nichol, J. W., Hutson, C. B. et al. 2010. Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31, 6941–51.
Mapili, G., Lu, Y., Chen, S. C. and Roy, K. 2005. Laser-layered microfabrication of spatially patterned functionalized tissue-engineering scaffolds. J. Biomed. Mater. Res. Part B – Appl. Biomater. 75, 414–24.
Hahn, M. S., Miller, J. S. and West, J. L. 2006. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater., 18, 2679–84.
Fozdar, D. Y., Soman, P., Lee, J. W., Han, L. H. and Chen, S. C. 2011. Three-dimensional polymer constructs exhibiting a tunable negative Poisson’s ratio. Adv. Functional Mater., 21, 2712–20.
Batorsky, A., Liao, J. H., Lund, A. W., Plopper, G. E. and Stegemann, J. P. 2005. Encapsulation of adult human mesenchymal stem cells within collagen–agarose microenvironments. Biotechnol. Bioeng., 92, 492–500.
Jia, X. Q., Yeo, Y., Clifton, R. J. et al. 2006. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules, 7, 3336–44.
Laroui, H., Grossin, L., Leonard, M. et al. 2007. Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules, 8, 3879–85.
Ethirajan, A., Ziener, U., Chuvilin, A. et al. 2008. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Functional Mater., 18, 2221–7.
Dang, S. M., Kyba, M., Perlingeiro, R., Daley, G. Q. and Zandstra, P. W. 2002. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnol. Bioeng., 78, 442–53.
Dang, S. and Zandstra, P. 2005. Scalable production of embryonic stem cell-derived cells. Methods Molec. Biol., 290, 353–64.
Magyar, J. P., Nemir, M., Ehler, E. et al. 2001. Mass production of embryoid bodies in microbeads. Ann. New York Acad. Sci., 944, 135–43.
Xu, S., Nie, Z., Seo, M. et al. 2005. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angewandte Chem. Int. Edition Engl., 44, 3799.
Franzesi, G. T., Ni, B., Ling, Y. B. and Khademhosseini, A. 2006. A controlled-release strategy for the generation of cross-linked hydrogel microstructures. J. Am. Chem. Soc., 128, 15064–5.
Dendukuri, D., Pregibon, D. C., Collins, J., Hatton, T. A. and Doyle, P. S. 2006. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Mater., 5, 365–9.
Chung, S. E., Park, W., Park, H. et al. 2007. Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels. Appl. Phys. Lett., 91, 041106.
Lee, S. A., Chung, S. E., Park, W., Lee, S. H. and Kwon, S. 2009. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip, 9, 1670–5.
Panda, P., Ali, S., Lo, E. et al. 2008. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip, 8, 1056–61.
Braschler, T., Johann, R., Heule, M., Metref, L. and Renaud, P. 2005. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation. Lab Chip, 5, 553–9.
Tan, W. and Desai, T. A. 2004. Layer-by-layer microfluidics for biomimetic three-dimensional structures. Biomaterials, 25, 1355–64.
Burdick, J. A., Khademhosseini, A. and Langer, R. 2004. Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 20, 5153–6.
Hancock, M. J., Piraino, F., Camci-Unal, G., Rasponi, M. and Khademhosseini, A. 2011. Anisotropic material synthesis by capillary flow in fluid stripes. Biomaterials, 32, 6493–504.
Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J. and Wong, J. Y. 2004. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater., 16, 2133–7.
Hoerstrup, S. P., Zund, G., Sodian, R. et al. 2001. Tissue engineering of small caliber vascular grafts. Eur. J. Cardio-Thorac. Surg., 20, 164–9.
Shin’oka, T., Matsumura, G., Hibino, N. et al. 2005. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J. Thorac. Cardiovasc. Surg., 129, 1330–8.
Hjortnaes, J., Gottlieb, D., Figueiredo, J. L. et al. 2010. Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng. Part C – Methods, 16, 597–607.
L’Heureux, N., Germain, L., Labbe, R. and Auger, F. A. 1993. In vitro construction of a human blood-vessel from cultured vascular cells – a morphologic study. J. Vasc. Surg., 17, 499–509.
Borenstein, J. T., Terai, H., King, K. R. et al. 2002. Microfabrication technology for vascularized tissue engineering. Biomed. Microdevices, 4, 167–75.
Fidkowski, C., Kaazempur-Mofrad, M. R., Borenstein, J. et al. 2005. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng., 11, 302–9.
Ling, Y., Rubin, J., Deng, Y. et al. 2007. A cell-laden microfluidic hydrogel. Lab Chip, 7, 756–62.
Golden, A. P. and Tien, J. 2007. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip, 7, 720–5.
Chrobak, K. M., Potter, D. R. and Tien, J. 2006. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res., 71, 185–96.
Nichol, J. W. and Khademhosseini, A. 2009. Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter, 5, 1312–19.
Tsang, V. L., Chen, A. A., Cho, L. M. et al. 2007. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J., 21, 790–801.
Wheeldon, I., Ahari, A. F. and Khademhosseini, A. 2010. Microengineering hydrogels for stem cell bioengineering and tissue regeneration. J. Assoc. Lab. Automation, 15, 440–8.
Peppas, N. A., Hilt, J. Z., Khademhosseini, A. and Langer, R. 2006. Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. Mater., 18, 1345–60.
Fernandez, J. G. and Khademhosseini, A. 2010. Micro-masonry: construction of 3D structures by microscale self-assembly. Adv. Mater., 22, 2538–41.
Du, Y., Ghodousi, M., Lo, E. et al. 2010. Surface-directed assembly of cell-laden microgels. Biotechnol. Bioeng., 105, 655–62.
Du, Y., Lo, E., Vidula, M. K., Khabiry, M. and Khademhosseini, A. 2008. Method of bottom-up directed assembly of cell-laden microgels. Cellular Molec. Bioeng., 1, 157–62.
Du, Y., Lo, E., Ali, S. and Khademhosseini, A. 2008. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. Proc. Nat. Acad. Sci., 105, 9522–7.
Yanagawa, F., Kaji, H., Jang, Y. H. et al. 2011. Directed assembly of cell-laden microgels for building porous three-dimensional tissue constructs. J. Biomed. Mater. Res. Part A, 97, 93–102.