Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T01:38:21.940Z Has data issue: false hasContentIssue false

1 - Embryonic stem cells

from Part I - Introduction to stem cells and regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Nicole Slawny
Affiliation:
University of Michigan
Gary D. Smith
Affiliation:
University of Michigan
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Preimplantation embryo development sets the stage for pluripotency

Regenerative medicine has the potential to revolutionize health care by offering the promise of replacement cells, tissues, and organs to combat injury, disease, and aging. In an ideal setting, stem cell therapies would begin with a pluripotent cell that by definition is able to give rise to any cell formed in the embryo. Additionally this would most likely require that the stem cells could self-renew or were able to divide and give rise to either more pluripotent stem cells or progressively more differentiated cells under the control of extrinsic cues. Stem cells are biological cells found in multicellular organisms, that can mitotically divide and differentiate into specialized cell types and can self-renew to produce more stem cells. There are two broad types of stem cells: embryonic stem cells and adult stem cells. Embryonic stem cells originate from the inner cell mass of the preimplantation embryo and are considered pluripotent whereas in situ adult stem cells are considered multipotent. Embryonic stem cells (ESCs) possess characteristics that make them a potentially outstanding starting material for use in regenerative medicine. They are unique among cultured cells because they have an apparently limitless capacity to self-renew in vitro, as well as being pluripotent. Because of these extraordinary properties, ESCs have been an intense focus of research for more than 30 years.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrlund-Richter, L., De Luca, M., Marshak, D. R. et al. 2009. Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell, 4, 20–6.CrossRefGoogle ScholarPubMed
Amit, M., Carpenter, M. K., Inokuma, M. S. et al. 2000. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental Biol., 227, 271–8.CrossRefGoogle ScholarPubMed
Amit, M. and Itskovitz-Eldor, J. 2002. Derivation and spontaneous differentiation of human embryonic stem cells. J. Anatomy, 200, 225–32.CrossRefGoogle ScholarPubMed
Amit, M., Margulets, V., Segev, H. et al. 2003. Human feeder layers for human embryonic stem cells. Biol. Reproduction, 68, 2150–6.CrossRefGoogle ScholarPubMed
Arnold, S. J. and Robertson, E. J. 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nature Rev. Molec. Cell Biol., 10, 91–103.CrossRefGoogle ScholarPubMed
Avilion, A. A., Nicolis, S. K., Pevny, L. H. et al. 2003. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Development, 17, 126–40.CrossRefGoogle ScholarPubMed
Azuara, V., Perry, P., Sauer, S. et al. 2006. Chromatin signatures of pluripotent cell lines. Nature Cell Biol., 8, 532–8.CrossRefGoogle ScholarPubMed
Bernstein, B. E., Mikkelsen, T. S., Xie, X. et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315–26.CrossRefGoogle ScholarPubMed
Biggers, J. D. and Summers, M. C. 2008. Choosing a culture medium: making informed choices. Fertility Sterility, 90, 473–83.CrossRefGoogle ScholarPubMed
Blomen, V. A. and Boonstra, J. 2007. Cell fate determination during G1 phase progression. Cellular Molec. Life Sci.: CMLS, 64, 3084–104.CrossRefGoogle ScholarPubMed
Bongso, A. and Tan, S. 2005. Human blastocyst culture and derivation of embryonic stem cell lines. Stem Cell Rev., 1, 87–98.CrossRefGoogle ScholarPubMed
Boyer, L. A., Lee, T. I., Cole, M. F. et al. 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–56.CrossRefGoogle ScholarPubMed
Brons, I. G., Smithers, L. E., Trotter, M. W. et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–5.CrossRefGoogle ScholarPubMed
Brook, F. A. and Gardner, R. L. 1997. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Nat. Acad. Sci. USA, 94, 5709–12.CrossRefGoogle ScholarPubMed
Burdon, T., Smith, A. and Savatier, P. 2002. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol., 12, 432–8.CrossRefGoogle ScholarPubMed
Burdon, T., Stracey, C., Chambers, I., Nichols, J. and Smith, A. 1999. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Developmental Biol., 210, 30–43.CrossRefGoogle ScholarPubMed
Catalina, P., Montes, R., Ligero, G. et al. 2008. Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties?Molec. Cancer, 7, 76.CrossRefGoogle ScholarPubMed
Chambers, I., Colby, D., Robertson, M. et al. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–55.CrossRefGoogle ScholarPubMed
Chazaud, C., Yamanaka, Y., Pawson, T. and Rossant, J. 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Developmental Cell, 10, 615–24.CrossRefGoogle ScholarPubMed
Chen, X., Xu, H., Yuan, P. et al. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133, 1106–17.CrossRefGoogle ScholarPubMed
Chew, J. L., Loh, Y. H., Zhang, W. et al. 2005. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Molec. Cellular Biol., 25, 6031–46.CrossRefGoogle ScholarPubMed
Choo, A. B., Padmanabhan, J., Chin, A. C. and Oh, S. K. 2004. Expansion of pluripotent human embryonic stem cells on human feeders. Biotechnol. Bioeng., 88, 321–31.CrossRefGoogle ScholarPubMed
Chung, Y., Klimanskaya, I., Becker, S. et al. 2008. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell, 2, 113–7.CrossRefGoogle ScholarPubMed
Cockburn, K. and Rossant, J. 2010. Making the blastocyst: lessons from the mouse. J. Clinical Investigation, 120, 995–1003.CrossRefGoogle ScholarPubMed
Cohen, D. E. and Melton, D. 2011. Turning straw into gold: directing cell fate for regenerative medicine. Nature Rev. Genetics, 12, 243–52.CrossRefGoogle ScholarPubMed
Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H. and Young, R. A. 2008. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Development, 22, 746–55.CrossRefGoogle ScholarPubMed
Davis, T. L., Trasler, J. M., Moss, S. B., Yang, G. J. and Bartolomei, M. S. 1999. Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis. Genomics, 58, 18–28.CrossRefGoogle ScholarPubMed
Davis, T. L., Yang, G. J., McCarrey, J. R. and Bartolomei, M. S. 2000. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Human Molec. Genetics, 9, 2885–94.CrossRefGoogle ScholarPubMed
Drukker, M. and Benvenisty, N. 2004. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol., 22, 136–41.CrossRefGoogle ScholarPubMed
Durcova-Hills, G., Ainscough, J. and McLaren, A. 2001. Pluripotential stem cells derived from migrating primordial germ cells. Differentiation; Res. Biol. Diversity, 68, 220–6.CrossRefGoogle ScholarPubMed
Dziadek, M. 1979. Cell differentiation in isolated inner cell masses of mouse blastocysts in vitro: onset of specific gene expression. J. Embryol. Exp. Morphol., 53, 367–79.Google ScholarPubMed
Efroni, S., Duttagupta, R., Cheng, J. et al. 2008. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2, 437–47.CrossRefGoogle ScholarPubMed
Englund, M. C., Caisander, G., Noaksson, K. et al. 2010. The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking. In vitro Cellular Developmental Biol. Animal, 46, 217–30.CrossRefGoogle ScholarPubMed
Evans, M. J. and Kaufman, M. H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–6.CrossRefGoogle ScholarPubMed
Ewen, K. A. and Koopman, P. 2010. Mouse germ cell development: from specification to sex determination. Molec. Cellular Endocrinol., 323, 76–93.CrossRefGoogle ScholarPubMed
Fareed, M. U. and Moolten, F. L. 2002. Suicide gene transduction sensitizes murine embryonic and human mesenchymal stem cells to ablation on demand – a fail-safe protection against cellular misbehavior. Gene Therapy, 9, 955–62.CrossRefGoogle Scholar
Feldman, B., Poueymirou, W., Papaioannou, V. E., Dechiara, T. M. and Goldfarb, M. 1995. Requirement of FGF-4 for postimplantation mouse development. Science, 267, 246–9.CrossRefGoogle ScholarPubMed
Fraga, A. M., Souza de Araújo, É. S., Stabellini, R., Vergani, N. and Pereira, L. V. 2011. A survey of parameters involved in the establishment of new lines of human embryonic stem cells. Stem Cell Rev., 7(4), 775–81.CrossRefGoogle ScholarPubMed
Gardner, R. L. and Brook, F. A. 1997. Reflections on the biology of embryonic stem (ES) cells. Int. J. Developmental Biol., 41, 235–43.Google ScholarPubMed
Gavrilov, S., Marolt, D., Douglas, N. C. et al. 2011. Derivation of two new human embryonic stem cell lines from nonviable human embryos. Stem Cells Int., 2011, 765378.CrossRefGoogle ScholarPubMed
Godin, I., Wylie, C. and Heasman, J. 1990. Genital ridges exert long-range effects on mouse primordial germ cell numbers and direction of migration in culture. Development, 108, 357–63.Google ScholarPubMed
Gomperts, M., Garcia-Castro, M., Wylie, C. and Heasman, J. 1994. Interactions between primordial germ cells play a role in their migration in mouse embryos. Development, 120, 135–41.Google ScholarPubMed
Grosshans, J. and Wieschaus, E. 2000. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell, 101, 523–31.CrossRefGoogle ScholarPubMed
Guo, G., Yang, J., Nichols, J. et al. 2009. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development, 136, 1063–9.CrossRefGoogle ScholarPubMed
Hanna, J., Cheng, A. W., Saha, K. et al. 2010. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Nat. Acad. Sci. USA, 107, 9222–7.CrossRefGoogle ScholarPubMed
Harper, J. C. and Sengupta, S. B. 2012. Preimplantation genetic diagnosis: state of the ART 2011. Human Genetics, 131, 175–86.CrossRefGoogle ScholarPubMed
Hasegawa, K., Pomeroy, J. E. and Pera, M. F. 2010. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell, 6, 521–31.CrossRefGoogle ScholarPubMed
Hu, B. Y., Weick, J. P., Yu, J. et al. 2010. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Nat. Acad. Sci. USA, 107, 4335–40.CrossRefGoogle ScholarPubMed
Humphrey, R. K., Beattie, G. M., Lopez, A. D. et al. 2004. Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells, 22, 522–30.CrossRefGoogle ScholarPubMed
Ilic, D., Giritharan, G., Zdravkovic, T. et al. 2009. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Development, 18, 1343–50.CrossRefGoogle ScholarPubMed
Illmensee, K. and Mintz, B. 1976. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Nat. Acad. Sci. USA, 73, 549–53.CrossRefGoogle ScholarPubMed
Jaenisch, R. and Young, R. 2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132, 567–82.CrossRefGoogle ScholarPubMed
James, D., Noggle, S. A., Swigut, T. and Brivanlou, A. H. 2006. Contribution of human embryonic stem cells to mouse blastocysts. Developmental Biol., 295, 90–102.CrossRefGoogle ScholarPubMed
Kahan, B. W. and Ephrussi, B. 1970. Developmental potentialities of clonal in vitro cultures of mouse testicular teratoma. J. Nat. Cancer Inst., 44, 1015–36.Google ScholarPubMed
Kattal, N., Cohen, J. and Barmat, L. I. 2008. Role of coculture in human in vitro fertilization: a meta-analysis. Fertility Sterility, 90, 1069–76.CrossRefGoogle ScholarPubMed
Kim, D. S., Lee, J. S., Leem, J. W. et al. 2010. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev., 6, 270–81.CrossRefGoogle ScholarPubMed
Kim, K., Lerou, P., Yabuuchi, A. et al. 2007. Histocompatible embryonic stem cells by parthenogenesis. Science, 315, 482–6.CrossRefGoogle ScholarPubMed
Kleinsmith, L. J. and Pierce, G. B. 1964. Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24, 1544–51.Google ScholarPubMed
Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J. and Lanza, R. 2006. Human embryonic stem cell lines derived from single blastomeres. Nature, 444, 481–485.CrossRefGoogle ScholarPubMed
Kuijk, E. W., Chuva De Sousa Lopes, S. M., Geijsen, N., Macklon, N. and Roelen, B. A. 2011. The different shades of mammalian pluripotent stem cells. Human Reproduction Update, 17, 254–71.CrossRefGoogle ScholarPubMed
Kuliev, A. and Rechitsky, S. 2011. Polar body based preimplantation genetic diagnosis for Mendelian disorders. Molec. Human Reproduction, 17, 275–85.CrossRefGoogle ScholarPubMed
Kulkeaw, K., Horio, Y., Mizuochi, C., Ogawa, M. and Sugiyama, D. 2010. Variation in hematopoietic potential of induced pluripotent stem cell lines. Stem Cell Rev., 6, 381–9.CrossRefGoogle ScholarPubMed
Laurent, L. C., Nievergelt, C. M., Lynch, C. et al. 2010. Restrictemphasised ethnic diversity in human embryonic stem cell lines. Nature Methods, 7, 6–7.CrossRefGoogle ScholarPubMed
Lee, H., Park, J., Forget, B. G. and Gaines, P. 2009. Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells. Regen. Med., 4, 759–69.CrossRefGoogle ScholarPubMed
Lee, J. B., Song, J. M., Lee, J. E. et al. 2004. Available human feeder cells for the maintenance of human embryonic stem cells. Reproduction, 128, 727–35.CrossRefGoogle ScholarPubMed
Lerou, P. H., Yabuuchi, A., Huo, H. et al. 2008. Human embryonic stem cell derivation from poor-quality embryos. Nature Biotechnol., 26, 212–14.CrossRefGoogle ScholarPubMed
Li, J., Liu, X., Wang, H. et al. 2009. Human embryos derived by somatic cell nuclear transfer using an alternative enucleation approach. Cloning Stem Cells, 11, 39–50.CrossRefGoogle ScholarPubMed
Lucifero, D., Mann, M. R., Bartolomei, M. S. and Trasler, J. M. 2004. Gene-specific timing and epigenetic memory in oocyte imprinting. Human Molec. Genetics, 13, 839–49.CrossRefGoogle ScholarPubMed
Lucifero, D., Mertineit, C., Clarke, H. J., Bestor, T. H. and Trasler, J. M. 2002. Methylation dynamics of imprinted genes in mouse germ cells. Genomics, 79, 530–8.CrossRefGoogle ScholarPubMed
Lui, K. O., Waldmann, H. and Fairchild, P. J. 2009. Embryonic stem cells: overcoming the immunological barriers to cell replacement therapy. Current Stem Cell Res. Therapy, 4, 70–80.CrossRefGoogle ScholarPubMed
Mai, Q., Yu, Y., Li, T. et al. 2007. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res., 17, 1008–19.CrossRefGoogle ScholarPubMed
Martin, G. R. 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Nat. Acad. Sci. USA, 78, 7634–8.CrossRefGoogle ScholarPubMed
Martin, G. R. and Evans, M. J. 1974. The morphology and growth of a pluripotent teratocarcinoma cell line and its derivatives in tissue culture. Cell, 2, 163–72.CrossRefGoogle ScholarPubMed
Martin, G. R. and Evans, M. J. 1975. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Nat. Acad. Sci. USA, 72, 1441–5.CrossRefGoogle ScholarPubMed
Martin, M. J., Muotri, A., Gage, F. and Varki, A. 2005. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Med., 11, 228–32.CrossRefGoogle ScholarPubMed
Matsuda, T., Nakamura, T., Nakao, K. et al. 1999. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J., 18, 4261–9.CrossRefGoogle ScholarPubMed
Matsui, Y., Zsebo, K. and Hogan, B. L. 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 70, 841–7.CrossRefGoogle ScholarPubMed
Melkoumian, Z., Weber, J. L., Weber, D. M. et al. 2010. Synthetic peptide–acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nature Biotechnol., 28, 606–10.CrossRefGoogle ScholarPubMed
Mintz, B. and Illmensee, K. 1975. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Nat. Acad. Sci. USA, 72, 3585–9.CrossRefGoogle ScholarPubMed
Mitalipova, M., Calhoun, J., Shin, S. et al. 2003. Human embryonic stem cell lines derived from discarded embryos. Stem Cells, 21, 521–6.CrossRefGoogle ScholarPubMed
Mitalipova, M. M., Rao, R. R., Hoyer, D. M. et al. 2005. Preserving the genetic integrity of human embryonic stem cells. Nature Biotechnol., 23, 19–20.CrossRefGoogle ScholarPubMed
Mitsui, K., Tokuzawa, Y., Itoh, H. et al. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–42.CrossRefGoogle ScholarPubMed
Molyneaux, K. A., Stallock, J., Schaible, K. and Wylie, C. 2001. Time-lapse analysis of living mouse germ cell migration. Developmental Biol., 240, 488–98.CrossRefGoogle ScholarPubMed
Mosher, J. T., Pemberton, T. J., Harter, K. et al. 2010. Lack of population diversity in commonly used human embryonic stem-cell lines. New England J. Med., 362, 183–5.CrossRefGoogle ScholarPubMed
Murdoch, A., Braude, P., Courtney, A. et al. 2012. The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev., 8, 91–9.CrossRefGoogle ScholarPubMed
Murry, C. E. and Keller, G. 2008. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132, 661–80.CrossRefGoogle ScholarPubMed
Nichols, J. and Smith, A. 2009. Naive and primed pluripotent states. Cell Stem Cell, 4, 487–92.CrossRefGoogle ScholarPubMed
Nichols, J. and Smith, A. 2011. The origin and identity of embryonic stem cells. Development, 138, 3–8.CrossRefGoogle ScholarPubMed
Nichols, J., Zevnik, B., Anastassiadis, K. et al. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–91.CrossRefGoogle ScholarPubMed
Niwa, H., Burdon, T., Chambers, I. and Smith, A. 1998. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Development, 12, 2048–60.CrossRefGoogle ScholarPubMed
Niwa, H., Miyazaki, J. and Smith, A. G. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372–6.CrossRefGoogle ScholarPubMed
Niwa, H., Toyooka, Y., Shimosato, D. et al. 2005. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell, 123, 917–29.CrossRefGoogle ScholarPubMed
Ohinata, Y., Payer, B., O’Carroll, D. et al. 2005. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 436, 207–13.CrossRefGoogle ScholarPubMed
Okita, K., Ichisaka, T. and Yamanaka, S. 2007. Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–17.CrossRefGoogle ScholarPubMed
Orford, K. W. and Scadden, D. T. 2008. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev. Genetics, 9, 115–28.CrossRefGoogle ScholarPubMed
Papaioannou, V. E., McBurney, M. W., Gardner, R. L. and Evans, M. J. 1975. Fate of teratocarcinoma cells injected into early mouse embryos. Nature, 258, 70–3.CrossRefGoogle ScholarPubMed
Pereira, L., Yi, F. and Merrill, B. J. 2006. Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Molec. Cellular Biol., 26, 7479–91.CrossRefGoogle ScholarPubMed
Rajala, K., Lindroos, B., Hussein, S. M. et al. 2010. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PloS One, 5, e10246.CrossRefGoogle ScholarPubMed
Ralston, A. and Rossant, J. 2008. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Developmental Biol., 313, 614–29.CrossRefGoogle ScholarPubMed
Resnick, J. L., Bixler, L. S., Cheng, L. and Donovan, P. J. 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature, 359, 550–1.CrossRefGoogle ScholarPubMed
Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A. and Bongso, A. 2000. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nature Biotechnol., 18, 399–404.CrossRefGoogle ScholarPubMed
Rodin, S., Domogatskaya, A., Strom, S. et al. 2010. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnol., 28, 611–15.CrossRefGoogle ScholarPubMed
Rosenthal, M. D., Wishnow, R. M. and Sato, G. H. 1970. In vitro growth and differetiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma. J. Nat. Cancer Inst., 44, 1001–14.Google ScholarPubMed
Rossant, J. 2008. Stem cells and early lineage development. Cell, 132, 527–31.CrossRefGoogle ScholarPubMed
Rossant, J. and McBurney, M. W. 1982. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection. J. Embryol. Exp. Morphol., 70, 99–112.Google ScholarPubMed
Rossant, J. and Tam, P. P. 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development, 136, 701–13.CrossRefGoogle ScholarPubMed
Saga, Y. 2008. Mouse germ cell development during embryogenesis. Current Opinion Genetics Development, 18, 337–41.CrossRefGoogle ScholarPubMed
Schuldiner, M., Itskovitz-Eldor, J. and Benvenisty, N. 2003. Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells, 21, 257–65.CrossRefGoogle ScholarPubMed
Schwartz, S. D., Hubschman, J. P., Heilwell, G. et al. 2012. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet, 379, 713–20.CrossRefGoogle ScholarPubMed
Shamblott, M. J., Axelman, J., Wang, S. et al. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Nat. Acad. Sci. USA, 95, 13726–31.CrossRefGoogle ScholarPubMed
Smith, A. G., Heath, J. K., Donaldson, D. D. et al. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336, 688–90.CrossRefGoogle ScholarPubMed
Solter, D. and Knowles, B. B. 1975. Immunosurgery of mouse blastocyst. Proc. Nat. Acad. Sci. USA, 72, 5099–102.CrossRefGoogle ScholarPubMed
Solter, D., Skreb, N. and Damjanov, I. 1970. Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature, 227, 503–4.CrossRefGoogle ScholarPubMed
Stein, R. 2011. First Human Embryonic Stem Cell Therapy in People Discontinued. Washington Post, November 14.Google Scholar
Stevens, L. C. 1967. Origin of testicular teratomas from primordial germ cells in mice. J. Nat. Cancer Inst., 38, 549–52.Google ScholarPubMed
Stevens, L. C. and Little, C. C. 1954. Spontaneous testicular teratomas in an inbred strain of mice. Proc. Nat. Acad. Sci. USA, 40, 1080–7.CrossRefGoogle Scholar
Stojkovic, M., Lako, M., Strachan, T. and Murdoch, A. 2004. Derivation, growth and applications of human embryonic stem cells. Reproduction, 128, 259–67.CrossRefGoogle ScholarPubMed
Strom, S., Inzunza, J., Grinnemo, K. H. et al. 2007. Mechanical isolation of the inner cell mass is effective in derivation of new human embryonic stem cell lines. Human Reproduction, 22, 3051–8.CrossRefGoogle ScholarPubMed
Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–76.CrossRefGoogle ScholarPubMed
Tam, P. P. and Snow, M. H. 1981. Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol., 64, 133–47.Google ScholarPubMed
Tam, W. L., Lim, C. Y., Han, J. et al. 2008. T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells, 26, 2019–31.CrossRefGoogle ScholarPubMed
Tang, C., Lee, A. S., Volkmer, J. P. et al. 2011. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nature Biotechnol., 29, 829–34.CrossRefGoogle ScholarPubMed
Tang, F., Barbacioru, C., Bao, S. et al. 2010. Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell, 6, 468–78.CrossRefGoogle ScholarPubMed
Tesar, P. J., Chenoweth, J. G., Brook, F. A. et al. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–9.CrossRefGoogle ScholarPubMed
Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S. et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–7.CrossRefGoogle ScholarPubMed
Trivedi, H. L., Mishra, V. V., Vanikar, A. V. et al. 2006. Embryonic stem cell derived and adult hematopoietic stem cell transplantation for tolerance induction in a renal allograft recipient: a case report. Transplantation Proc., 38, 3103–8.CrossRefGoogle Scholar
Turetsky, T., Aizenman, E., Gil, Y. et al. 2008. Laser-assisted derivation of human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis. Human Reproduction, 23, 46–53.CrossRefGoogle ScholarPubMed
Unger, C., Skottman, H., Blomberg, P., Dilber, M. S. and Hovatta, O. 2008. Good manufacturing practice and clinical-grade human embryonic stem cell lines. Human Molec. Genetics, 17, R48–53.CrossRefGoogle ScholarPubMed
Vassena, R., Boue, S., Gonzalez-Roca, E. et al. 2011. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development, 138, 3699–709.CrossRefGoogle ScholarPubMed
Vazin, T. and Freed, W. J. 2010. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restorative Neurol. Neurosci., 28, 589–603.Google ScholarPubMed
Villa-Diaz, L. G., Nandivada, H., Ding, J. et al. 2010. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nature Biotechnol., 28, 581–3.CrossRefGoogle ScholarPubMed
White, J., Stead, E., Faast, R. et al. 2005. Developmental activation of the Rb-E2F pathway and establishment of cell cycle-regulated cyclin-dependent kinase activity during embryonic stem cell differentiation. Molec. Biol. Cell, 16, 2018–27.CrossRefGoogle ScholarPubMed
Wu, D., Pang, Y., Ke, Y. et al. 2009. A conserved mechanism for control of human and mouse embryonic stem cell pluripotency and differentiation by shp2 tyrosine phosphatase. PloS One, 4, e4914.CrossRefGoogle ScholarPubMed
Xu, C., Rosler, E., Jiang, J. et al. 2005a. Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium. Stem Cells, 23, 315–23.CrossRefGoogle ScholarPubMed
Xu, R. H., Chen, X., Li, D. S. et al. 2002. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nature Biotechnol., 20, 1261–4.CrossRefGoogle ScholarPubMed
Xu, R. H., Peck, R. M., Li, D. S. et al. 2005b. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods, 2, 185–90.CrossRefGoogle ScholarPubMed
Xu, X., Pantakani, D. V., Luhrig, S. et al. 2011. Stage-specific germ-cell marker genes are expressed in all mouse pluripotent cell types and emerge early during induced pluripotency. PloS One, 6, e22413.CrossRefGoogle ScholarPubMed
Yabuta, Y., Kurimoto, K., Ohinata, Y., Seki, Y. and Saitou, M. 2006. Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling. Biol. Reproduction, 75, 705–16.CrossRefGoogle ScholarPubMed
Yamaguchi, S., Kimura, H., Tada, M., Nakatsuji, N. and Tada, T. 2005. Nanog expression in mouse germ cell development. Gene Expression Patterns: GEP, 5, 639–46.CrossRefGoogle ScholarPubMed
Yamanaka, Y., Lanner, F. and Rossant, J. 2010. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development, 137, 715–24.CrossRefGoogle ScholarPubMed
Ying, Q. L., Wray, J., Nichols, J. et al. 2008. The ground state of embryonic stem cell self-renewal. Nature, 453, 519–23.CrossRefGoogle ScholarPubMed
Ying, Y., Qi, X. and Zhao, G. Q. 2001. Induction of primordial germ cells from murine epiblasts by synergistic action of BMP4 and BMP8B signaling pathways. Proc. Nat. Acad. Sci. USA, 98, 7858–62.CrossRefGoogle ScholarPubMed
Ying, Y. and Zhao, G. Q. 2001. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Developmental Biol., 232, 484–92.CrossRefGoogle ScholarPubMed
Yuan, H., Corbi, N., Basilico, C. and Dailey, L. 1995. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Development, 9, 2635–45.CrossRefGoogle ScholarPubMed
Zernicka-Goetz, M., Morris, S. A. and Bruce, A. W. 2009. Making a firm decision: multifaceted regulation of cell fate in the early mouse embryo. Nature Rev. Genetics, 10, 467–77.CrossRefGoogle ScholarPubMed
Zhao, T., Zhang, Z. N., Rong, Z. and Xu, Y. 2011. Immunogenicity of induced pluripotent stem cells. Nature, 474, 212–15.CrossRefGoogle ScholarPubMed
Zwaka, T. P. and Thomson, J. A. 2005. A germ cell origin of embryonic stem cells?Development, 132, 227–33.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Embryonic stem cells
  • Edited by Peter X. Ma, University of Michigan, Ann Arbor
  • Book: Biomaterials and Regenerative Medicine
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997839.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Embryonic stem cells
  • Edited by Peter X. Ma, University of Michigan, Ann Arbor
  • Book: Biomaterials and Regenerative Medicine
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997839.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Embryonic stem cells
  • Edited by Peter X. Ma, University of Michigan, Ann Arbor
  • Book: Biomaterials and Regenerative Medicine
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511997839.003
Available formats
×